Practice Paper A1 Ms

  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Practice Paper A1 Ms as PDF for free.

More details

  • Words: 759
  • Pages: 4
EDEXCEL CORE MATHEMATICS C3 Question Number

PRACTICE PAPER A1 MARK SCHEME Scheme

Marks

( x − 3)( x − 5) 2 x( x + 3) × ( x − 3)( x + 3) ( x − 5) 2

1.

=

(3 × factorising)

2x x−5

B1 B1 B1

B1

(4 marks) 2.

(a)

f(x) = x + ln2x − 4;

xn + 1 = 4 − ln2xn, x0 = 2.4

x1 = 2.431…

A single sound application of

x2 = 2.418…

iteration

M1

x3 = 2.423…

At least x3 reached

M1

Root = 2.422 (A2)

(b)

2.42 or “correct” unrounded to 3 d.p. answer A1

A2, 1, 0

Choosing an appropriate interval e.g. [2.4215, 2.4225]

M1

Establishing change of sign + Conclusion

A1

(4)

(2)

(6 marks) 3.

(a)

y = f(x)

y

Fairly even , vertex on +ve x axis Only ( a2 , 0) and (0, a) on graph on in text

a

a 2

(b) y = f(2x)

Steeper, even and 1 correct intersection Only both ( a4 , 0) and (0, a) on graph or in text

a

(c)

− (2x − a) = 2x − a =

1 x 2

B1

(2)

x

y

a 4

B1

B1 [ft a2 from (a)]

B1

(2)

x

1 x 2

when x = 4, ⇒ a − 8 = 2

∴a = 10

M1, A1

when x = 4, ⇒ 8 − a = 2

∴a = 6

M1, A1

(4)

(8 marks)

EDEXCEL CORE MATHEMATICS C3

PRACTICE PAPER A1 MARK SCHEME

Question Number

Scheme

sin 2 θ 1− 1 − tan 2 θ cos 2 θ = 2 sin 2 θ 1 + tan θ 1+ cos 2 θ cos 2 θ − sin 2 θ cos 2θ = cos 2 θ + sin 2 θ 1

4.

Marks

  sin 2 θ  1 − cos 2 θ   or sec2 θ or equivalent      = cos 2θ

*

M1 M1

M1 A1

(4)

(4 marks) 3 x−4 + x( x + 2) ( x + 2)( x − 2)

5.

B1 B1

=

3( x − 2) + x( x − 4) x( x + 2)( x − 2)

M1 A1

=

( x − 3)( x + 2) x( x + 2)( x − 2)

M1 A1 A1

(7 marks) 6.

(a)

(b)

f″(x) = 2x − 2x−3 =8−

6 31 =7 (7.97) 24 32

A1

f(x) =

1 3 1 x − 2x − (+C) 3 x

M1 A1

0=9−6− (c)

M1 A1

1 +C 3

C=−

8 3

(or −2.67)

f`(x) > 0 needed, or f`(x) ≥ 0, or “as x increases, f(x) increases” f`(x) = (x −

1 2 ) , > 0 always, or ≥ 0 always x

(3)

M1 A1

(4)

B1 M1, A1

(3)

(10 marks)

EDEXCEL CORE MATHEMATICS C3 Question Number

7.

(a)

i.e

PRACTICE PAPER A1 MARK SCHEME Scheme

f(x) =

2(2 x + 1) − 6 4x − 4 ,= ( x − 1)(2 x + 1) ( x − 1)(2 x − 1)

f(x) =

4( x −1) 4 ,= ( x − 1)(2 x − 1) (2 x + 1)

Marks M1, A1

(M for attempt same denominator)

*

M1, A1 c.s.o

(M for factorising)

(4) α < f < β, α = 0 or β =

(b)

0
4 3

or 0 < y <

4 3

4 3 Both

(c)

y=

4 2 x =1

i.e x =

4− x (o.e) 2x

Range of f−1 = domain of f ∴ f−1 > 1 or y > 1 or > 1

B1

(2)

M1

4− y 2y

∴ f−1(x) = (d)

⇒ y (2x + 1) = 4

B1

M1 must be f−1(x)

A1

(3)

B1

(1)

(10 marks)

EDEXCEL CORE MATHEMATICS C3

PRACTICE PAPER A1 MARK SCHEME

Question Number

8.

Scheme (a)

y = ln(3 x − 6 ) ⇒ x=

(b)

y

+6 ; 3

{f

−1

ex + 6 ( x) } = 3

x ∈ℜ

Domain: Range:

(c)

e

⇒ 3x − 6 = e y

f

−1

( x) > 2

Attempting to find f

−1

e3 + 6 ]; (3) [ = 3

= 8.70

(d) ln curve passing through y = 0 Symmetry in x = k, k > 0 All correct and asymptote at x = 2 labelled

(e)

Meets y-axis: Meets x-axis:

(x = 0), y = ln 6 x=

5 3

, (0) ;

x=

7

, (0)

3

[May be seen on g

Related Documents

Practice Paper A1 Ms
December 2019 3
Practice Paper A4 Ms
December 2019 3
Practice Paper A3 Ms
December 2019 4
Practice Paper A2 Ms
December 2019 3
Practice Paper A5 Ms
December 2019 4
Chemjan2008-unit6-paper&ms
November 2019 2