Polynomials

  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Polynomials as PDF for free.

More details

  • Words: 4,692
  • Pages: 14
POLYNOMIALS A. Look at the algebra form below : 1. 2. 3.

3X 2X 6X

+5 X 3 −2 −7 X +4 5 −X 4 + 3 X 3 − 6 X 4

3

2

+10 X −1

Algebra form above are called POLYNOMIALS Degree of polynomials is the index of the highest power. Thus in the expression ( 1 ) above the polynomial is of degree 4 while in ( 2 ) the polynomial is of degree 3 and in ( 3 ) the polynomial is of degree 5. In a polynomial the power of variable is always a positive integer. an X n +a( n −1) X n −1 +a( n −2 ) X n −2 + . . . + a2 X 2 + a1 X +ao , an ≠ 0

is called the

polynomials in X of degree n Exercise 1 Find the degree , variable , coefficient of polynomials below : 1. 6 X 4 + X 3 +3 X 2 −6 X −1 2. 7 Y 7 +5Y 6 + 3Y 3 − Y 2 +3 Y −1 3. 3 a 8 −a 4 + 3a 2 − a +1 4. b 6 +2b 4 − 3b 3 − 6 b 2 +13b −1 5. 4 X 5 −1 6. 6 z 15 −z 14 + 3 z 10 − 6 z 4 +10 z −1 7. 6 +b −b 4 + 3b 5 − 11b 7 +10 b 9 8. 2 X 4Y 3 + 5 X 3Y 2 +3 X 2Y −6 X −1 9. 6a 5 b 6 + a 3 b 4 +2 a 2 b −7 a −14 10. 2a 4 b 4 −2 a 3 b 3 +4 ab 2 −5 b +11 B. Value of polynomials If a polynomial is stated by f(x) and X is replaced by a number ( a ) thus f ( a ) is value of f(x) If f ( x ) = 3 X 2 +7 X +1 , so value of f ( 1 ) = 3 (1) 2 +7 (1) +1 = 11

Exercise 1

Find out value of each polynomials below 1. 2. 3. 4. 5. 6. 7. 8.

f ( x ) = 2 X 4 + X 3 +−3 X 2 −6 X −1 , if x = 2 f ( x ) = −3 X 5 + 7 X 3 −4 X 2 + X −5 , if x = - 1 f ( x ) = 5 X 2 −6 X + 2 , if x = 4 f ( X ) = X 6 −2 X 4 +3 X 2 − X +2 , if x = 3 f ( a ) = 5a 4 −2a 3 +4a 2 −6a −5 , if a = -2 f ( b ) = 3b 5 + b 3 −2b 2 −5 b −4 , if b = - 1 f ( x , y ) = 2 X 4Y 3 + 5 X 3Y 2 +3 X 2Y −6 X −1 , if x = -1 , y = 1 f ( a, b ) = 6a 5 b 6 + a 3 b 4 +2 a 2 b −7 a −14 , if a = 2, b = - 1

C. Operation on Polynomials 1. Addition 2. Subtraction 3. Multiplication Addition n n −1 +a ( n −2 ) X n −2 +. . . +a 0 , a n ≠ 0 and If f ( x ) = a n X +a ( n −1) X h ( x ) = bm X

m

+b( m −1) X

f ( x ) + g ( x ) = bm X

m

m −1

+b( m −2 ) X

m −2

+. . . +b0 , bm ≠ 0 and m > n thus + . . . + ( a 2 + b2 ) X 2 + ( a1 +b1 ) X +( a 0 + b0 )

Example Add

( 6X

4

+X

3

+3 X

2

−6 X −1 ) and ( 5 X

4

− 3 X 3 +6 X

2

+ 7 X +14 )

Solution 6 X 4 + X 3 +3 X 2 −6 X −1 5 X 4 −3 X 3 +6 X 2 + 7 X +14 11X 4 − 2 X 3 +9 X 2 + X +13

