Power Factor

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Power Factor as PDF for free.

More details

  • Words: 1,641
  • Pages: 6
‫ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ‬ ‫‪POWER FACTOR‬‬

‫ﺇﻋﺩﺍﺩ‪ :‬ﻤﻬﻨﺩﺱ‪ /‬ﻤﺤﻤﺩ ﺍﻟﺤﺭﻴﺭﻯ‬ ‫‪[email protected]‬‬ ‫‪www.olom.info‬‬ ‫ﺍﻟﻘﺩﺭﺓ ﻓﻰ ﺩﺍﺭﺍﺕ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻤﺘـﺭﺩﺩ ﺫﺍﺕ ﺍﻟﺤﻤـل ﺍﻟﻤﻘـﺎﻭﻡ‬ ‫ﻭﺍﻟﻔﻌﺎل‪:‬‬ ‫ﺃﻓﺘﺭﺽ ﺩﺍﺭﺓ ﺘﻴﺎﺭ ﻤﺘﺭﺩﺩ ﻤﻔﺭﺩﺓ ﺍﻟﻁﻭﺭ‪ single-phase‬ﺤﻴﺙ ﻴﻐﺫﻯ‬ ‫ﻤﺼﺩﺭ ‪ ١٢٠‬ﻓﻭﻟﺕ ﻭ ‪ ٦٠‬ﻫﺭﺘﺯ ﺤﻤل ﻤﻘﺎﻭﻡ ﻨﻘﻰ‪:‬‬

‫ﻻﺤﻅ ﺃﻥ ﻤﻭﺠﺔ ﺍﻟﻘﺩﺭﺓ ﻤﻭﺠﺒﺔ ﺩﺍﺌﻤﺎ ﻭﻻ ﺘﺫﻫﺏ ﺃﺒﺩﺍ ﺇﻟـﻰ ﺍﻟﻨﺎﺤﻴـﺔ‬ ‫ﺍﻟﺴﺎﻟﺒﺔ ﻭﺫﻟﻙ ﻓﻰ ﺩﺍﺭﺓ ﻤﻘﺎﻭﻤﺔ ﻨﻘﻴﺔ‪ .‬ﻭﻫﺫﺍ ﻴﻌﻨﻰ ﺃﻥ ﺍﻟﻘـﺩﺭﺓ ﺘﻜـﻭﻥ‬ ‫ﻤﻬﺩﺭﺓ ﺩﺍﺌﻤﺎ ﻋﻨﺩ ﻭﺠﻭﺩ ﺤﻤل ﻤﻘﺎﻭﻡ ﻨﻘﻰ‪.‬‬ ‫ﻻﺤﻅ ﺃﻴﻀﺎ ﺃﻥ ﺸﻜل ﻤﻭﺠﺔ ﺍﻟﻘﺩﺭﺓ ﻟﻴﺱ ﻟﻬﺎ ﻨﻔﺱ ﺘﺭﺩﺩ ﺍﻟﺠﻬـﺩ ﺃﻭ‬ ‫ﺍﻟﺘﻴﺎﺭ ﺒل ﺇﻥ ﺘﺭﺩﺩﻫﺎ ﻀﻌﻔﻬﻤﺎ‪.‬‬ ‫ﺃﻤﺎ ﺇﺫﺍ ﺃﺨﺫﻨﺎ ﺩﺍﺭﺓ ﺫﺍﺕ ﺤﻤل ﻓﻌﺎل ‪:reactive‬‬

‫ﺤﻴﺙ ﻴﻤﻜﻥ ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ ﻤﻌﺎﻭﻗﺔ ﺍﻟﺤﻤل ﺒـ ‪ZR‬‬ ‫‪ZR = 60 + j0 Ω‬‬ ‫ﺃﻭ‬

‫ﻓﺈﻥ ﻤﻌﺎﻭﻗﺔ ﺍﻟﺤﻤل ﻴﺠﺏ ﺤﺴﺎﺒﻬﺎ ﺘﺒﻌﺎ ﻟﺘﺭﺩﺩ ﺍﻟﻤﺼﺭﺩ ﻟﺘﺴﺎﻭﻯ‪:‬‬ ‫‪Z = 60∠0o‬‬ ‫‪E‬‬ ‫‪Z‬‬

‫‪X L = 2π fL = 2π × 60 ×160 m = 60.319Ω‬‬ ‫‪∴ Z L = R + jX L = 0 + j 60.319‬‬

‫= ‪I‬‬

‫‪or‬‬ ‫‪Z L = 60.319∠90o‬‬

‫ﺤﻴﺙ ‪ E‬ﻫﻰ ﺠﻬﺩ ﺍﻟﻤﺼﺩﺭ )ﺍﻟﺠﻬﺩ ﻋﻠﻰ ﺍﻟﺤﻤل( ﻭ‪ Z‬ﻫﻰ ﻤﻌﺎﻭﻗـﺔ‬ ‫ﺍﻟﺩﺍﺭﺓ )ﺍﻟﺤﻤل ﻓﻰ ﺤﺎﻟﺘﻨﺎ(‪.‬‬

‫‪E‬‬ ‫‪120‬‬ ‫=‬ ‫‪= 1.989A‬‬ ‫‪Z 60.319‬‬ ‫‪120V‬‬ ‫‪= 2A‬‬ ‫‪60Ω‬‬

‫= ‪∴I‬‬

‫= ‪∴I‬‬

‫ﻴﺘﻀﺢ ﻟﻨﺎ ﺃﻥ ﺘﻴﺎﺭ ﺍﻟﺤﻤل ﺴﻴﻜﻭﻥ ‪ ٢‬ﺃﻤﺒﻴﺭ )ﻤﺭﺒﻊ ﺠﺫﺭ ﺍﻟﻤﺘﻭﺴـﻁ‬ ‫‪ .(RMS‬ﻭﺴﺘﻜﻭﻥ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻤﻬﺩﺭﺓ ﻓﻰ ﺍﻟﺤﻤـل ‪ 240 = I 2 R‬ﻭﺍﻁ‬ ‫ﻭﺫﻟﻙ ﻷﻨﻪ ﺤﻤل ﻤﻘﺎﻭﻡ ﻨﻘﻰ )ﻭﻁﻭﺭ ﺍﻟﺘﻴﺎﺭ ﻫﻭ ﻨﻔﺱ ﻁﻭﺭ ﺍﻟﺠﻬـﺩ(‪.‬‬ ‫ﻭﻟﻭ ﺃﺭﺩﻨﺎ ﺭﺴﻡ ﻤﻭﺠﺔ ﺍﻟﺘﻴﺎﺭ ﻭﺍﻟﺠﻬﺩ ﻭﺍﻟﻘﺩﺭﺓ ﻋﻠﻰ ﺍﻟﺤﻤل ﺴـﻴﻜﻭﻥ‬ ‫ﻜﺎ ﻵﺘﻰ‪:‬‬

