POLYNOMIALS A. Look at the algebra form below : 1. 2. 3.
3X 2X 6X
+5 X 3 −2 −7 X +4 5 −X 4 + 3 X 3 − 6 X 4
3
2
+10 X −1
Algebra form above are called POLYNOMIALS Degree of polynomials is the index of the highest power. Thus in the expression ( 1 ) above the polynomial is of degree 4 while in ( 2 ) the polynomial is of degree 3 and in ( 3 ) the polynomial is of degree 5. In a polynomial the power of variable is always a positive integer. an X n +a( n −1) X n −1 +a( n −2 ) X n −2 + . . . + a2 X 2 + a1 X +ao , an ≠ 0
is called the
polynomials in X of degree n Exercise 1 Find the degree , variable , coefficient of polynomials below : 1. 6 X 4 + X 3 +3 X 2 −6 X −1 2. 7 Y 7 +5Y 6 + 3Y 3 − Y 2 +3 Y −1 3. 3 a 8 −a 4 + 3a 2 − a +1 4. b 6 +2b 4 − 3b 3 − 6 b 2 +13b −1 5. 4 X 5 −1 6. 6 z 15 −z 14 + 3 z 10 − 6 z 4 +10 z −1 7. 6 +b −b 4 + 3b 5 − 11b 7 +10 b 9 8. 2 X 4Y 3 + 5 X 3Y 2 +3 X 2Y −6 X −1 9. 6a 5 b 6 + a 3 b 4 +2 a 2 b −7 a −14 10. 2a 4 b 4 −2 a 3 b 3 +4 ab 2 −5 b +11 B. Value of polynomials If a polynomial is stated by f(x) and X is replaced by a number ( a ) thus f ( a ) is value of f(x) If f ( x ) = 3 X 2 +7 X +1 , so value of f ( 1 ) = 3 (1) 2 +7 (1) +1 = 11
Exercise 1
Find out value of each polynomials below 1. 2. 3. 4. 5. 6. 7. 8.
f ( x ) = 2 X 4 + X 3 +−3 X 2 −6 X −1 , if x = 2 f ( x ) = −3 X 5 + 7 X 3 −4 X 2 + X −5 , if x = - 1 f ( x ) = 5 X 2 −6 X + 2 , if x = 4 f ( X ) = X 6 −2 X 4 +3 X 2 − X +2 , if x = 3 f ( a ) = 5a 4 −2a 3 +4a 2 −6a −5 , if a = -2 f ( b ) = 3b 5 + b 3 −2b 2 −5 b −4 , if b = - 1 f ( x , y ) = 2 X 4Y 3 + 5 X 3Y 2 +3 X 2Y −6 X −1 , if x = -1 , y = 1 f ( a, b ) = 6a 5 b 6 + a 3 b 4 +2 a 2 b −7 a −14 , if a = 2, b = - 1
C. Operation on Polynomials 1. Addition 2. Subtraction 3. Multiplication Addition n n −1 +a ( n −2 ) X n −2 +. . . +a 0 , a n ≠ 0 and If f ( x ) = a n X +a ( n −1) X h ( x ) = bm X
m
+b( m −1) X
f ( x ) + g ( x ) = bm X
m
m −1
+b( m −2 ) X
m −2
+. . . +b0 , bm ≠ 0 and m > n thus + . . . + ( a 2 + b2 ) X 2 + ( a1 +b1 ) X +( a 0 + b0 )
Example Add
( 6X
4
+X
3
+3 X
2
−6 X −1 ) and ( 5 X
4
− 3 X 3 +6 X
2
+ 7 X +14 )