+

Subtraction n n −1 +a ( n −2 ) X n −2 +. . . +a 0 , a n ≠ 0 and If f ( x ) = a n X +a ( n −1) X h ( x ) = bm X

m

+b( m −1) X

m f ( x ) - g ( x ) = − bm X

m −1

+b( m −2 ) X

m −2

+. . . +b0 , bm ≠ 0 and m > n thus + . . . + ( a 2 − b2 ) X 2 + ( a1 −b1 ) X +( a0 − b0 )

Example If p ( x) = 6 X 4 + X 3 +3 X 2 −6 X −1 ) and q ( x ) = 5 X find p ( x ) −q ( x ) Solution 6X

4

+X

3

+3 X

2

−6 X −1

4

− X 3 +6 X 2 + 7 X +14

5 X 4 − 3 X 3 +6 X 2 + 7 X +14 X 4 + 4 X 3 −3 X 2 −13 X −15

Find

-

q ( x ) −p ( x )

Solution 5 X 4 − 3 X 3 +6 X 2 + 7 X +14 6 X 4 + X 3 +3 X 2 −6 X −1 − X 4 − 4 X 3 +3 X 2 +13 X +15

-

Multiplication To multiply two polynomials, P ( x ) , Q ( x ) , each term of P ( x ) is multiplied by each term of Q(X) Examine followings 1. Given p ( x) = a x n and q ( x) =b x m we have) p ( x ) . q (x) = a x n b x m . = ab x m +n m m −1 +b( m−2 ) X m −2 +. . . +b0 2. Given p ( x) = a x n and q ( x ) = bm X +b( m −1) X n m m −1 +. . . + b0 ) We have p ( x) . q (x) = a x ( bm x + b( m−1) x n n −1 +a( n −2 ) X n −2 +. . . +a0 and 3. given p ( x ) = a n X +a( n−1) X

q ( x ) =bm X m +b( m−1) X m −1 +b( m−2 ) X m −2 +. . . +b0 we have

Example 1.

p ( x ) =2 X 3 , q ( x ) = 4 x 5 , thus p ( x ).q ( x ) =2 x3 . 4 x 5 = 8 x8

2.

3.

p ( x ) =6 X 2 , q ( x ) = 5 X 4 + 7 X + 8 , thus p ( x ) . q ( x ) = 6 X 2 . ( 5 X 4 + 7 X + 8)

= 30 x 6 +42 x 3 +48 x 2 p ( x) = 3 X 2 −6 X −1 , q ( x ) = 7 X +14 , thus p ( x ) . q ( x ) = ( 3 X 2 −6 X −1) . ( 7 X +14 ) = 21 x 3 + 42 x 2 −42 x 2 −84 x −14 = 21 x 3 −84 x −14

Exercise 2 If p ( x ) =1 +2 x −4 x 2 , q ( x ) =3 x −1 , r ( x ) =3 −2 x 2 , perform the followings 1. p ( x ) +q ( x ) −r ( x ) 2. p ( x ) +q ( x ) +r ( x ) 3. p ( x ) −q ( x ) −r ( x ) 4. 3 p ( x ) +q ( x ) 5. p ( x ) . q ( x ) . r ( x )

6. p ( x ). r ( x ) 7. [ p ( x ) ] 2 +q ( x ) 8. p ( x ) .2 q ( x ) 9. 2 p ( x ) +( q ( x ) . r ( x) ) 10. p ( x ) . ( q ( x ) + r ( x ) )

Exercise 3 State the matter below into

an X n +a( n −1) X n −1 +a( n −2 ) X n −2 +. . . +a0

( x −1 ) 2 ( x +4 )

1. 2. 3. 4. 5. 6. 7.