‫ﻻﺤﻅ ﺃﻥ ﺍﻟﻘﺩﺭﺓ ﺘﺘﺄﺭﺠﺢ ﺒﻴﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺴﺎﻟﺏ ﻭﺍﻟﻤﻭﺠﺏ ﻭﻫﺫﺍ ﻴﻌﻨـﻰ‬ ‫ﺃﻥ ﺍﻟﺤﻤل ﻴﻌﻴﺩ ﻗﺩﺭﺓ ﻟﻠﺩﺍﺭﺓ )ﻓﻰ ﺍﻟﻨﺼﻑ ﺍﻟﺴﺎﻟﺏ( ﺒﻘﺩﺭ ﻤﺎ ﻴﻬﺩﺭ ﻤﻥ‬ ‫ﻗﺩﺭﺓ )ﻓﻰ ﺍﻟﻨﺼﻑ ﺍﻟﻤﻭﺠﺏ( ﺃﻯ ﺃﻥ ﻤﺤﺼﻠﺔ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻤﻬـﺩﺭﺓ ﻓـﻰ‬ ‫ﺍﻟﺤﻤل ﺘﺴﺎﻭﻯ ﺼﻔﺭ‪.‬‬

‫ﻭﻟﻜﻥ ﺴﻴﺯﻴﺩ ﺘﺄﺭﺠﺤﻬﺎ ﻓﻰ ﺍﻟﺠﺎﻨﺏ ﺍﻟﻤﻭﺠﺏ ﻋﻥ ﺍﻟﺠﺎﻨﺏ ﺍﻟﺴﺎﻟﺏ ﺃﻯ‬

‫ﻭﺍﻵﻥ ﻟﻨﺄﺨﺫ ﺩﺍﺭﺓ ﺤﻤﻠﻬﺎ ﻴﺠﻤﻊ ﺒﻴﻥ ﺍﻟﻨﻭﻉ ﺍﻟﻤﻘﺎﻭﻡ ﻭﺍﻟﻔﻌﺎل‪:‬‬

‫ﺃﻥ ﺍﻟﺩﺍﺭﺓ ﺍﻟﺘﻰ ﺘﺠﻤﻊ ﺒﻴﻥ ﺍﻟﺤﻤل ﺍﻟﻤﻘﺎﻭﻡ ﻭﺍﻟﺤﻤل ﺍﻟﻔﻌﺎل ﺘﻬﺩﺭ ﺠﺯﺀﺍ‬ ‫ﻤﻥ ﺍﻟﻘﺩﺭﺓ ﺃﻜﺒﺭ ﻤﻥ ﺍﻟﺠﺯﺀ ﺍﻟﺫﻯ ﺘﻌﻴﺩﻩ ﻟﻠﻤﺼﺩﺭ‪ .‬ﻭﻫﺫﺍ ﺍﻟﺠﺯﺀ ﺍﻟﺫﻯ‬ ‫ﻴﻌﻭﺩ ﺇﻟﻰ ﺍﻟﻤﺼﺩﺭ )ﺃﻭ ﺇﻟﻰ ﺒﻘﻴﺔ ﺍﻟﺩﺍﺭﺓ( ﺴﺴﺒﻪ ﻭﺠﻭﺩ ﺠـﺯﺀ ﻓﻌـﺎل‬ ‫ﺒﺎﻟﺤﻤل ﺃﻤﺎ ﺴﺒﺏ ﺇﻫﺩﺍﺭ ﺍﻟﻘﺩﺭﺓ ﻓﻬﻭ ﺍﻟﺠﺯﺀ ﺍﻟﻤﻘـﺎﻭﻡ ﻤـﻥ ﺍﻟﺤﻤـل‬ ‫)ﻭﻏﺎﻟﺒﺎ ﻤﺎﻴﻜﻭﻥ ﻫﺫﺍ ﺍﻹﻫﺩﺍﺭ ﻓﻰ ﺼﻭﺭﺓ ﺤﺭﺍﺭﺓ(‪.‬‬ ‫ﻭﺘﻤﺜﻴل ﺍﻟﻘﺩﺭﺓ ﺭﻴﺎﻀﻴﺎ ﻓﻰ ﺩﺍﺭﺍﺕ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻤﺘﺭﺩﺩ ﻴﻌﺘﺒﺭ ﺘﺤـﺩﻴﺎ ﻷﻥ‬ ‫ﻤﻭﺠﺔ ﺍﻟﻘﺩﺭﺓ ﻤﺨﺘﻠﻔﺔ ﻓﻰ ﺍﻟﺘﺭﺩﺩ ﻋﻥ ﺍﻟﺠﻬﺩ ﻭﺍﻟﺘﻴﺎﺭ ﻤﻤـﺎ ﻴﻌﻨـﻰ ﺃﻥ‬ ‫ﺯﺍﻭﻴﺔ ﻁﻭﺭ ﺍﻟﻘﺩﺭﺓ ﺘﺨﺘﻠﻑ ﻋﻥ ﺯﺍﻭﻴﺔ ﺍﻟﻁﻭﺭ ﻟﻠﺠﻬﺩ ﻭﺍﻟﺘﻴﺎﺭ ﻭﻫـﺫﺍ‬ ‫ﻴﺩل ﻋﻠﻰ ﻭﺠﻭﺩ ﺇﺯﺍﺤﺔ ﺯﻤﻨﻴﺔ ﺒﻴﻥ ﻤﻭﺠﺘﻰ ﺍﻟﺠﻬﺩ ﻭﺍﻟﺘﻴﺎﺭ‪ .‬ﻭﺯﺍﻭﻴـﺔ‬ ‫ﻁﻭﺭ ﺍﻟﻘﺩﺭﺓ ﺘﻤﺜل ﺍﻟﻨﺴﺒﺔ ﺒﻴﻥ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻤﻬﺩﺭﺓ ﻭﺍﻟﻘﺩﺭﺓ ﺍﻟﻤﺘﻭﻟﺩﺓ‪.‬‬

