CATEDRA UNADISTA GRUPO:
Proposiciones y tablas de verdad
ELABORADO POR:
PRESENTADO A LA TUTORA:
UNIVERSIDAD NACIONAD ABIERTA Y A DISTANCIA CEAD José Acevedo y Gómez Marzo-2019
Introducción
Con este trabajo vamos a definir el cuantificador universal afirmativo mediante una presentación de prezi, también trabajaremos la determinación del valor de verdad, tablas de verdad con la ayuda de el simulador de la UNAD. En donde hallaremos conceptos y ejemplos sobre cuantificadores y posiciones categóricas.
Objetivos
- La utilización de elementos para emplear los cuantificadores universales y existenciales para la construcción y la representación de proposiciones categóricas. - Identificar las clases de posiciones que se pueden encontrar. - Traducir proposiciones de variable lógica a verbal o viceversa. - Representar gráficamente proposiciones categóricas de forma estándar.
ENLACE https://prezi.com/view/rh4D8sfWFFETOy1FgAGi/
ABRIR CON GOOGLE CHROME Ejercicio 2 A. Si Laura chatea en su celular y conduce por la autopista entonces Laura tiene una alta probabilidad de accidentarse o Laura puede dañar su automóvil p- Laura chatea en su celular q- conduce por la autopista r- Laura tiene una alta probabilidad de accidentarse s- Laura puede dañar su automóvil ( p ^ q ) → (r ∨ s) Simulador lógica UNAD.
P V
Q V
R V
S V
(p^q) V
(p^q)→r V
( p ^ q ) →( r ∨ s ) V
V V V V V V V F F F F F F F F
V V V F F F F V V V V F F F F
V F F V V F F V V F F V V F F
F V F V F V F V F V F V F V F
V V V F F F F F F F F F F F F
Resultado de la tabla de verdad: CONTIGENCIA
Ejercicio 3
V F F V V V V V V V V V V V V
V V F V V V V V V V V V V V V
A. (𝑝 ∧ 𝑞) → (𝑟 ∨ ¬𝑞) Si hoy es 20 de febrero, aunque pasado mañana es 22 de febrero entonces mañana es 21 de febrero a menos que no sea 23 de febrero. p- Hoy es 20 de febrero q- pasado mañana es 22 de febrero r- mañana es 21 de febrero ¬𝑞- no es 23 de febrero
Simulador Lógica UNAD
Tabla de verdad manual. P V V V V F F F F
Q V V F F V V F F
R V F V F V F V F
(𝑝 ∧ 𝑞) V V F F F F F F
(¬𝑞) F F F F F F V V
(𝑟 ∨ ¬𝑞) V F V V V F V V
(𝑝 ∧ 𝑞) → (𝑟 ∨ ¬𝑞) V F V V V V V V
Conclusiones Esta actividad de proposiciones y tablas de verdad, nos permitió adquirir conocimientos sobre las clases de cuantificadores y saber cómo resolver cualquier problema que queramos realizar, se hiso un estudio muy a fondo y representamos ejemplos respectivos, dando solución a situaciones problemáticas de la lógica proporcional comprobando la tabla de verdad en el simulador de la UNAD.
Bibliografía http://bibliotecavirtual.unad.edu.co:2460/lib/unadsp/reader.action? ppg=20&docID=3226457&tm=1529246259924 https://bibliotecavirtual.unad.edu.co:2538/lib/unadsp/reader.action ?ppg=12&docID=3199701&tm=1529335849013 https://bibliotecavirtual.unad.edu.co:2538/lib/unadsp/reader.action ?ppg=109&docID=3199701&tm=1529510366591 http://hdl.handle.net/10596/13871 .