( x −5 ) 2 − ( 3 x 2 + x −1 ) ( x 2 +2 ) 2 + ( x −4 ) 3 ( x 3 +2 ) 2 ( x −4 ) ( x +2 ) ( x 2 +3 x −4 ) ( x +1) 3 − ( x 2 −4) ( 2 x 2 −x −5 ) −( x +2 ) 3

D. Equality of Polynomials f ( x ) = a n X n +a( n −1) X n −1 +a( n −2 ) X n −2 +. . . +a0 g ( x ) = bm X m +b( m−1) X m −1 +b( m −2 ) X m −2 +. . . +b0 f ( x ) ≡g ( x ) if

m = n, an = bm , a( n −1 ) = b ( m −1) , ........., a0 = b 0

Example 1. Find out the value of a if Solution

( x 2 −3 x +14 ) ≡( x −1 )( x −2) +3a

( x 2 −3 x +14 ) ≡( x −1 )( x −2) +3a

( x 2 −3 x +14 ) ≡( x 2 −3 x +2 +3a ) ( x 2 −3 x +14 ) ≡ x 2 −3 x +( 2 +3a )

Look at the formula above Thus 14 = 2 + 3a 12 = 3a 4 =a Thus value of a on ( x 2 −3 x +14 ) ≡( x −1 )( x −2) +3a is a = 4 2. Find out value of m and n 3x + 4 m n ≡ + x +1 x −2 x − x −2 2

Solution

3x + 4 m n ≡ + x +1 x −2 x − x −2 3x + 4 m ( x −2 ) n ( x +1) ⇔ ≡ + 2 ( x −1)( x − 2) x − x − 2 ( x +1)( x − 2) 2







3x + 4 m ( x − 2 ) + n ( x +1) ≡ ( x +1)( x − 2) x −x −2 2

3x + 4 m x − 2m + n x + n ≡ ( x +1)( x − 2) x −x −2 3x + 4 ( m + n ) x + ( − 2m + n ) ≡ ( x +1)( x − 2) x2 − x − 2 2

m + n =3 −2m +n = 4

so

Use elimination or substitute is got m =

−1 1 and n = 3 3 3

Exercise 4 Find out the value of a 1. ( x +1 )( x +3) −2a ≡x 2 +4 x −1 2. ( x 2 +1 ) ( x −5 ) +3a ≡x 3 −5 x 2 +x +16 3. x 4 +2 x 3 + x 2 +4 x −3 ≡ ( x 2 +2)( x 2 +2 x −1) + a Find out the value of m , n 1. 2 − nx −mx 2 −x 3 ≡( 1 −x )( x 2 −3 x +2) 2. 10 −18 x +7 x 2 −x 3 ≡( 3 −x ) 2 (1 − x ) +mx +n Find out the value of a, b or c a

b

4x

1. x −2 + x +2 ≡ x 2 −4 3 x +4

a

b

2. x 2 − x −2 ≡ x − 2 + x +1 2 x 2 +x +2 bx +c a ≡ − 2 3 1 −x x +x +1 1 −x

3.

E. Division on Polynomials If f(x) and g (x ) are polynomials and the degree of f(x) > the degree g (x ) > 1. There are polynomial h(x) and s(x) are fulfill f (x ) = g(x) . h ( x ) + s(x) f (x ) = g(x) . h ( x ) + s(x) f(x) , g( X), h(x),s(x) are called dividend , divisor, quotient, remainder Example E . 1 Polynomials by ( x – a ) 1. Divide f ( x ) =x 2 +4 x −8 by h( x ) =x −1 Solution x x