‫‪X L = 2π fL = 2π × 60 ×160m‬‬

‫ﺍﻟﻘﺩﺭﺓ ﺍﻟﻔﻌﺎﻟﺔ ﻭﺍﻟﺤﻘﻴﻘﻴﺔ ﻭﺍﻟﻅﺎﻫﺭﺓ‪:‬‬

‫‪Z L = 0 + j 60.319Ω‬‬

‫ﻋﺭﻓﻨﺎ ﺃﻥ ﺍﻷﺤﻤﺎل ﺍﻟﻔﻌﺎﻟﺔ ﻤﺜل ﺍﻟﻤﻠﻔﺎﺕ ﻭﺍﻟﻤﻜﺜﻔﺎﺕ ﻻ ﺘﻬﺩﺭ ﺃﻯ ﻗﺩﺭﺓ‬

‫‪or‬‬

‫ﻋﻠﻰ ﺍﻟﺭﻏﻡ ﻤﻥ ﺍﻹﻨﻁﺒﺎﻉ ﺍﻟﺨﺎﺩﻉ ﺒﻌﻜﺱ ﺫﻟﻙ ﻨﻅﺭﺍ ﻟﻭﺠـﻭﺩ ﺠﻬـﺩ‬

‫‪Z L = 60.319Ω ∠90o‬‬

‫ﻋﻠﻴﻬﺎ ﻭﺘﻴﺎﺭ ﻤﺎﺭ ﺒﻬﺎ‪ .‬ﻭﻫﺫﻩ ﺍﻟﻘﺩﺭﺓ ﺍﻟﺨﻴﺎﻟﻴﺔ ﺍﻟﺘﻰ ﻴﻭﺤﻰ ﺒﻬﺎ ﻤـﺭﻭﺭ‬

‫‪Z R = 60 + j 0Ω‬‬ ‫‪or‬‬ ‫‪Z R = 60Ω∠0o‬‬ ‫‪∴ Z total = 60 + j 60.391Ω‬‬ ‫‪or‬‬ ‫‪Z total = 85.078Ω∠45.152o‬‬ ‫‪E‬‬ ‫‪120‬‬ ‫=‬ ‫‪= 1.41A‬‬ ‫‪Z 85.075‬‬

‫= ‪∴I‬‬

‫ﻭﻟﻭ ﺭﺴﻤﻨﺎ ﺍﻟﺘﻴﺎﺭ ﻭﺍﻟﺠﻬﺩ ﻭﺍﻟﻘﺩﺭﺓ ﺴﺘﻜﻭﻥ ﻜﺎﻵﺘﻰ‪:‬‬

‫ﺍﻟﺘﻴﺎﺭ ﻭﻭﺠﻭﺩ ﺍﻟﺠﻬﺩ ﻋﻠﻰ ﺍﻷﺤﻤﺎل ﺍﻟﻔﻌﺎﻟﺔ ﺘﺴﻤﻰ ﺍﻟﻘـﺩﺭﺓ ﺍﻟﻔﻌﺎﻟـﺔ‬ ‫‪ reactive power‬ﻭﺘﻘﺎﺱ ﺒﻭﺤﺩﺍﺕ ﺘﺴﻤﻰ ﺠﻬـﺩ‪-‬ﺃﻤﺒﻴـﺭ‪-‬ﻓﻌـﺎل‬

‫‪ Volt-Amps-Reactive‬ﻭﺘﻌﺭﻑ ﺃﺨﺘﺼـﺎﺭﺍ ﺒﺎﻟﻭﺤـﺩﺓ ﻓـﺎﺭ –‬ ‫ﺒﺘﻌﻁﻴﺵ ﺍﻟﻔﺎﺀ‪ (VAR) -‬ﻭﻴﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ‪ .Q‬ﺃﻤﺎ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻔﻌﻠﻴﺔ‬ ‫ﺍﻟﻤﺴﺘﻌﻤﻠﺔ ﺒﺎﻟﺩﺍﺭﺓ ﻓﺘﺴﻤﻰ ﺒﺎﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ ‪ true power‬ﻭﺘﻘـﺎﺱ‬ ‫ﺒﺎﻟﻭﺍﻁ ‪ watts‬ﻭﻴﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ‪ P‬ﻭﻤﺤﺼﻠﺔ ﻫﺎﺘـﺎﻥ ﺍﻟﻘـﺩﺭﺘﺎﻥ‬ ‫)ﺍﻟﻘﺩﺭﺓ ﺍﻟﻔﻌﺎﻟﺔ ﻭﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ( ﺘﺴﻤﻰ ﺒﺎﻟﻘﺩﺭﺓ ﺍﻟﻅﺎﻫﺭﺓ ‪apparent‬‬ ‫‪ power‬ﻭﺘﺤﺴﺏ ﻤﻥ ﺤﺎﺼل ﻀﺭﺏ ﺍﻟﺠﻬﺩ ﻭﺍﻟﺘﻴﺎﺭ ﻭﺒـﺩﻭﻥ ﺃﺨـﺫ‬ ‫ﺯﺍﻭﻴﺔ ﺍﻟﻁﻭﺭ ﻓﻰ ﺍﻹﻋﺘﺒﺎﺭ‪ .‬ﻭﺘﻘﺎﺱ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻅﺎﻫﺭﺓ ﺒﻭﺤﺩﺍﺕ ﻓﻭﻟﺕ‪-‬‬ ‫ﺃﻤﺒﻴﺭ )‪ Volt-Amps (VA‬ﻭﻴﺭﻤﺯ ﻟﻬﺎ ﺒﺎﺭﻤﺯ ‪.S‬‬ ‫ﻭﺘﻨﺘﺞ ﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻤﻥ ﻋﻨﺎﺼﺭ ﺍﻹﻫﺩﺍﺭ ﻓﻰ ﺍﻟﺩﺍﺭﺓ ﻤﺜل ﺍﻟﻤﻘﺎﻭﻤﺎﺕ‬ ‫)‪ (R‬ﺃﻤﺎ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻔﻌﺎﻟﺔ ﻓﺘﻨﺘﺞ ﻤﻥ ﺍﻟﻌﻨﺎﺼﺭ ﺍﻟﻔﻌﺎﻟﺔ )‪ (X‬ﺃﻤﺎ ﺍﻟﻘـﺩﺭﺓ‬ ‫ﺍﻟﻅﺎﻫﺭﺓ ﻓﺘﻨﺘﺞ ﻤﻥ ﺍﻟﻤﻌﺎﻭﻗﺔ ﺍﻟﻜﻠﻴﺔ ﻟﻠﺩﺍﺭﺓ )‪.(Z‬‬ ‫ﻴﻭﺠﺩ ﺍﻟﻌﺩﻴﺩ ﻤﻥ ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﺘﻰ ﻴﻤﻜﻥ ﻤﻨﻬﺎ ﺤﺴﺎﺏ ﺍﻟﺜﻼﺜﺔ ﺃﻨﻭﺍﻉ ﻤﻥ‬

