Power Conversion Circuits And Diodes

  • Uploaded by: Raghav
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Power Conversion Circuits And Diodes as PDF for free.

More details

  • Words: 964
  • Pages: 20
6.002

CIRCUITS AND ELECTRONICS

http://electrical.globalautomation.info

Power Conversion Circuits and Diodes

Power Conversion Circuits (PCC) PCC

+ – 5V DC

PCC

+ – 5V DC

110V 60Hz

solar cells, battery

3V DC

DC-to-DC UP converter Power efficiency of converter important, so use lots of devices: MOSFET switches, clock circuits, inductors, capacitors, op amps, diodes

R Reading: Chapter 16 and 4.4 of A & L. http://electrical.globalautomation.info

First, let’s look at the diode

⎛ VvD ⎞ T ⎜ iD = I S e − 1 ⎟ ⎜ ⎟ ⎝ ⎠ I S = 10 −12 A

iD

+ vD –

VT = 0.025V Boltzmann’s constant temperature in Kelvins charge of an electron

kT VT = q iD

iD

vD

− IS

vD V

mV

Can use this exponential model with analysis methods learned earlier „

analytical

„

graphical

„

incremental

(Our fake expodweeb was modeled after this device!) http://electrical.globalautomation.info

Another analysis method: piecewise–linear analysis P–L diode models: iD iD ≥ 0 Æ vD = 0

“short” or on

vD < 0 Æ i D = 0

0

vD

“open” or off

Ideal diode model

http://electrical.globalautomation.info

Another analysis method: piecewise–linear analysis “Practical” diode model ideal with offset

+–

0.6V

iD Short segment Open segment

iD = 0

vD = 0

0.6V

vD

http://electrical.globalautomation.info

Another analysis method: piecewise–linear analysis

Piecewise–linear analysis method „ „

Replace nonlinear characteristic with linear segments. Perform linear analysis within each segment.

http://electrical.globalautomation.info

Example (We will build up towards an AC-to-DC converter)

0.6V +–

Consider + vI + –

R

vO –

vI

is a sine wave

http://electrical.globalautomation.info

Example 0 .6 V +–

Equivalent circuit

+

vI + –

vO

R

– “Short segment”: iD = (vI − 0.6 ) / R vI ≥ 0.6

+ vI –

+–

+

0.6V

R

vO = vI − 0.6

– “Open segment”: iD = 0

vI < 0.6

+ vI –

+– 0.6V

+

R

vO = 0

– http://electrical.globalautomation.info

Example vI

vO 0.6 t

http://electrical.globalautomation.info

Now consider — a half-wave rectifier 0.6V

+– vI + –

C

+ R

vO



http://electrical.globalautomation.info

A half-wave rectifier

vI

diode on

diode off

vO

Demo

t

C current pulses charging capacitor

MIT’s supply shows “snipping” at the peaks (because current drawn at the peaks)

http://electrical.globalautomation.info

se Do not u resistive s! el em ent

DC-to-DC UP Converter i

+ VI + DC –

vS

C vO

switch

S

load



vS S

S

closed

T

open

t Tp

The circuit has 3 states: I. II. III.

S is on, diode is off i increases linearly S turns off, diode turns on C charges up, vO increases S is off, diode turns off C holds vO (discharges into load)

http://electrical.globalautomation.info

More detailed analysis I. Assume i(0) = 0, vO(0) > 0 S on at t = 0, diode off L

vO

i VI + –

VI T i (T ) = L

C

i

di VI = L dt

VI slope = L T

i is a ramp

t

1 ΔE = energy stored at t = T : Li( T )2 2 2

VI T 2 ΔE = 2L http://electrical.globalautomation.info

II. S turns off at t = T

diode turns on (ignore diode voltage drop) L

VI + –

VI T L

i

i

0 T T′

vO S

C

State III starts here

TP

t

1 ωO = LC

Diode turns off at T′ when i tries to go negative.

http://electrical.globalautomation.info

II. S turns off at t = T, diode turns on Let’s look at the voltage profile

i

VI T L

0 T T′

ωO = 1

TP

t

LC

Capacitor voltage ignore diode drop

vO

III.

vO (T )

1 ωO = LC

0 T T′

ΔvO

TP

t

Diode turns off at T′ when I tries to go negative. http://electrical.globalautomation.info

II. S turns off at t = T, diode turns on Let’s look at the voltage profile

i

VI T L

0 T T′

ωO = 1

TP

t

LC

Capacitor voltage ignore diode drop

vO

III.

vO (T )

1 ωO = LC

0 T T′

ΔvO

TP

t

Diode turns off at T′ when I tries to go negative. http://electrical.globalautomation.info

III. S is off, diode turns off Eg, no load

+ VI + –

S

C vO

– C holds vO after T′ i is zero Capacitor voltage

vO

0

T′

TP

t

http://electrical.globalautomation.info

III. S is off, diode turns off Eg, no load

+ VI + –

S

C vO

– C holds vO after T′ i is zero until S turns ON at TP, and cycle repeats I II III I II III … Thus, vO increases each cycle, if there is no load.

vO vO (n)

TP 2TP 3TP

t

http://electrical.globalautomation.info

What is vO after n cycles Æ vO(n) ? Use energy argument … (KVL tedious!) Each cycle deposits ∆E in capacitor. 1 2 Δ = = L i ( t T ) E 2 2 1 VI T 2 ΔE = 2 1 ⎛ VI T ⎞ 2 L = L⎜ ⎟ 2 ⎝ L ⎠ After n cycles, energy on capacitor 2

nVI T 2 nΔE = 2L 1 This energy must equal CvO ( n )2 2 so, or

2

2 nV T 1 2 CvO ( n ) = I 2L 2 2

nVI T 2 vO ( n ) = LC

ωO =

1 LC

vO ( n ) = VI T ωO n

http://electrical.globalautomation.info

How to maintain vO at a given value? + VI

+ –

vO

load



vO

pwm

control change T

T

Tp

compare + vref –

2

VI T 2 recall ΔE = 2L Another example of negative feedback: if if

(v (v

O O

− vref ) ↑

− vref ) ↓

then T ↓ then T ↑ http://electrical.globalautomation.info

Related Documents


More Documents from ""

Filters
October 2019 48
The Digital Abstraction
October 2019 25
Data Warehousing
June 2020 23