− 1 x

2

+ 5

+ 4x − 8

x2 − x 5x − 8 5x − 5 − 3

Hence x 2 +4 x −8 =( x −1)( x +5) −3 x 2 +4 x −8 is called dividend x −1

is called divisor

x +5

is called quotient

-3

is remainder

2. Divide f ( x ) = x 3 +2 x 2 + 3 x −5 by h( x ) =x −2 Solution x

− 2 x

3

x 2 + 4x + 11 + 2x 2 + 3x − 5

x3 − 2x 2 4x2 + 3x 4x2 − 8x 1 1x − 5

− −

11 x − 22 − 17

Hence x 3 + 2 x 2 + 3 x −5 ≡ ( x − 2)( x 2 +4 x +11) +17

x

3

+2 x 2 +3 x −5

x −2

is called dividend is called divisor

x 2 +4 x +11

is called quotient

17

is remainder

Exercise 5 Find out the quotient and remainder at division of polynomials below : 1. 3 x 2 −2 x +1 : x + 3 2. 2 x 3 −5 x 2 +4 x +3 : x +1 3. x 4 +3 x 3 +4 x 2 −x +1 : x −1 4. 4 x 4 −1 : 2 x −1 5. 3 x 3 − 2 x 2 + 6 : x − 2 6. 5 x 5 − 2 x 3 + 4 x −1 : x 3 + 2 x −1 7. x 5 −3 x 3 +4 x 2 −1 : x 2 − x +3 8. − 2 x 5 + 6 x 4 − 3 x 3 + 6 : x 2 − 2 x + 3 9. 4 x 3 −3 x 2 −6 x −5 : x 2 +x Find p (x ) in each equation below : 1. 3 x 3 −x 2 +6 ≡ ( x −2 ) . p ( x ) +26

2. 2 x 5 − x 3 +3 x +4 ≡(16 x +64) +( x 2 − x +4). p ( x ) 3. ( x −1 ). p ( x ) +7 ≡ x 3 +4 x 2 − 2 x +4 4. x 4 −2 x 3 +x 2 −5 x +10 ≡ ( x −1) . p ( x ) +5 F. Horner’s Method F . 1 Polynomial is divided by ( x – a ) 1. a. f ( x) = ( x 3 +6 x 2 +3 x −15 ) divided by ( x +3 ) Solution Method 1 x 2 + 3x − 6 x + 3 x3 + 6 x 2 + 3 x −15 x3 + 3 x2 3 x2 + 3 x 3x 2 + 9 x − 6 x − 15

− −

− 6 x −18 − 3

x

3

is called dividend

+6 x 2 +3 x −15

x −3

is called divisor is called quotient

x 2 +3 x −6

3

is remainder

Method 2 Horner method b. f ( x) = ( x 3 +6 x 2 +3 x −15 ) divided by ( x – 3 ) 3

1

1

6

3

-15

-3

-9

18

3

-6

3 = remainder

is called dividend

+6 x 2 +3 x −15

3

x

x −3

is called divisor is called quotient is remainder

x 2 +3 x −6

3

2. f ( x) = (2 x 4 −5 x 2 +2 x −2) divided by ( x −1 ) Method 1 2x 3 + 2 x 2 − 3 x −1 x −1 2 x 4 − 5 x 2 +2 x −2 2 x 4 −2 x 3 2 x 3 −5 x 2



2 x3 − 2 x2 − 3x 2 + 2x



− 3x 2 +3 x − − x −2 −x +1 − −3

2x

4

is called dividend

−5 x 2 +2 x − 2

x −1

is called divisor

2 x 3 +2 x 2 −3 x −1

is called quotient

-3

is remainder

Method 2 1

2

2

2x

4

0

-5

2

-2

2

2

-3

-1

2

-3

-1

-3

−5 x 2 +2 x − 2

x −1

is called dividend is called divisor

is called quotient

2 x 3 +2 x 2 −3 x −1

-3

is remainder

F . 2 Polynomial is divided by ( ax – b) Polynomials f(x) divided by ( ax – b ) b a

Thus f ( x ) = h( x )( x − ) + s ( x ) h ( x) = quotient s ( x) =remainders

: divide 2 x 3 + 9 x 2 −6 x +4 by 2 x +1

Example x 2 + 4x − 5 2x +1 2x 3 + 9 x 2 − 6x + 4 2x 3 + x 2 8x 2 − 6x



8x 2 + 4x − 10 x + 4



− 10 x 2 − 5 − 9

Horner’s Method -½

2

9

-6

4

-1

-4

5

8

- 10

9

2 2x

3

is called dividend

+9 x 2 −6 x +2 2 x +1

is called divisor

2 x 2 +8 x 2 −10 = x 2 +4 x 2 −5 2

9

is called quotient is remainder

F . 3 Polynomial is divided by ( x – a)( x – b ) Example Find the quotient and remainders when 2 x 4 + 6 x 3 − 5 x 2 + 3 x − 7 is divided by ( x – 1 )( x + 3)