‫ﻋﻨﺩﻤﺎ ﻜﺎﻥ ﺍﻟﺤﻤل ﻓﻌﺎﻻ ﻨﻘﻴﺎ ﻜﺎﻨﺕ ﺍﻟﻘﺩﺭﺓ ﺘﺘﺄﺭﺠﺢ ﺒـﻴﻥ ﺍﻟﻤﻭﺠـﺏ‬ ‫ﻭﺍﻟﺴﺎﻟﺏ ﺒﺸﻜل ﻤﺘﺴﺎﻭﻯ ﻤﻤﺎ ﻴﺠﻌل ﺍﻟﻔﻘﺩ ﺍﻟﻜﻠﻰ ﻓﻰ ﺍﻟﻘﺩﺭﺓ ﺒـﺩﺍﺭﺍﺕ‬ ‫ﺍﻷﺤﻤﺎل ﺍﻟﻔﻌﺎﻟﺔ ﺍﻟﻨﻘﻴﺔ ﻴﺴﺎﻭﻯ ﺼﻔﺭﺍ‪.‬‬

‫ﺍﻟﻘﺩﺭﺓ‪:‬‬ ‫ﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ ‪1- true power‬‬ ‫) ‪P = I R (watts‬‬ ‫‪2‬‬

‫ﺃﻤﺎ ﻓﻰ ﺍﻟﺩﺍﺭﺍﺕ ﺍﻟﺘﻰ ﺘﺠﻤﻊ ﺒﻴﻥ ﺍﻟﺤﻤل ﺍﻟﻤﻘﺎﻭﻡ ﻭﺍﻟﺤﻤـل ﺍﻟﻔﻌـﺎل‬ ‫)ﻜﺎﻟﺩﺍﺭﺓ ﺍﻟﺴﺎﺒﻘﺔ( ﺴﺘﺘﺄﺭﺠﺢ ﺍﻟﻘﺩﺭﺓ ﺒﻴﻥ ﺍﻟﺴﺎﻟﺏ ﻭﺍﻟﻤﻭﺠـﺏ ﺃﻴﻀـﺎ‬

‫‪E2‬‬ ‫) ‪(watts‬‬ ‫‪R‬‬

‫= ‪,P‬‬

‫ﺍﻟﻘﺩﺭﺓ ﺍﻟﻔﻌﺎﻟﺔ ‪2- reactive power‬‬ ‫) ‪Q = I 2 X (VAR‬‬ ‫‪E2‬‬ ‫) ‪(VAR‬‬ ‫‪X‬‬

‫= ‪,Q‬‬

‫ﺍﻟﻘﺩﺭﺓ ﺍﻟﻅﺎﻫﺭﺓ ‪3- apparent power‬‬ ‫)‪(VA‬‬

‫‪S = I 2Z‬‬ ‫‪2‬‬

‫)‪(VA‬‬

‫‪E‬‬ ‫‪Z‬‬

‫= ‪,S‬‬

‫ﻤﺜﺎل‪ :‬ﺃﻨﻅﺭ ﺍﻟﺩﺍﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻭﻜﻴﻔﻴﺔ ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﺜﻼﺜﺔ ﺃﻨﻭﺍﻉ ﻤﻥ ﺍﻟﻘﺩﺭﺓ‪:‬‬ ‫‪ -١‬ﺩﺍﺭﺓ ﺤﻤل ﻤﻘﺎﻭﻡ ﻨﻘﻰ‪:‬‬

‫ﻴﻤﻜﻥ ﺘﻤﺜﻴل ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﺜﻼﺜﺔ ﺃﻨﻭﺍﻉ ﻤﻥ ﺍﻟﻘﺩﺭﺓ ﺒﻤﺜﻠـﺙ ﻴﻌـﺭﻑ‬ ‫ﺒـ"ﻤﺜﻠﺙ ﺍﻟﻘﺩﺭﺓ"‪:‬‬

‫‪ -٢‬ﺩﺍﺭﺓ ﺤﻤل ﻓﻌﺎل ﻨﻘﻰ‪:‬‬

‫ﻭﺒﺎﺴﺘﺤﺩﺍﻡ ﻫﺫﺍ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ ﺍﻟﺯﺍﻭﻴﺔ ﻴﻤﻜﻜﻨﺎ ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺃﻯ ﻨـﻭﻉ‬ ‫ﻤﻥ ﺃﻨﻭﺍﻉ ﺍﻟﻘﺩﺭﺓ ﺒﻤﻌﺭﻓﺔ ﻗﻴﻤﺘﻰ ﺍﻟﻨﻭﻋﻴﻥ ﺍﻷﺨﺭﻴﻥ ﺃﻭ ﺒﻤﻌﺭﻓﺔ ﻗﻴﻤـﺔ‬ ‫ﻭﺯﺍﻭﻴﺔ‪.‬‬

‫ﺤﺴﺎﺏ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ‪:‬‬ ‫‪ -٤‬ﺩﺍﺭﺓ ﺤﻤل ﺨﻠﻴﻁ ﺒﻴﻥ ﺍﻟﻔﻌﺎل ﻭﺍﻟﻤﻘﺎﻭﻡ‪:‬‬

‫ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ﻫﻭ ﺍﻟﻨﺴﺒﺔ ﺒﻴﻥ ﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ )ﺍﻟﻤﻬﺩﺭﺓ( ‪ P‬ﻭﺍﻟﻘـﺩﺭﺓ‬ ‫ﺍﻟﻅﺎﻫﺭﺓ ‪ .S‬ﻭﻷﻥ ﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻴﻤﺜﻠﻬﺎ ﺍﻟﻀﻠﻊ ﺍﻟﻤﺠﺎﻭﺭ ﻟﺯﺍﻭﻴـﺔ‬ ‫ﺍﻟﻘﺩﺭﺓ ﻭﺍﻟﻘﺩﺭﺓ ﺍﻟﻅﺎﻫﺭﺓ ﺘﻤﺜل ﺍﻟﻭﺘﺭ ﻓﻰ ﻤﺜﻠﺙ ﺍﻟﻘﺩﺭﺓ ﻓـﺈﻥ ﻤﻌﺎﻤـل‬ ‫ﺍﻟﻘﺩﺭﺓ ﻴﺴﺎﻭﻯ ﺃﻴﻀﺎ ﺠﻴﺏ ﺘﻤﺎﻡ ‪ Cosine‬ﺯﺍﻭﻴﺔ ﺍﻟﻘﺩﺭﺓ‪.‬‬

‫ﻭﻴﻤﻜﻥ ﺤﺴﺎﺏ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ﻟﻠﺩﺍﺭﺓ ﺍﻟﺴﺎﺒﻘﺔ‪:‬‬

