Practice Paper A5 Ms

  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Practice Paper A5 Ms as PDF for free.

More details

  • Words: 1,061
  • Pages: 5
EDEXCEL CORE MATHEMATICS C3

PRACTICE PAPER A5 MARK SCHEME

Question Number

Scheme y = tan x =

1.

Marks

sin x cos x

M1

cos x cos x − sin x(− sin x) dy = dx cos 2 x =

1 2

cos x

(use of quotient rule)

= sec2 x

*

M1 A1

A1

(4 marks) 2.

(a)

2+

3 x+2

 2 ( x + 2) + 3   =  x + 2  

3 (b) y = 2 + x + 2 y–2=

x=

y =

3 y−2

x=



,x ≠2

M1

7 − 2y y−2 f-−1 (x ) =

x

(1)

yx –2x = 7 – 2y M1

x (y – 2) = 7 – 2y

3 −2 x−2

Domain of f−1(x) is

B1

2x +7 x+2

y (x + 2) = 2x + 7 =

3 −2 y−2

∴ f−1 (x) = (c)

or

3 x+2

x+2=

2x+7 2( x + 2) + 3 or x+2 x+2

=

7 − 2x x−2

o.e

[NB x ≠ + 2 ]

A1

(3)

B1

(1)

(5 marks) 3.

(a)

2 13 + x − 3 ( x − 3) ( x + 7) =

(b)

2( x + 7) + 13 2 x + 27 = ( x − 3)( x + 7) ( x − 3)( x + 7)

2x + 27 = x2 + 4x − 21

M1

M1 A1

(3)

M1

x2 + 2x − 48 = (x + 8)(x − 6) = 0 x = −8, 6

M1 A1

(3)

(6 marks)

EDEXCEL CORE MATHEMATICS C3 Question Number

4.

(a)

PRACTICE PAPER A5 MARK SCHEME Scheme

x 2 + 4 x + 3 ( x + 3)( x + 1) = x( x + 1) x2 + x =

Marks

Attempt to factorise numerator or denominator

x+3 3 or 1 + x x

A1

 x 2 + 4x + 3  (b) LHS = log2   2  x +x 

Use of log a – log b

RHS = 24 or 16

3 15

or

1 5

(2)

M1 B1

x + 3 = 16x x=

M1

Linear or quadratic equation in x

or 0.2

M1 A1

(4)

(6 marks) 5.

(i) Choosing values of A and B and attempting to evaluate LHS and RHS of statement Showing that LHS ≠ RHS + conclusion (ii) Using tan θ ≡

to obtain

sin θ cos θ sin 2 θ + cos 2 θ sin θ cos θ

M1 A1

(2)

M1

A1

Using cos2θ + sin2 θ ≡ 1

M1

Using 2 sin θ cos θ ≡ sin 2θ

M1

Leading without any error or fudge to 2 cosec 2θ

A1 cso

(5)

(7 marks)

EDEXCEL CORE MATHEMATICS C3 Question Number

6.

PRACTICE PAPER A5 MARK SCHEME Scheme

(a) LHS =

Marks

2 sin 2 θ 2 sin θ cos θ =

M1 A1

sin θ = tan θ = RHS cos θ

(b) From (a)

A1 c.s.o

1 − cos 2θ 1 = tan θ 2 sin 2θ =

π

θ=

M1

1 2

A1

5π 6 6

2θ =

π

(3)

,

B1 M1

5π 12 12

M1 A1 cao

,

(6)

(9 marks) 7. (a) (i)

x = ay

i.e ln x = ln a y

(ii) In both sides of (i)

dy 1 1 × ∗ ,= dx ln a x

1 × ln x , ⇒ ln a

(b)

y=

(c)

  dy 1 dy 1 = ⋅ ln a , ⇒ = ∗ or x dx dx x ln a   log10 10 = 1 ⇒ A is (10, 1)

equ of target i.e

(d)

m=

y = 0 in (c ) ⇒ 0 =

y A =1

B1 B1

M1

1 (x − 10) or y = 1 x + 1 − 1 10 ln 10 10 ln 10 ln 10

x = 10 − 10 ln10 or 10 (1 − ln10) or 10 ln 10(

(1)

(2)

1 1 or or 0.043 (or better) 10 ln a 10 ln 10

1 x +1− 10 ln 10 ln10

B1 cso

M1, A1 cso

y − 1 = m(x − 10) y −1=

(1)

ln x ln a

⇒ y ln a = ln x

= y ln a *

from(b )

or ( y =) loga x =

B1

(o.e)

A1

 1  ⇒ x , = 10 ln10  − 1  ln10 

M1

1 − 1) ln 10

A1

(4)

(2)

(10 marks)

EDEXCEL CORE MATHEMATICS C3 Question Number

8.

PRACTICE PAPER A5 MARK SCHEME Scheme

Marks

(a)

Shape B1

y

p=

O

1 3

or { 13 , 0} seen B1

(2)

1 3

(b) Gradient of tangent at Q =

1 q

B1

Gradient of normal = −q

M1

Attempt at equation of OQ [y = −qx] and substituting x = q, y = ln 3q

or attempt at equation of tangent [y – 3 ln q = −q(x – q)] with x = 0, y = 0 or equating gradient of normal to (ln 3q)/q

M1

q2 + ln 3q = 0 (*)

A1

(4)

M1; A1

(2)

2

(c) ln 3x = −x2 ⇒ 3x = e − x ; ⇒ x = 13 e − x

2

(d) x1 = 0.298280; x2 = 0.304957, x3 = 0.303731, x4 = 0.303958 Root = 0.304 (3 decimal places)

M1; A1 A1

(3)

(11 marks)

EDEXCEL CORE MATHEMATICS C3 Question Number

9.

(a)

PRACTICE PAPER A5 MARK SCHEME Scheme

Marks

y

shape B1 intersections with axes (c, 0), (0, d) B1

(0, d)

O (b)

(c, 0)

x shape B1

y

x intersection ( 12 d, 0) B1

(0, 3c)

y intersection (0, 3c) B1 O

(2)

( 12 d, 0)

x

(c)(i) c = 2

B1

(ii) −1 < f(x) ≤ (candidate’s) c value (d) 3(2−x) = 1 ⇒ 2−x =

(3)

1 3

B1 B1 ft (3)

and take logs; −x =

ln 13

M1; A1

ln 2

d (or x) = 1.585 (3 decimal places) − log x (e) fg(x) = f[log2 x] = [ 3(2 2 ) − 1 ]; = [ 3(2

=

log 2 1x

3 −1 x

) − 1 ] or

3 2 log 2

x

−1

A1

(3)

M1; A1 A1

(3)

(14 marks)

Related Documents

Practice Paper A5 Ms
December 2019 4
Practice Paper A5 Qp
December 2019 6
Practice Paper A4 Ms
December 2019 3
Practice Paper A1 Ms
December 2019 3
Practice Paper A3 Ms
December 2019 4
Practice Paper A2 Ms
December 2019 3