Solution 6 X 4 + X 3 +3 X 2 −6 X −1 5 X 4 −3 X 3 +6 X 2 + 7 X +14 11X 4 − 2 X 3 +9 X 2 + X +13
+
Subtraction n n −1 +a ( n −2 ) X n −2 +. . . +a 0 , a n ≠ 0 and If f ( x ) = a n X +a ( n −1) X h ( x ) = bm X
m
+b( m −1) X
m f ( x ) - g ( x ) = − bm X
m −1
+b( m −2 ) X
m −2
+. . . +b0 , bm ≠ 0 and m > n thus + . . . + ( a 2 − b2 ) X 2 + ( a1 −b1 ) X +( a0 − b0 )
Example If p ( x) = 6 X 4 + X 3 +3 X 2 −6 X −1 ) and q ( x ) = 5 X find p ( x ) −q ( x ) Solution 6X
4
+X
3
+3 X
2
−6 X −1
4
− X 3 +6 X 2 + 7 X +14
5 X 4 − 3 X 3 +6 X 2 + 7 X +14 X 4 + 4 X 3 −3 X 2 −13 X −15
Find
-
q ( x ) −p ( x )
Solution 5 X 4 − 3 X 3 +6 X 2 + 7 X +14 6 X 4 + X 3 +3 X 2 −6 X −1 − X 4 − 4 X 3 +3 X 2 +13 X +15
-
Multiplication To multiply two polynomials, P ( x ) , Q ( x ) , each term of P ( x ) is multiplied by each term of Q(X) Examine followings 1. Given p ( x) = a x n and q ( x) =b x m we have) p ( x ) . q (x) = a x n b x m . = ab x m +n m m −1 +b( m−2 ) X m −2 +. . . +b0 2. Given p ( x) = a x n and q ( x ) = bm X +b( m −1) X n m m −1 +. . . + b0 ) We have p ( x) . q (x) = a x ( bm x + b( m−1) x n n −1 +a( n −2 ) X n −2 +. . . +a0 and 3. given p ( x ) = a n X +a( n−1) X
q ( x ) =bm X m +b( m−1) X m −1 +b( m−2 ) X m −2 +. . . +b0 we have
Example 1.
p ( x ) =2 X 3 , q ( x ) = 4 x 5 , thus p ( x ).q ( x ) =2 x3 . 4 x 5 = 8 x8
2.
3.
p ( x ) =6 X 2 , q ( x ) = 5 X 4 + 7 X + 8 , thus p ( x ) . q ( x ) = 6 X 2 . ( 5 X 4 + 7 X + 8)
= 30 x 6 +42 x 3 +48 x 2 p ( x) = 3 X 2 −6 X −1 , q ( x ) = 7 X +14 , thus p ( x ) . q ( x ) = ( 3 X 2 −6 X −1) . ( 7 X +14 ) = 21 x 3 + 42 x 2 −42 x 2 −84 x −14 = 21 x 3 −84 x −14
Exercise 2 If p ( x ) =1 +2 x −4 x 2 , q ( x ) =3 x −1 , r ( x ) =3 −2 x 2 , perform the followings 1. p ( x ) +q ( x ) −r ( x ) 2. p ( x ) +q ( x ) +r ( x ) 3. p ( x ) −q ( x ) −r ( x ) 4. 3 p ( x ) +q ( x ) 5. p ( x ) . q ( x ) . r ( x )
6. p ( x ). r ( x ) 7. [ p ( x ) ] 2 +q ( x ) 8. p ( x ) .2 q ( x ) 9. 2 p ( x ) +( q ( x ) . r ( x) ) 10. p ( x ) . ( q ( x ) + r ( x ) )
Exercise 3 State the matter below into
an X n +a( n −1) X n −1 +a( n −2 ) X n −2 +. . . +a0
( x −1 ) 2 ( x +4 )
1. 2. 3. 4. 5. 6. 7.