‫ﺍﻟﺴﺎﺒﻕ ﻓﺈﻥ ﺍﻟﺠﻬﺩ ﺍﻟﻤﺴﻠﻁ ﻋﻠﻴﻪ ﺴﻴﻜﻭﻥ ﻫﻭ ﺠﻬﺩ ﺍﻟﻤﺼﺩﺭ ﺍﻟﻤﻌﻠـﻭﻡ‬ ‫ﻟﺩﻴﻨﺎ ﻭﻟﺫﻟﻙ ﻴﻤﻜﻨﻨﺎ ﺃﻥ ﻨﺒﺩﺃ ﺒﺎﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﺠﻬـﺩ ﻭﺍﻟﺤﻤـل ﺍﻟﻔﻌـﺎل‬ ‫ﻭﺍﻟﻘﺩﺭﺓ ﺍﻟﻔﻌﺎﻟﺔ‪:‬‬ ‫‪E2‬‬ ‫= ‪Q‬‬ ‫‪X‬‬ ‫‪(120)2‬‬ ‫‪E2‬‬ ‫= ‪∴X‬‬ ‫=‬ ‫‪= 120.002Ω‬‬ ‫) ‪Q 119.998(VAR‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫= ‪C‬‬ ‫=‬ ‫‪= 22.105 µ F‬‬ ‫)‪2π fX C 2π × (60Hz ) × (120.002Ω‬‬

‫ﻭﻴﺠﺏ ﺃﻥ ﺘﻼﺤﻅ ﺃﻥ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ﻭﻜﺄﻯ ﻜﻤﻴﺔ ﻨﺴﺒﻴﺔ ﻟﺒﺱ ﻟـﻪ ﺃﻯ‬ ‫ﺘﻤﻴﻴﺯ‪.‬‬

‫ﻭﺍﻵﻥ ﺩﻋﻨﺎ ﻨﻀﻊ ﻤﻜﺜﻑ )‪ (C=22.105uF‬ﻋﻠﻰ ﺍﻟﺘـﻭﺍﺯﻯ ﻤـﻊ‬ ‫ﺍﻟﺤﻤل ﻓﻰ ﺩﺍﺭﺘﻨﺎ ﺍﻟﺴﺎﺒﻘﺔ‪.‬‬

‫* ﻓﻰ ﺍﻟﺩﺍﺭﺍﺕ ﺫﺍﺕ ﺍﻷﺤﻤﺎل ﺍﻟﻤﻘﺎﻭﻤﺔ ‪ resistive‬ﺍﻟﻨﻘﻴﺔ ﻴﻜﻭﻥ ﻤﻌﻤل‬ ‫ﺍﻟﻘﺩﺭﺓ ﻤﺴﺎﻭ ﻟﻠﻭﺍﺤﺩ ﺍﻟﺼﺤﻴﺢ )ﺘﺎﻡ( ﻭﺫﻟـﻙ ﻷﻥ ﺍﻟﻘـﺩﺭﺓ ﺍﻟﻔﻌﺎﻟـﺔ‬

‫ﺴﺘﺴﺎﻭﻯ ﺼﻔﺭﺍ ﻭﺴﻴﺒﺩﻭ ﻤﺜﻠﺙ ﺍﻟﻘﺩﺭﺓ ﺤﻴﻨﻬﺎ ﻜﺨﻁ ﺃﻓﻘﻰ ﻤﻨﻁﺒﻕ ﻋﻠﻰ‬ ‫ﻀﻠﻊ ﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ‪.‬‬

‫* ﻓﻰ ﺍﻟﺩﺍﺭﺍﺕ ﺫﺍﺕ ﺍﻷﺤﻤﺎل ﺍﻟﻔﻌﺎﻟﺔ ﺍﻟﻨﻘﻴﺔ ﺴﻴﺴﺎﻭﻯ ﻤﻌﻤل ﺍﻟﻘـﺩﺭﺓ‬

‫ﺼﻔﺭﺍ ﻭﺴﻴﺒﺩﻭ ﻤﺜﻠﺙ ﺍﻟﻘﺩﺭﺓ ﻜﺨﻁ ﺭﺃﺴﻰ ﻤﻨﻁﺒﻕ ﻋﻠﻰ ﻀﻠﻊ ﺍﻟﻘﺩﺭﺓ‬ ‫ﺍﻟﻔﻌﺎﻟﺔ ﻷﻥ ﻁﻭل ﻀﻠﻊ ﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺴﻴﺴﺎﻭﻯ ﺼﻔﺭ‪.‬‬ ‫ﻭﻴﺒﺩﻭ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ﻤﻬﻤﺎ ﻓﻰ ﺩﺍﺭﺍﺕ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻤﺘﺭﺩﺩ ﻷﻨﻪ ﻋﻨﺩﻤﺎ ﻴﻘل‬

‫ﻋﻥ ﺍﻟﻭﺍﺤﺩ ﺍﻟﺼﺤﻴﺢ ﺴﻴﻜﻭﻥ ﻋﻠﻰ ﻭﺼﻼﺕ ﺍﻟﺩﺍﺭﺓ ﺘﺤﻤل ﺘﻴﺎﺭ ﻴﻔﻭﻕ‬

‫) ‪Z total = Z C //( Z L + Z R‬‬ ‫) ‪Z total = (120.57Ω∠ − 90 ) //(60.319Ω∠90 + 60∠0‬‬ ‫‪o‬‬

‫‪o‬‬

‫‪o‬‬

‫‪Z total = 120.64 − j 573.58m Ω‬‬

‫ﻤﺎ ﻋﻠﻴﻬﺎ ﺃﻥ ﺘﺤﻤﻠﻪ ﻓﻰ ﻋﺩﻡ ﻭﺠﻭﺩ ﺃﺤﻤﺎل ﻓﻌﺎﻟﺔ ﻭﺫﻟﻙ ﻹﻴﺼﺎل ﻨﻔﺱ‬ ‫ﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻟﻠﺤﻤل ﺍﻟﻤﻘﺎﻭﻡ‪ .‬ﻭﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ﺍﻟﺴﻴﺊ ﻴﻨﺘﺞ ﻤﻥ ﻨﻅﺎﻡ‬

