6.002
CIRCUITS AND ELECTRONICS
http://electrical.globalautomation.info
Power Conversion Circuits and Diodes
Power Conversion Circuits (PCC) PCC
+ – 5V DC
PCC
+ – 5V DC
110V 60Hz
solar cells, battery
3V DC
DC-to-DC UP converter Power efficiency of converter important, so use lots of devices: MOSFET switches, clock circuits, inductors, capacitors, op amps, diodes
R Reading: Chapter 16 and 4.4 of A & L. http://electrical.globalautomation.info
First, let’s look at the diode
⎛ VvD ⎞ T ⎜ iD = I S e − 1 ⎟ ⎜ ⎟ ⎝ ⎠ I S = 10 −12 A
iD
+ vD –
VT = 0.025V Boltzmann’s constant temperature in Kelvins charge of an electron
kT VT = q iD
iD
vD
− IS
vD V
mV
Can use this exponential model with analysis methods learned earlier
analytical
graphical
incremental
(Our fake expodweeb was modeled after this device!) http://electrical.globalautomation.info
Another analysis method: piecewise–linear analysis P–L diode models: iD iD ≥ 0 Æ vD = 0
“short” or on
vD < 0 Æ i D = 0
0
vD
“open” or off
Ideal diode model
http://electrical.globalautomation.info
Another analysis method: piecewise–linear analysis “Practical” diode model ideal with offset
+–
0.6V
iD Short segment Open segment
iD = 0
vD = 0
0.6V
vD
http://electrical.globalautomation.info
Another analysis method: piecewise–linear analysis
Piecewise–linear analysis method
Replace nonlinear characteristic with linear segments. Perform linear analysis within each segment.
http://electrical.globalautomation.info
Example (We will build up towards an AC-to-DC converter)
0.6V +–
Consider + vI + –
R
vO –
vI
is a sine wave
http://electrical.globalautomation.info
Example 0 .6 V +–
Equivalent circuit
+
vI + –
vO
R
– “Short segment”: iD = (vI − 0.6 ) / R vI ≥ 0.6
+ vI –
+–
+
0.6V
R
vO = vI − 0.6
– “Open segment”: iD = 0
vI < 0.6
+ vI –
+– 0.6V
+
R
vO = 0
– http://electrical.globalautomation.info
Example vI
vO 0.6 t
http://electrical.globalautomation.info
Now consider — a half-wave rectifier 0.6V
+– vI + –
C
+ R
vO
–
http://electrical.globalautomation.info
A half-wave rectifier
vI
diode on
diode off
vO
Demo
t
C current pulses charging capacitor
MIT’s supply shows “snipping” at the peaks (because current drawn at the peaks)
http://electrical.globalautomation.info
se Do not u resistive s! el em ent
DC-to-DC UP Converter i
+ VI + DC –
vS
C vO
switch
S
load
–
vS S
S
closed
T
open
t Tp
The circuit has 3 states: I. II. III.
S is on, diode is off i increases linearly S turns off, diode turns on C charges up, vO increases S is off, diode turns off C holds vO (discharges into load)
http://electrical.globalautomation.info
More detailed analysis I. Assume i(0) = 0, vO(0) > 0 S on at t = 0, diode off L
vO
i VI + –
VI T i (T ) = L
C
i
di VI = L dt
VI slope = L T
i is a ramp
t
1 ΔE = energy stored at t = T : Li( T )2 2 2
VI T 2 ΔE = 2L http://electrical.globalautomation.info
II. S turns off at t = T
diode turns on (ignore diode voltage drop) L
VI + –
VI T L
i
i
0 T T′
vO S
C
State III starts here
TP
t
1 ωO = LC
Diode turns off at T′ when i tries to go negative.
http://electrical.globalautomation.info
II. S turns off at t = T, diode turns on Let’s look at the voltage profile
i
VI T L
0 T T′
ωO = 1
TP
t
LC
Capacitor voltage ignore diode drop
vO
III.
vO (T )
1 ωO = LC
0 T T′
ΔvO
TP
t
Diode turns off at T′ when I tries to go negative. http://electrical.globalautomation.info
II. S turns off at t = T, diode turns on Let’s look at the voltage profile
i
VI T L
0 T T′
ωO = 1
TP
t
LC
Capacitor voltage ignore diode drop
vO
III.
vO (T )
1 ωO = LC
0 T T′
ΔvO
TP
t
Diode turns off at T′ when I tries to go negative. http://electrical.globalautomation.info
III. S is off, diode turns off Eg, no load
+ VI + –
S
C vO
– C holds vO after T′ i is zero Capacitor voltage
vO
0
T′
TP
t
http://electrical.globalautomation.info
III. S is off, diode turns off Eg, no load
+ VI + –
S
C vO
– C holds vO after T′ i is zero until S turns ON at TP, and cycle repeats I II III I II III … Thus, vO increases each cycle, if there is no load.
vO vO (n)
TP 2TP 3TP
t
http://electrical.globalautomation.info
What is vO after n cycles Æ vO(n) ? Use energy argument … (KVL tedious!) Each cycle deposits ∆E in capacitor. 1 2 Δ = = L i ( t T ) E 2 2 1 VI T 2 ΔE = 2 1 ⎛ VI T ⎞ 2 L = L⎜ ⎟ 2 ⎝ L ⎠ After n cycles, energy on capacitor 2
nVI T 2 nΔE = 2L 1 This energy must equal CvO ( n )2 2 so, or
2
2 nV T 1 2 CvO ( n ) = I 2L 2 2
nVI T 2 vO ( n ) = LC
ωO =
1 LC
vO ( n ) = VI T ωO n
http://electrical.globalautomation.info
How to maintain vO at a given value? + VI
+ –
vO
load
–
vO
pwm
control change T
T
Tp
compare + vref –
2
VI T 2 recall ΔE = 2L Another example of negative feedback: if if
(v (v
O O
− vref ) ↑
− vref ) ↓
then T ↓ then T ↑ http://electrical.globalautomation.info