Practica Dirigida

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Practica Dirigida as PDF for free.

More details

  • Words: 1,310
  • Pages: 8
PRACTICA DIRIGIDA 1. HALLAR EL CONJUNTO SOLUCION DE LAS SIGUIENTES INECUACIONES a) X-3 3

+ 5 ≤ 4

X + 2X+9 12 15

4X+3 - X ≤ 2X+9 12 12 15 3X+3 - 2X+9 12 15

≤ 0

45X+45 - 24X-108 ≤ 0 21X - 63 ≤ 0 X ≤ 3

;

X є ]-δ ; 3]

b) 11-3X < 1(5X+14) ^ 1(5X+14) ≥ 9(2+X) 2 3 3 2 22-3x < 5x+14 ^ 5x+14 ≥ 18 +9x 2 3 3 2 66-19x-28 < 0 ^ 2 <X

-26-17x ≥ 0

^

-26/17 ≥ X

. - 26/17

. 2

C .S : ] 2, +∞ c) x + 6 < 3x +11 2 5 4 5

^

5x + 12 - 15x - 44 10 20

3x + 11 > 2x - 14 4 5 5 <0 ^

15x + 44 - 10x + 14 > 0 20 5

100x + 240 - 150x - 440 < 0 ^ 75x + 220 - 200x + 280 > 0 -50x - 200 <0 ^ -125x + 500 > 0 -200 < 50x 125x > 500 -4 < x ^ x > 4 .

.

-4

4

C . S : ] 4 , +∞

3. Hallar el conjunto solución de las siguientes inecuaciones : a)

( X3 - X2 - X +1 ) ( X - 6 )4 ( X - 3) (X3 + 8X2 + 14X + 12) (X -5 )3 (X – 7)1177 (X2 – 3)

≥ 0

(X (X2 - X – 1) + 1) (X – 3) (X (X2 + 8X + 14) + 12) (X – 7) (X + 3½) ( X - 3½)

≥ 0

(X + 1) (X – 3) (X + 12 (X – 7) (X + 3½) ( X - 3½) + . -12 C .S

b)

]-∞, 12

- . + - 3½ U

. -1

-

] - 3½, -1]

≥ 0

. + 3½

U

] 3½, 3 ]

( X3 - X2 - X +1 ) (X + 2)4 (X – 3) (X – 5) (X2 – 7) (X2 + 3)

>

0

(X (X2 - X – 1) + 1) (X – 3) (X – 5) (X - 7½) (X + 7½) (X2 + 3)

>

0

(X + 1) (X – 3) (X – 5) (X - 7½) (X + 7½) -

. + - 7½

C. S : ]- 7½ , -1> 3.1.

. 3

a)

. -1 U

-

X2 – 2X – 3 X2 – 11X – 28

> 0 ≥ 0 . -1

C. S : [ 4 , +∞ >

U

. + 7 ] 7, +∞

> 0

. + 7½

] 7½ , 3>

-

. 3 U

-

. + 5

] 5 , +∞ >

x > 3 ; x > -1 ; ] -1, +∞ > x ≥ 7 ; x ≥ 4 ; [ 4 , +∞ > . 4

b)

4X2 – 1 -2X2 + 5X – 3 . -3/2

> 0 ; X > 1/2 > 0 ; X > -3/2 , X > -1 . -1

. 1/2

C. S: ] ½ , +∞ > 5.Resolver las siguientes inecuaciones: a) ‌│ X2 – X │ > -2 2 > │ X2 – X │

٧

│ X2 – X │ > -2

0 > X2 – X – 2

X2 – X + 2 > 0

X>2 X > -1

٧

C. S : ] -1, +∞ > b.- │X2-4│

≥ -2X+4

X2-4 ≥ -2X-4 X2+2X-8 ≥ 0 X +4 X -2

X ≥ -4 X ≥ 2

[-4,+∞) V

X2-4 ≤ 2X-4 X2 2X ≤ 0 X2



2X

X ≤ 2 (-∞,2] -∞

-4

0

2

+∞

C.S. (-∞,+∞) C.-

| X+8| ≤ 6 X

X2+8-6 ≤ 0 X X2+8-6X ≤ 0

-6 ≤ X2+8 ≤6 X

C. S . ǿ

-6 ≤ X2+8 X 0 ≤ X2+6X+8 X +4 X -2 X ≥ -4 X ≥ -2

C.S. [-4+∞)