‫‪or‬‬ ‫‪Z total = 120.64Ω∠0.2724o‬‬

‫ﺘﻐﺫﻴﺔ ﻜﻬﺭﺒﻴﺔ ﻏﻴﺭ ﻜﻑﺀ‪.‬‬

‫‪∴ P = True power = I 2 R = 119.365W‬‬

‫ﻭﻟﻜﻥ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ﺍﻟﺴﻴﺊ ﻴﻤﻜﻥ ﺃﻥ ﻴﺼﺤﺢ ﺒﺈﻀﺎﻓﺔ ﺤﻤـل ﺇﻟـﻰ‬ ‫ﺍﻟﺩﺍﺭﺓ ﻟﻴﺴﺤﺏ ﻗﺩﺭﺓ ﻤﺴﺎﻭﻴﺔ ﻭﻤﻌﺎﻜﺴﺔ ﻟﻠﻘﺩﺭﺓ ﺍﻟﻔﻌﺎﻟﺔ ﻤﻤﺎ ﻴﻼﺸـﻰ‬ ‫ﺘﺄﺜﻴﺭﺍﺕ ﺍﻟﺤﻤل ﺍﻟﺤﺜﻴﺔ‪ .‬ﻓﺘﺄﺜﻴﺭ ﺍﻟﻤﻠﻔـﺎﺕ ﻴﻤﻜـﻥ ﻤﻼﺸـﺎﺘﻪ ﺒﺘـﺄﺜﻴﺭ‬ ‫ﺍﻟﻤﻜﺜﻔﺎﺕ ﻟﺫﺍ ﻓﺈﻨﻪ ﻴﻜﻭﻥ ﻋﻠﻴﻨﺎ ﺘﻭﺼﻴل ﻤﻜﺜﻑ ﺒﺎﻟﺘﻭﺍﺯﻯ ﻤﻊ ﺍﻟـﺩﺍﺭﺓ‬ ‫ﺍﻟﻤﻭﺠﻭﺩﺓ ﺒﺎﻟﻤﺜﺎل ﺍﻟﺴﺎﺒﻕ )ﻜﺤﻤل ﺇﻀﺎﻓﻰ(‪ .‬ﻭﻫﺫﺍ ﺍﻟﺤﻤل ﺍﻹﻀﺎﻓﻰ‬

‫‪, S = Apparent power = I 2 Z = 119.366VA‬‬ ‫ﻭﺒﺫﻟﻙ ﻗﺩ ﺘﻡ ﺘﺤﺴﻴﻥ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ‪.‬ﻜﻤﺎ ﻗل ﺍﻟﺘﻴﺎﺭ ﺍﻟﻌﺎﻡ ﻤﻥ ‪١,٤١‬‬ ‫ﺃﻤﺒﻴﺭ ﺇﻟﻰ ‪ ٩٩٤,٧‬ﻤﻠﻠﻰ ﺃﻤﺒﻴﺭ ﻭﻅﻠﺕ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻤﻬﺩﺭﺓ ﻋﻠﻰ ﺍﻟﻤﻘﺎﻭﻤﺔ‬ ‫ﻜﻤﺎ ﻜﺎﻨﺕ‪.‬‬

‫)ﺍﻟﻤﻜﺜﻑ( ﻭﻋﻨﺩﻤﺎ ﻴﻼﺸﻰ ﺘﺄﺜﻴﺭ ﺍﻟﺤﻤل ﺍﻟﻔﻌﺎل ﺍﻷﺼـﻠﻰ )ﺍﻟﻤﻠـﻑ(‬

‫‪True power‬‬ ‫‪Apparent power‬‬

‫= ‪power factor‬‬

‫‪119.365W‬‬ ‫‪= 0.9999887‬‬ ‫‪119.366VA‬‬

‫= ‪power factor‬‬

‫ﺘﺼﺒﺢ ﻤﻌﺎﻭﻗﺔ ﺍﻟﺩﺍﺭﺓ ﺍﻟﻜﻠﻴﺔ ﻫﻰ ﺍﻟﻤﻘﺎﻭﻤﺔ ﻓﻘﻁ ﻭﻴﺼﺒﺢ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ‬ ‫ﻤﺴﺎﻭ ﻟﻠﻭﺍﺤﺩ ﺍﻟﺼﺤﻴﺢ )ﺘﻘﺭﻴﺒﺎ(‪.‬‬ ‫ﻭﺒﻤﺎ ﺃﻨﻨﺎ ﻨﻌﻠﻡ ﺒﺄﻥ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻔﻌﺎﻟﺔ ﻗﺒل ﺍﻟﺘﺼﺤﻴﺢ ﺘﺴﺎﻭﻯ ‪١١٩,٩٩٨‬‬ ‫ﻓﺎﺭ )ﻤﻠﻔﺎﺕ( ﻓﺈﻥ ﻋﻠﻴﻨﺎ ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﻤﻜﺜﻑ ﺍﻟﺫﻯ ﻴﻤﻜﻨﻪ ﻤﻌﺎﺩﻟﺔ ﻫﺫﻩ‬ ‫ﺍﻟﻘﺩﺭﺓ‪ .‬ﻭﻷﻥ ﺍﻟﻤﻜﺜﻑ ﺍﻟﻤﻀﺎﻑ ﺴﻴﻭﺼل ﻋﻠﻰ ﺍﻟﺘﻭﺍﺯﻯ ﻤﻊ ﺍﻟﺤﻤـل‬

‫ﻭﺒﻁﺭﻴﻘﺔ ﺃﺨﺭﻯ‪:‬‬

‫ﻋﻠﻴﻨﺎ ﺃﻭﻻ ﺤﺴﺎﺏ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻅﺎﻫﺭﺓ ﻭﺴﻨﻔﻌل ﺫﻟﻙ ﺒﻀﺭﺏ ﺠﻬﺩ ﺍﻟﺤﻤل‬

‫‪∴ impeadance angle = 0.272o‬‬

‫ﻓﻰ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻤﺎﺭ ﺒﻪ ‪:‬‬

‫‪∴ cos(0.272o ) = 0.9999887‬‬

‫‪S = IE = (9.615A )(240V ) = 2.308kVA‬‬

‫ﺘﺩل ﺯﺍﻭﻴﺔ ﺍﻟﻤﻌﺎﻭﻗﺔ ‪ impedance angle‬ﺍﻟﻤﻭﺠﺒﺔ ﻋﻠﻰ ﺃﻥ ﺍﻟﺤﻤل‬

‫ﻭﺒﻤﻘﺎﺭﻨﺔ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻅﺎﻫﺭﺓ )ﺍﻟﻤﺤﺴﻭﺒﺔ( ﻭﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴـﺔ )ﺍﻟﻤﻘﺎﺴـﺔ‬