Solution 1 2 x2 + 2 x − 3 x 2 + 2 x − 3 2x 4 + 6 x 3 − 5x 2 + 3x − 7 2x 4 + 4 x 3 − 6x 2 − 2 x3 + x2 + 3 x 2 x3 + 4 x 2 − 6 x − − 3x 2 + 9 x − 7 − 3x 2 − 6x + 9 15 x −16

Solution 2 Horner ‘s Method 1

2

2 -3 2

6

-5

3

-7

2

8

3

6

8

3

6

-1 = S1

-6

-6

9

2

-3

15 = s 2

S(x) = ( x – 1 ) s 2 + S1 = ( x – 1 ) 15 + ( - 1 ) = (15 x – 15 – 1 ) =15 x – 16 Or -3

2

2 1 2

6

-5

3

-7

-6

0

15

-54

0

-5

18

- 61 = S1

2

2

-3

2

-3

15 = S 2

S ( x ) = ( x + 3 ) S 2 + S1 = ( x +3 ) .15 – 61 = 15x + 45 – 61 = 15 x – 16 Exercise 6 Find the remainders and quotient P (x) divided by q ( x ) using Horner ‘s Method 1. x 4 +3 x 3 +4 x 2 −x +1 : x −1 2. 2 x 4 +6 x 3 4 x 2 −6 x +1 : x −3

3. x 4 −2 x 3 +5 x 2 + 4 x +3 : x + 2 4. 4 x 4 + x 2 −3 x − 7 : x +1 5. x 4 +4 x 3 +8 x 2 −4 x +1 : 2 x −1 6. 3 x 5 −4 x 4 +4 x 3 −7 x 2 +1 : 3 x −1 7. 2 x 4 +4 x 3 +8 x 2 −4 x +1 : x 2 −x −2 8. 2 x 4 − 3 x 3 − 5 x 2 + 6 x + 4 : ( x 2 + 3 x + 2) 9. x 5 +3x 3 −6 x 2 + x −3 : ( x 2 −2 x −8) 10. x 6 −4 x 2 −x +3 : ( x 2 +3 x −4 )

If f(x) and g(x) are polynomials and degree of f( x ) > g(x) than : 1. Degree of g(x) is 1 ,the remainders of f(x) divided by g(x) is s(x), and degree of s(x) is zero 2. Degree of g(x) is 2 ,the remainders of f(x) divided by g(x) is s(x), and degree of s(x) is one 3. Degree of g(x) is 3 ,the remainders of f(x) divided by g(x) is s(x), and degree of s(x) is two 4.

G. The Remainder Theorem Theorem : If polynomial p(x) is divided by ( x – a ) the remainder is S = P ( a ) p ( x ) =( x −a ) . h ( x ) + s ( x −a ) =0 ⇒x =a Substitute a for p ( x ) =( x −a ) . h ( x ) + s p ( a ) =( a −a ) . h ( a ) + s ⇒ p(a)= s

Corollaries 1. If p(x) is divisible by x – a , then the remainders is 0, that is P ( a ) = 0 2. If p (x) is divisible by ( x – a ), ( x – b ), ( x – c ) than is divisible by ( x – a ), ( x – b ), ( x – c ) separately 3. If p ( x ) is divisible (x – a ) then ( x – a ) is factor of p ( x ) and x = a is root of p ( x ) Example 1. Find the remainders if p ( x ) = 2 x 4 − 2 x 3 +5 x 2 −4 x +5 divided by ( x – 1 ) Solution

1

2

-2

5

-4

5

2

2

0

5

1

0

5

1

6

=S=p(1)

