EDEXCEL CORE MATHEMATICS C3 Question Number 1.
(a)
PRACTICE PAPER A3 MARK SCHEME Scheme
( )
4x = 2x
2
Marks
= u 2 or 2 ( x + 1) = 2.2 x = 2u , → u 2 − 2u − 15 (= 0 )
M1, A1 c.s.o (2)
(b)
u 2 − 2u − 15, = (u − 5)(u + 3) u = 5 ⇒ 2x = 5 ⇒ x =
M1, A1
log 5 , = 2.32 log 2
M1, A1
[Ignore any other solution]
2.
(6 marks)
(a) f`(x) = 0.5ex − 2x
M1
f`(0) = 0.5
A1 c.s.o
Equation of tangent at A is: y = f `(0)x + f(0), i.e y = 0.5x + 0.5
M1, A1
⇒
(b) f`(x) = 0
(4)
2x =
1 2
ex
M1
4x = ex
i.e ⇒
x = ln(4x)
(4)
M1 A1 c.s.o
*
(c) x1 = ln 8.6 = 2.1517622
(3)
M1
x2
= 2.1525814
x3
= 2.152962… = 2.1530
(4dp) only
A1 c.a.o (2)
(9 marks) 3.
(a)
V graph with ‘vertex’ on x-axis M1
y
{− 12 a , (0)} and {(0), a} seen A1
(2)
Correct graph (could be separate) B1
(1)
a − 12 a
O
x
(b)
(c) Meet where
1 = |2x + a | ⇒ x|2x + a | − 1 = 0; only one meet x
(d) 2x2 + x – 1 Attempt to solve; x =
B1
(1)
B1 1 2
(no other value)
M1; A1
(3)
(7 marks)
EDEXCEL CORE MATHEMATICS C3
PRACTICE PAPER A3 MARK SCHEME
Question Number
4.
Scheme
Marks
y
(a)
( 13 , 1)
Translation in ← or →
B1
Points correct
B2, 1, 0 (–1eeoo) (3)
−1
1
(b)
x
y ( 43 , 1)
2
O (− , 1) 4 3
4 3
( , 1)
−2
2
O
B1
x > 2 correct reflection
B1
cusp at (2, 0) (not ∪)
B1
correct shape x ≥ 0
B1
symmetry in y-axis correct maxima
B1 B1
correct x intercepts
B1
(3)
x
y
(c)
x < 2 including points
x
(4)
(10 marks) 5.
(i)
A correct form of cos 2x used 2
2
2
M1 2
4 3 3 4 1 – 2 or − or 2 − 1 5 5 5 5 sec 2 x = (ii) (a)
1 cos 2 x
;
=
25
or 3
7
cos 2 x 1 + sin 2 x sin 2 x
or
7 25
4 7
A1 M1A1
(b)
1 1 + tan 2 x sin 2 x
(4)
M1
Forming single fraction (or multiplying both sides by sin2x)
M1
Use of correct trig. formulae throughout and producing expression in
M1
terms of sin x and cos x Completion (cso) e.g.
2 cos 2 x cos x = = cot x 2 sin x cos x sin x
(*)
A1
(4)
(8 marks)
EDEXCEL CORE MATHEMATICS C3
PRACTICE PAPER A3 MARK SCHEME
Question Number
6.
(a)
Scheme
y=
3x − 1 x−3
⇒
Marks
y(x – 3) = 3x – 1
M1
yx – 3x = 3y – 1 x(y – 3) = 3y – 1
x=
M1
3 y −1 3 x −1 ∴ f−1(x) = = f(x) x −3 y −3
A1 cso
(3) (2)
(b)
ff(k) = f−1f(k), = k
M1 A1
(c)
g(−2) = −5
B1
f(−5) =
− 15 − 1 − 16 ,= =2 −8 −8
M1, A1
(d)
(3)
shape B1 y
g−1(x)
2 −5
2 −1 −2
(e)
6
(0, −1) and (2, 0) B1 Domain: −5 ≤ x ≤ 6 B1
(3)
x
Translation +1 →
6
g(x − 1)
−1
(lines join at (0,0)) B1
x
3 −5
Stretch ×2↕ B1
y
h(x)
12
Range: −10 ≤ h(x) ≤ 12 B1 −1
(3)
x
3 −10
(14 marks)
EDEXCEL CORE MATHEMATICS C3
PRACTICE PAPER A3 MARK SCHEME
Question Number
7.
(a)
Scheme
Marks
12 cos θ − 5 sin θ = R cos θ cosσ − R sin θ sin σ R2 = 52 + 122, ⇒ R = 13 R
5
tan σ =
5 , ⇒ σ = 22.6° (awrt 22.6) M1, A1 12
4 13
M1
θ + 22.6 = 72.1,
M1
θ = 49.5 8 tan θ
(ii) i.e.
(4)
(AWRT or 0.39c (AWRT 0.39c)
12
(b) cos (θ + 22.6) =
M1 A1
(only) − 3 tan θ = 2
A1
(3)
M1
0 = 3tan2 θ + 2tan θ − 8
M1
0 = (3 tan θ − 4)(tan θ + 2)
M1
tan θ =
4 or − 2 3
tan θ =
4 3
⇒
θ = 53.1
[ignoreθ not in range e.g . θ = 116.6 ]
A1
A1
(5)
(12 marks)
EDEXCEL CORE MATHEMATICS C3 Question Number
8.
PRACTICE PAPER A3 MARK SCHEME Scheme
f ' (x ) =
(a)
Marks
3 1 − x x2
M1 A1
3 1 1 − 2 = 0 ⇒ 3x 2 − x = 0 ⇒ x = x x 3 (b)
1 1 y = 31n + = 3 − 31n 3 3 1 3
(c)
x=1
⇒
f(1) = 2 ⇒ m = − y−1=− (d) (i)
−
(k = 3)
1 2
M1 A1
(2)
M1 x 3 y=− + 2 2
M1 A1
x 3 1 + = 31n x + 2 2 x
leading to 61n x + x +
(4)
B1
y=1
1 (x − 1) 2
M1 A1
(4)
M1 2 −3= 0 x
*
A1
both, except 1 d.p
M1
c.s.o
(ii) g(0.13) = 0.273… g(0.14) = -0.370…
Sign change (and continuity) ⇒ root ∈ (0.13, 0.14)
A1
(4)
(14 marks)