‫ﺍﻟﺤﺜﻰ ‪ inductive‬ﻻﺯﺍل ﺃﻜﺒﺭ ﻤﻥ ﺍﻟﺤﻤل ﺍﻟﺴـﻌﻭﻯ ‪capacitive‬‬

‫ﺒﺎﻟﻭﺍﻁ ﻤﻴﺘﺭ( ﻨﺠﺩ ﺃﻥ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻅﺎﻫﺭﺓ )‪ ٢,٣٠٨‬ﻜﻴﻠﻭ ﻓﻭﻟﺕ ﺃﻤﺒﻴـﺭ(‬

‫ﻭﻟﻭ ﻭﺼﻠﻨﺎ ﺒﻬﺎ ﺇﻟﻰ ﺍﻟﺼﻔﺭ )ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ=‪ (١‬ﻓﺈﻥ ﺫﻟﻙ ﻴﻌﻨـﻰ ﺃﻥ‬

‫ﺃﻜﺒﺭ ﺒﻜﺜﻴﺭ ﻤﻥ ﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ )‪ ١,٥‬ﻜﻴﻠﻭ ﻭﺍﻁ( ﻭﻫﺫﺍ ﻴﻌﻨﻰ ﺃﻥ ﻟﺩﻴﻨﺎ‬

‫ﺍﻟﺤﻤل ﺃﺼﺒﺢ ﻤﻘﺎﻭﻡ ﻨﻘﻰ ﻭﻓﻰ ﺤﺎل ﻭﺠﻭﺩ ﺯﺍﻭﻴﺔ ﺤﻤل ﺴﺎﻟﺒﺔ ﻓـﺈﻥ‬

‫ﻤﻌﺎﻤل ﻗﺩﺭﺓ ﺴﻴﺊ‪.‬‬

‫ﺫﻟﻙ ﻤﺅﺸﺭ ﻋﻠﻰ ﺃﻥ ﺍﻟﺤﻤل ﺍﻟﺴﻌﻭﻯ ﺃﺼﺒﺢ ﺃﻜﺒﺭ ﻤﻥ ﺍﻟﺤﻤل ﺍﻟﺤﺜﻰ‪.‬‬ ‫ﻭﻴﺠﺏ ﻤﻼﺤﻅﺔ ﺃﻥ ﻭﺠﻭﺩ ﺤﻤل ﺴﻌﻭﻯ ﻜﺒﻴـﺭ ﺠـﺩﺍ ﻓـﻰ ﺍﻟـﺩﺍﺭﺓ‬

‫‪Power factor = 1.5/2.308 = 0.65‬‬

‫)ﻤﻜﺜﻔﺎﺕ( ﺴﻴﻘﻠل ﻤﻥ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ﺃﻴﻀﺎ‪ .‬ﻭﻟﺫﻟﻙ ﻋﻠﻴﻙ ﺍﻟﺤﺫﺭ ﻤـﻥ‬

‫ﻭﻤﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻌﺭﻭﻓﺔ ﻟﻠﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻭﺍﻟﻘﺩﺭﺓ ﺍﻟﻅﺎﻫﺭﺓ ﻴﻤﻜﻨﻨﺎ ﺭﺴـﻡ‬

‫ﺍﻟﻤﺒﺎﻟﻐﺔ ﻓﻰ ﺘﺼﺤﻴﺢ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ﺒﺈﻀﺎﻓﺔ ﻤﻜﺜﻔﺎﺕ ﻜﺜﻴـﺭﺓ ﺠـﺩﺍ‬

‫ﻤﺜﻠﺙ ﺍﻟﻘﺩﺭﺓ‪:‬‬

‫ﻟﻠﺩﺍﺭﺓ‪ .‬ﻜﻤﺎ ﻋﻠﻴﻙ ﺃﻥ ﺘﺴﺘﺨﺩﻡ ﻤﻜﺜﻔﺎﺕ ﻤﻨﺎﺴﺒﺔ ﻟﻠﺠﻬﻭﺩ ﺍﻟﻤﺴﺘﺨﺩﻤﺔ ﻓﻰ‬ ‫ﺍﻟﺩﺍﺭﺓ ﻭﺃﻥ ﺘﻜﻭﻥ ﻗﺎﺩﺭﺓ ﻋﻠﻰ ﺘﺤﻤل ﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﺍﻟﻤﺘﻭﻗﻌﺔ ﻟﻠﺘﻴﺎﺭ‪.‬‬ ‫* ﻟﻭ ﻜﺎﻥ ﺍﻟﺤﻤل ﺍﻟﺤﺜﻰ )ﺍﻟﻤﻠﻔﺎﺕ( ﻫﻭ ﺍﻟﻐﺎﻟﺏ ﻓﺈﻨﻨﺎ ﻨﻘﻭل ﺃﻥ ﻤﻌﺎﻤل‬ ‫ﺍﻟﻘﺩﺭﺓ ﻤﺘﺨﻠﻑ ‪) lagging‬ﻷﻥ ﺘﻴﺎﺭ ﺍﻟﺩﺍﺭﺓ ﻤﺘﺄﺨﺭ ﻋﻥ ﺠﻬﺩﻫﺎ(‪ .‬ﺃﻤﺎ‬ ‫ﻟﻭﻜﺎﻥ ﺍﻟﺤﻤل ﺍﻟﺴﻌﻭﻯ )ﺍﻟﻤﻜﺜﻔﺎﺕ( ﻫﻭ ﺍﻟﻐﺎﻟﺏ ﻓﺈﻨﻨﺎ ﻨﻘﻭل ﺃﻥ ﻤﻌﺎﻤل‬ ‫ﺍﻟﻘﺩﺭﺓ ﻗﺎﺌﺩ ‪. leading‬‬

‫ﺍﻟﺘﺼﺤﻴﺢ ﺍﻟﻌﻤﻠﻰ ﻟﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ‪:‬‬ ‫ﺴﺘﻜﻭﻥ ﻤﺤﻅﻭﻅﺎ ﻟﻭ ﻟﺩﻴﻙ ﺠﻬﺎﺯ ﻟﻘﻴﺎﺱ ﻤﻌﺎﻤـل ﺍﻟﻘـﺩﺭﺓ ‪power‬‬ ‫‪ factor meter‬ﻤﺒﺎﺸﺭﺓ ﺇﺫﺍ ﺃﺭﺩﺕ ﺘﺤﺴﻴﻥ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ﻓﻰ ﻨﻅﺎﻡ‬ ‫ﻜﻬﺭﺒﻰ ﻤﺘﺭﺩﺩ ﺍﻟﺘﻴﺎﺭ ﻭﺍﻟﺫﻯ ﺴﻴﻌﻁﻴﻙ ﻗﺭﺍﺀﺓ ﺘﺘﺭﺍﻭﺡ ﻤﻥ ﺍﻟﺼﻔﺭ ﺇﻟﻰ‬

