EDEXCEL CORE MATHEMATICS C3 Question Number
PRACTICE PAPER A1 MARK SCHEME Scheme
Marks
( x − 3)( x − 5) 2 x( x + 3) × ( x − 3)( x + 3) ( x − 5) 2
1.
=
(3 × factorising)
2x x−5
B1 B1 B1
B1
(4 marks) 2.
(a)
f(x) = x + ln2x − 4;
xn + 1 = 4 − ln2xn, x0 = 2.4
x1 = 2.431…
A single sound application of
x2 = 2.418…
iteration
M1
x3 = 2.423…
At least x3 reached
M1
Root = 2.422 (A2)
(b)
2.42 or “correct” unrounded to 3 d.p. answer A1
A2, 1, 0
Choosing an appropriate interval e.g. [2.4215, 2.4225]
M1
Establishing change of sign + Conclusion
A1
(4)
(2)
(6 marks) 3.
(a)
y = f(x)
y
Fairly even , vertex on +ve x axis Only ( a2 , 0) and (0, a) on graph on in text
a
a 2
(b) y = f(2x)
Steeper, even and 1 correct intersection Only both ( a4 , 0) and (0, a) on graph or in text
a
(c)
− (2x − a) = 2x − a =
1 x 2
B1
(2)
x
y
a 4
B1
B1 [ft a2 from (a)]
B1
(2)
x
1 x 2
when x = 4, ⇒ a − 8 = 2
∴a = 10
M1, A1
when x = 4, ⇒ 8 − a = 2
∴a = 6
M1, A1
(4)
(8 marks)
EDEXCEL CORE MATHEMATICS C3
PRACTICE PAPER A1 MARK SCHEME
Question Number
Scheme
sin 2 θ 1− 1 − tan 2 θ cos 2 θ = 2 sin 2 θ 1 + tan θ 1+ cos 2 θ cos 2 θ − sin 2 θ cos 2θ = cos 2 θ + sin 2 θ 1
4.
Marks
sin 2 θ 1 − cos 2 θ or sec2 θ or equivalent = cos 2θ
*
M1 M1
M1 A1
(4)
(4 marks) 3 x−4 + x( x + 2) ( x + 2)( x − 2)
5.
B1 B1
=
3( x − 2) + x( x − 4) x( x + 2)( x − 2)
M1 A1
=
( x − 3)( x + 2) x( x + 2)( x − 2)
M1 A1 A1
(7 marks) 6.
(a)
(b)
f″(x) = 2x − 2x−3 =8−
6 31 =7 (7.97) 24 32
A1
f(x) =
1 3 1 x − 2x − (+C) 3 x
M1 A1
0=9−6− (c)
M1 A1
1 +C 3
C=−
8 3
(or −2.67)
f`(x) > 0 needed, or f`(x) ≥ 0, or “as x increases, f(x) increases” f`(x) = (x −
1 2 ) , > 0 always, or ≥ 0 always x
(3)
M1 A1
(4)
B1 M1, A1
(3)
(10 marks)
EDEXCEL CORE MATHEMATICS C3 Question Number
7.
(a)
i.e
PRACTICE PAPER A1 MARK SCHEME Scheme
f(x) =
2(2 x + 1) − 6 4x − 4 ,= ( x − 1)(2 x + 1) ( x − 1)(2 x − 1)
f(x) =
4( x −1) 4 ,= ( x − 1)(2 x − 1) (2 x + 1)
Marks M1, A1
(M for attempt same denominator)
*
M1, A1 c.s.o
(M for factorising)
(4) α < f < β, α = 0 or β =
(b)
0
4 3
or 0 < y <
4 3
4 3 Both
(c)
y=
4 2 x =1
i.e x =
4− x (o.e) 2x
Range of f−1 = domain of f ∴ f−1 > 1 or y > 1 or > 1
B1
(2)
M1
4− y 2y
∴ f−1(x) = (d)
⇒ y (2x + 1) = 4
B1
M1 must be f−1(x)
A1
(3)
B1
(1)
(10 marks)
EDEXCEL CORE MATHEMATICS C3
PRACTICE PAPER A1 MARK SCHEME
Question Number
8.
Scheme (a)
y = ln(3 x − 6 ) ⇒ x=
(b)
y
+6 ; 3
{f
−1
ex + 6 ( x) } = 3
x ∈ℜ
Domain: Range:
(c)
e
⇒ 3x − 6 = e y
f
−1
( x) > 2
Attempting to find f
−1
e3 + 6 ]; (3) [ = 3
= 8.70
(d) ln curve passing through y = 0 Symmetry in x = k, k > 0 All correct and asymptote at x = 2 labelled
(e)
Meets y-axis: Meets x-axis:
(x = 0), y = ln 6 x=
5 3
, (0) ;
x=
7
, (0)
3
[May be seen on g