d).- (X+3) -5 |x+3| +6 < 0 x+3-5x-15+ < 0 -4x-6 < 0 -6 < 4x X > -3 2 C.S. (-3,+∞) e).- |x+6| > |x+5| + |x-2| -(|x+9|+|x-2|) > |x-6 | > (|x+9|+|x<2|) -|2x-7| > x-6|

x-6 > 2x+7

-2x-7 > x-6

V

-13 > x

-1 > 3x X < 1 3 -∞

-13

-1

+∞

3 C.S. (-∞,-1) 3 f) │4x + 2 │ ≥ │x – 1 │+3 │x + 1│ 4x + 2 ≥ 2x + 3

v

-2x – 3 ≥ 4x + 2

C. S : [1/2 , +∞ > U < - ∞ , -5/6 ] X ≥ 1/2 g)

v

-5/6



x

2 < │X2 – X – 1│< │X2 – X│ 2 <│X2 – X – 1│

V

│X2 – X – 1│< -2

0 < X2 – X -3

X2 – X +1 < 0

X > -1+ 13½ 2

V

X > -1 - 13½

ø

V

ø

2 C. S : < -1 - 13½ , +∞ > 2 2 < │X2 – X│ 0 < X2 – X – 2 ; X

-2 V X

1

C. S : < -2 , +∞ > C. S final :

h)

|

< -1 - 13½ , +∞ > 2

- 4| < -2x + 4 2x – 4 <

2x

<

2

<

-4

v v

x

v

- 4 < -2x + 4 + 2x - 8 (x + 4) (x – 2) < 0

2 < x X Є ( 2 ; +∞ )

v

X < -4 ; x < 2 X Є (-∞ ; 2) . 2

c. s : R - 2

i)

2x - 5 4-x



1

2x - 5 4- x



1

2x – 5

v

≥ 4–x

X



2x - 5 4-x

v

2x - 5

9

≤ -1

≤ x

-4 + x ≤ 1

c. s : (-∞ ; 1] u [ 9 ; +∞ )

j)

3 – 3x X–1

> 2

3 – 3x X–1

> 2

v

3 – 3x X–1

3 – 3x > 2x - 2

v

3 – 3x < - 2x + 2

1 > x

v

1

< -2

< x

C. S : R–1

k)

3 4x + 1



3 4x + 1



3x + 3 2

≤ ≤

1 x+1 1 x+1

4x + 1 x

C , S : [ - 4/7 , +∞ )

3 4x + 1

v v v

≥ -( 1 ) x+1

3x + 3



x



-4x - 1 - 4/7

l)

x–3 3 + 2 x–3 2 - 5 x–3 - 6



0

( x – 2 )2 – 2 x – 2 - 24 Sugerencia usar a ≤ 0 b •

A.

x–3

(a≥0 ^ b< 0 ) u (a≤0 ^ b>0)

ANALIZANDO : a ≥ o

- 5 x–3

-4 x – 3 x–3



-6 ≥ 0 6

≥ -3/2

x



3/2

v

x–3

v

≤ 3/2

x



9/2

C.S: R



B. ANALIZANDO b < 0

-2 X – 2 < 24 X–2

< -12

X

C.S: •

v

< - 10

(- ∞ , -10 )

v

V

x

> 12

>

14

( 14 , +∞ )

C. ANALIZANDO a ≤ 0

-4 x–3 ≤ 6 X–3 ≤ 3/2 C. S :



x–2

v

- 4 x – 3 ≥ -6

v

x



9/2

R

D. ANALIZANDO

-2 x – 2 > 24 X > -10

b> 0 v v

-2

x–2

x < 14

< 12

C . S : R - ( -10 , 14 ) ANALIZANDO TODOS LOS ENUNCIADOS: A^ B U

C ^ D

EL CONJUNTO SOLUCION GENERAL ES : R - ( -10 ; 14 )

Related Documents