‫ﻭﻤﻥ ﻤﺜﻠﺙ ﺍﻟﻘﺩﺭﺓ ﻭﺒﻨﻅﺭﻴﺔ ﻓﻴﺜﺎﻏﻭﺭﺙ ﻴﻤﻜﻥ ﺤﺴﺎﺏ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻔﻌﺎﻟﺔ‪:‬‬

‫ﺍﻟﻭﺍﺤﺩ ﺍﻟﺼﺤﻴﺢ‪ .‬ﺃﻤﺎ ﻟﻭ ﻟﻡ ﻴﻜﻥ ﻟﺩﻴﻙ ﻫﺫﺍ ﺍﻟﺠﻬﺎﺯ ﻓﻴﻤﻜﻨـﻙ ﻗﻴـﺎﺱ‬ ‫ﺍﻟﻘﺩﺭﺓ ﺍﻟﻅﺎﻫﺭﺓ ﺒﻀﺭﺏ ﻗﻴﻤﺘﻰ ﺍﻟﺠﻬﺩ ﻭﺍﻟﺘﻴـﺎﺭ ﺍﻟﻤﻤﻜـﻥ ﻗﻴﺎﺴـﻬﻤﺎ‬ ‫ﺒﺴﻬﻭﻟﺔ ﻭ ﻗﻴﺎﺱ ﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺒﺠﻬﺎﺯ ﻭﺍﻁ ﻤﻴﺘـﺭ ‪، wattmeter‬‬ ‫ﻭﻤﻥ ﺜﻡ ﺤﺴﺎﺏ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ﻤﻥ ﺍﻟﻨﺴﺒﺔ ﺒﻴﻨﻬﻤﺎ‪.‬‬ ‫ﻭﺇﻟﻴﻜﻡ ﻫﺫﺍ ﺍﻟﻤﺜﺎل‪:‬‬

‫‪2‬‬

‫) ‪( Apparent power ) − (True power‬‬ ‫‪2‬‬

‫= ‪Re active power‬‬

‫‪∴Q = 1.754 KVAR‬‬ ‫ﻟﻭ ﻜﺎﻥ ﺍﻟﺤﻤل ﻫﻭ ﻤﺤﺭﻙ ﻜﻬﺭﺒﻰ ﻓﺈﻨﻪ ﺴﻴﻜﻭﻥ ﻟﻪ ﻤﻌﺎﻤـل ﻗـﺩﺭﺓ‬ ‫ﻤﺘﺄﺨﺭ ‪) lagging‬ﺤﺜﻰ( ﻤﻤﺎ ﻴﻌﻨﻰ ﺒﺄﻥ ﻋﻠﻴﻨﺎ ﺘﺼـﺤﻴﺤﻪ ﺒﺈﻀـﺎﻓﺔ‬ ‫ﻤﻜﺜﻑ ﺒﺤﺠﻡ ﻤﻨﺎﺴﺏ ﻭﻤﻭﺼﻭل ﺒﺎﻟﺘﻭﺍﺯﻯ ﻤﻊ ﺍﻟﺤﻤل‪ .‬ﻭﻟﺤﺴﺎﺏ ﻗﻴﻤﺔ‬ ‫ﺍﻟﻤﻜﺜﻑ ﺍﻟﻤﻁﻠﻭﺏ‪:‬‬ ‫‪E2‬‬ ‫‪X‬‬ ‫‪E2‬‬ ‫‪(240)2‬‬ ‫= ‪∴X‬‬ ‫=‬ ‫‪= 32.845Ω‬‬ ‫‪Q 1.754 KVAR‬‬

‫= ‪Q‬‬

‫‪1‬‬ ‫‪2π fC‬‬ ‫‪1‬‬ ‫= ‪∴C‬‬ ‫‪= 80.761µ F‬‬ ‫‪2π fX C‬‬

‫= ‪ XC‬‬

‫ﺇﺫﻥ ﻗﻴﻤﺔ ﺍﻟﻤﻜﺜﻑ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻫﻰ ‪ ٨٠,٧٦١‬ﻤﻴﻜﺭﻭﻓﺎﺭﺍﺩ ﻭﺘﺘﻡ ﺇﻀﺎﻓﺘﻪ‪:‬‬

‫ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﻔﺭﻕ ﻓﻰ ﺍﻟﻁﻭﺭ ﺒﻴﻥ ﺘﻴﺎﺭ ﺍﻟﻤﻜﺜﻑ ﻭ ﺘﻴﺎﺭ ﺍﻟﻤﻠﻑ ﻴﺴـﺎﻭﻯ‬ ‫‪ ١٨٠‬ﺩﺭﺠﺔ ﻓﺴﻴﻼﺸﻰ ﻜﻼﻫﻤﺎ ﺍﻵﺨﺭ‪.‬‬ ‫ﻭﺒﺤﺴﺎﺏ ﺍﻟﻘﺩﺭﺓ ﺍﻟﻅﺎﻫﺭﺓ ﻜﻤﺎ ﺴﺒﻕ ﻓﺈﻨﻬﺎ ﺴﺘﺴﺎﻭﻯ ‪ ١,٥٠٠٠٩‬ﻜﻴﻠﻭ‬ ‫ﻓﻭﻟﺕ ﺃﻤﺒﻴﺭ ‪ .‬ﻭﻷﻥ ﺍﻟﻘﺩﺭﺓ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺴﺘﻅل ﺜﺎﺒﺘﺔ ﺒﻌﺩ ﺇﻀﺎﻓﺔ ﺍﻟﻤﻜﺜﻑ‬ ‫ﻓﺈﻥ ﻤﻌﺎﻤل ﺍﻟﻘﺩﺭﺓ ﺍﻟﺠﺩﻴﺩ ﺴﻴﺴﺎﻭﻯ ‪ 0.99994‬ﻜﻤﺎ ﺴﻴﻘل ﺍﻟﺘﻴﺎﺭ ﻤﻥ‬ ‫‪ 9.615‬ﺃﻤﺒﻴﺭ ﺇﻟﻰ ‪ 6.25‬ﻭﻫﺫﺍ ﻴﻌﻨﻰ ﻓﻘﺩﺍ ﺤﺭﺍﺭﻴﺎ ﺃﻗل ﻓﻰ ﺘﻭﺼﻴﻼﺕ‬ ‫ﺍﻟﺩﺍﺭﺓ ﻤﻤﺎ ﻴﺯﻴﺩ ﻤﻥ ﻜﻔﺎﺀﺓ ﺍﻟﺩﺍﺭﺓ ﻜﻜل‪.‬‬

‫ﺃﻨﺘﻬﻰ ‪..‬‬

Related Documents