2. Find a if p ( x ) = x 4 −x 2 + ax +2 divisible by ( x + 2 ) Solution -2

1

1

So

0

-1

a

2

-2

4

-6

12 – 2a

-2

3

- 6 +a

14 – 2a = S = 0

12 – 2a = 0 a =6

3. If the remainders is 3x – 5, when p ( x ) = x 3 −mx 2 +2 x +4 is divided by x 2 −1 . Find of m. Solution If p ( x ) = x 3 −mx 2 +2 x +4 is divided by x 2 −1 . so 1. x 3 −mx 2 +2 x +4 = ( x −1)( x +1) h( x) +3x −5

13 −m(1) 2 +2.1 +4 =(1 −1 )(1 +1) h(1) + 3.1 − 5 7 −m = −2 m =9

Or 2.

x 3 −mx 2 +2 x +4 = ( x −1)( x +1) h( x ) +3 x −5

( −1) 3 −m( −1) 2 +2.( −1) +4 =( −1 −1 )( −1 +1) h( −1) + 3.( −1 ) − 5 1 −m = −8 m =9

So value of m is 9 4. f(x) is polynomials, 5 is remainder if f(x) divided by ( x – 2).and – 10 is remainders if f(x) divided by ( x + 3). Find remainder if f(x) divided by ( x 2 +x −6 ) Solution f(x) = ( x 2 +x −6 ) h(x) + s(x) f(x) = ( x 2 +x −6 ) h(x) + ( ax + b )

f(x) f(2) 5 5

= ( x +3)( x −2 ) h(x) + (ax + b ) = ( 2 +3)(2 −2 ) h(2) + (2a + b ) = 0 + (2a + b ) = 2a + b ……………… ⇒ ( i )

f(-3) = ( −3 +3)(−3 −2 ) h(-3) + (-3a + b ) f(-3) = 0 + (-3a + b ) - 10 = - 3a + b …………………. ⇒

( ii )

( i ) and ( ii ) 5 = 2a + b - 10 = - 3a + b

thus a = 3 , b = - 1

2 Thus the remainders of f(x) when divided by ( x +x −6 ) is 3 x - 1

Exercise 6 Solve the following problems below 1. When p ( x) =x 3 +3 x 2 − mx +n is divided by ( x – 1 ) and ( x – 2 ) the remainders are 3 and 9 respectively. Find value of m and n 2. When p ( x ) =3 x 3 +2 x 2 − 4 x +n is divided by ( x + 1 ) the remainder is 7. find the value of n 3. x 3 − 4 x 2 + m x + n ≡ ( x 2 − 3x + 2)h( x) + ( 6 − 2 x) . Find the value of m and n 4. If the remainders are 3 and 21 when p(x) is divided by x – 1 and x + 2 respectively, Find the remainders when p(x) is divided by ( x 2 +x −2 ) 5. f(x) is polynomials. When f(x) divided by ( x 2 − x ) has the remainders 4 – 3x and when f(x) divided by ( x 2 + x ) has the remainders (4 – x ). Find the remainders if f(x) divided by ( x 2 −1 ) 6. If the remainders are – 1, - 12 , 31 when p(x) divided by ( x – 1 ), (x – 2 ), ( x – 3 ) respectively, Find the remainders when p(x) id divided by ( x – 1 ). (x – 2 ). ( x – 3 ). 7. When p ( x ) =ax 5 −2 x 4 + 3 x 3 +4 x 2 +bx −6 divided by ( x – 2 ) , ( x- 3 ) has remainders 12 and 159. Find the remainders when p(x) divided by ( x – 1 )(x – 2 )(x – 3) 8. If f ( x) =19( x 21 −x 8 +2) −15( x17 −4 x 3 + 3 ) find remainder if f(x) divided by a. ( x – 1 ) b. ( x + 1) c. d. 9. fff 10. fff 11. fff 12.

H. kkk I. kkk J. kkk K. kkk L. kkk M. kkk N. kkk O. ;;; P. ;;; Q. ;;; R. ;;; S. ;;; T. ;;; U. ;;; V. ;;; W. Value of polynomial

Related Documents

Polynomials
June 2020 9
Polynomials
April 2020 9
Convex Polynomials
December 2019 25
Factoring Polynomials
November 2019 18
Pc Polynomials
May 2020 13