EDEXCEL CORE MATHEMATICS C3
PRACTICE PAPER A5 MARK SCHEME
Question Number
Scheme y = tan x =
1.
Marks
sin x cos x
M1
cos x cos x − sin x(− sin x) dy = dx cos 2 x =
1 2
cos x
(use of quotient rule)
= sec2 x
*
M1 A1
A1
(4 marks) 2.
(a)
2+
3 x+2
2 ( x + 2) + 3 = x + 2
3 (b) y = 2 + x + 2 y–2=
x=
y =
3 y−2
x=
,x ≠2
M1
7 − 2y y−2 f-−1 (x ) =
x
(1)
yx –2x = 7 – 2y M1
x (y – 2) = 7 – 2y
3 −2 x−2
Domain of f−1(x) is
B1
2x +7 x+2
y (x + 2) = 2x + 7 =
3 −2 y−2
∴ f−1 (x) = (c)
or
3 x+2
x+2=
2x+7 2( x + 2) + 3 or x+2 x+2
=
7 − 2x x−2
o.e
[NB x ≠ + 2 ]
A1
(3)
B1
(1)
(5 marks) 3.
(a)
2 13 + x − 3 ( x − 3) ( x + 7) =
(b)
2( x + 7) + 13 2 x + 27 = ( x − 3)( x + 7) ( x − 3)( x + 7)
2x + 27 = x2 + 4x − 21
M1
M1 A1
(3)
M1
x2 + 2x − 48 = (x + 8)(x − 6) = 0 x = −8, 6
M1 A1
(3)
(6 marks)
EDEXCEL CORE MATHEMATICS C3 Question Number
4.
(a)
PRACTICE PAPER A5 MARK SCHEME Scheme
x 2 + 4 x + 3 ( x + 3)( x + 1) = x( x + 1) x2 + x =
Marks
Attempt to factorise numerator or denominator
x+3 3 or 1 + x x
A1
x 2 + 4x + 3 (b) LHS = log2 2 x +x
Use of log a – log b
RHS = 24 or 16
3 15
or
1 5
(2)
M1 B1
x + 3 = 16x x=
M1
Linear or quadratic equation in x
or 0.2
M1 A1
(4)
(6 marks) 5.
(i) Choosing values of A and B and attempting to evaluate LHS and RHS of statement Showing that LHS ≠ RHS + conclusion (ii) Using tan θ ≡
to obtain
sin θ cos θ sin 2 θ + cos 2 θ sin θ cos θ
M1 A1
(2)
M1
A1
Using cos2θ + sin2 θ ≡ 1
M1
Using 2 sin θ cos θ ≡ sin 2θ
M1
Leading without any error or fudge to 2 cosec 2θ
A1 cso
(5)
(7 marks)
EDEXCEL CORE MATHEMATICS C3 Question Number
6.
PRACTICE PAPER A5 MARK SCHEME Scheme
(a) LHS =
Marks
2 sin 2 θ 2 sin θ cos θ =
M1 A1
sin θ = tan θ = RHS cos θ
(b) From (a)
A1 c.s.o
1 − cos 2θ 1 = tan θ 2 sin 2θ =
π
θ=
M1
1 2
A1
5π 6 6
2θ =
π
(3)
,
B1 M1
5π 12 12
M1 A1 cao
,
(6)
(9 marks) 7. (a) (i)
x = ay
i.e ln x = ln a y
(ii) In both sides of (i)
dy 1 1 × ∗ ,= dx ln a x
1 × ln x , ⇒ ln a
(b)
y=
(c)
dy 1 dy 1 = ⋅ ln a , ⇒ = ∗ or x dx dx x ln a log10 10 = 1 ⇒ A is (10, 1)
equ of target i.e
(d)
m=
y = 0 in (c ) ⇒ 0 =
y A =1
B1 B1
M1
1 (x − 10) or y = 1 x + 1 − 1 10 ln 10 10 ln 10 ln 10
x = 10 − 10 ln10 or 10 (1 − ln10) or 10 ln 10(
(1)
(2)
1 1 or or 0.043 (or better) 10 ln a 10 ln 10
1 x +1− 10 ln 10 ln10
B1 cso
M1, A1 cso
y − 1 = m(x − 10) y −1=
(1)
ln x ln a
⇒ y ln a = ln x
= y ln a *
from(b )
or ( y =) loga x =
B1
(o.e)
A1
1 ⇒ x , = 10 ln10 − 1 ln10
M1
1 − 1) ln 10
A1
(4)
(2)
(10 marks)
EDEXCEL CORE MATHEMATICS C3 Question Number
8.
PRACTICE PAPER A5 MARK SCHEME Scheme
Marks
(a)
Shape B1
y
p=
O
1 3
or { 13 , 0} seen B1
(2)
1 3
(b) Gradient of tangent at Q =
1 q
B1
Gradient of normal = −q
M1
Attempt at equation of OQ [y = −qx] and substituting x = q, y = ln 3q
or attempt at equation of tangent [y – 3 ln q = −q(x – q)] with x = 0, y = 0 or equating gradient of normal to (ln 3q)/q
M1
q2 + ln 3q = 0 (*)
A1
(4)
M1; A1
(2)
2
(c) ln 3x = −x2 ⇒ 3x = e − x ; ⇒ x = 13 e − x
2
(d) x1 = 0.298280; x2 = 0.304957, x3 = 0.303731, x4 = 0.303958 Root = 0.304 (3 decimal places)
M1; A1 A1
(3)
(11 marks)
EDEXCEL CORE MATHEMATICS C3 Question Number
9.
(a)
PRACTICE PAPER A5 MARK SCHEME Scheme
Marks
y
shape B1 intersections with axes (c, 0), (0, d) B1
(0, d)
O (b)
(c, 0)
x shape B1
y
x intersection ( 12 d, 0) B1
(0, 3c)
y intersection (0, 3c) B1 O
(2)
( 12 d, 0)
x
(c)(i) c = 2
B1
(ii) −1 < f(x) ≤ (candidate’s) c value (d) 3(2−x) = 1 ⇒ 2−x =
(3)
1 3
B1 B1 ft (3)
and take logs; −x =
ln 13
M1; A1
ln 2
d (or x) = 1.585 (3 decimal places) − log x (e) fg(x) = f[log2 x] = [ 3(2 2 ) − 1 ]; = [ 3(2
=
log 2 1x
3 −1 x
) − 1 ] or
3 2 log 2
x
−1
A1
(3)
M1; A1 A1
(3)
(14 marks)