( x −5 ) 2 − ( 3 x 2 + x −1 ) ( x 2 +2 ) 2 + ( x −4 ) 3 ( x 3 +2 ) 2 ( x −4 ) ( x +2 ) ( x 2 +3 x −4 ) ( x +1) 3 − ( x 2 −4) ( 2 x 2 −x −5 ) −( x +2 ) 3
D. Equality of Polynomials f ( x ) = a n X n +a( n −1) X n −1 +a( n −2 ) X n −2 +. . . +a0 g ( x ) = bm X m +b( m−1) X m −1 +b( m −2 ) X m −2 +. . . +b0 f ( x ) ≡g ( x ) if
m = n, an = bm , a( n −1 ) = b ( m −1) , ........., a0 = b 0
Example 1. Find out the value of a if Solution
( x 2 −3 x +14 ) ≡( x −1 )( x −2) +3a
( x 2 −3 x +14 ) ≡( x −1 )( x −2) +3a
( x 2 −3 x +14 ) ≡( x 2 −3 x +2 +3a ) ( x 2 −3 x +14 ) ≡ x 2 −3 x +( 2 +3a )
Look at the formula above Thus 14 = 2 + 3a 12 = 3a 4 =a Thus value of a on ( x 2 −3 x +14 ) ≡( x −1 )( x −2) +3a is a = 4 2. Find out value of m and n 3x + 4 m n ≡ + x +1 x −2 x − x −2 2
Solution
3x + 4 m n ≡ + x +1 x −2 x − x −2 3x + 4 m ( x −2 ) n ( x +1) ⇔ ≡ + 2 ( x −1)( x − 2) x − x − 2 ( x +1)( x − 2) 2
⇔
⇔
⇔
3x + 4 m ( x − 2 ) + n ( x +1) ≡ ( x +1)( x − 2) x −x −2 2
3x + 4 m x − 2m + n x + n ≡ ( x +1)( x − 2) x −x −2 3x + 4 ( m + n ) x + ( − 2m + n ) ≡ ( x +1)( x − 2) x2 − x − 2 2
m + n =3 −2m +n = 4
so
Use elimination or substitute is got m =
−1 1 and n = 3 3 3
Exercise 4 Find out the value of a 1. ( x +1 )( x +3) −2a ≡x 2 +4 x −1 2. ( x 2 +1 ) ( x −5 ) +3a ≡x 3 −5 x 2 +x +16 3. x 4 +2 x 3 + x 2 +4 x −3 ≡ ( x 2 +2)( x 2 +2 x −1) + a Find out the value of m , n 1. 2 − nx −mx 2 −x 3 ≡( 1 −x )( x 2 −3 x +2) 2. 10 −18 x +7 x 2 −x 3 ≡( 3 −x ) 2 (1 − x ) +mx +n Find out the value of a, b or c a
b
4x
1. x −2 + x +2 ≡ x 2 −4 3 x +4
a
b
2. x 2 − x −2 ≡ x − 2 + x +1 2 x 2 +x +2 bx +c a ≡ − 2 3 1 −x x +x +1 1 −x
3.
E. Division on Polynomials If f(x) and g (x ) are polynomials and the degree of f(x) > the degree g (x ) > 1. There are polynomial h(x) and s(x) are fulfill f (x ) = g(x) . h ( x ) + s(x) f (x ) = g(x) . h ( x ) + s(x) f(x) , g( X), h(x),s(x) are called dividend , divisor, quotient, remainder Example E . 1 Polynomials by ( x – a ) 1. Divide f ( x ) =x 2 +4 x −8 by h( x ) =x −1 Solution x x
− 1 x
2
+ 5
+ 4x − 8
x2 − x 5x − 8 5x − 5 − 3
Hence x 2 +4 x −8 =( x −1)( x +5) −3 x 2 +4 x −8 is called dividend x −1
is called divisor
x +5
is called quotient
-3
is remainder
2. Divide f ( x ) = x 3 +2 x 2 + 3 x −5 by h( x ) =x −2 Solution x
− 2 x
3
x 2 + 4x + 11 + 2x 2 + 3x − 5
x3 − 2x 2 4x2 + 3x 4x2 − 8x 1 1x − 5
− −
11 x − 22 − 17
Hence x 3 + 2 x 2 + 3 x −5 ≡ ( x − 2)( x 2 +4 x +11) +17
x
3
+2 x 2 +3 x −5
x −2
is called dividend is called divisor
x 2 +4 x +11
is called quotient
17
is remainder
Exercise 5 Find out the quotient and remainder at division of polynomials below : 1. 3 x 2 −2 x +1 : x + 3 2. 2 x 3 −5 x 2 +4 x +3 : x +1 3. x 4 +3 x 3 +4 x 2 −x +1 : x −1 4. 4 x 4 −1 : 2 x −1 5. 3 x 3 − 2 x 2 + 6 : x − 2 6. 5 x 5 − 2 x 3 + 4 x −1 : x 3 + 2 x −1 7. x 5 −3 x 3 +4 x 2 −1 : x 2 − x +3 8. − 2 x 5 + 6 x 4 − 3 x 3 + 6 : x 2 − 2 x + 3 9. 4 x 3 −3 x 2 −6 x −5 : x 2 +x Find p (x ) in each equation below : 1. 3 x 3 −x 2 +6 ≡ ( x −2 ) . p ( x ) +26
2. 2 x 5 − x 3 +3 x +4 ≡(16 x +64) +( x 2 − x +4). p ( x ) 3. ( x −1 ). p ( x ) +7 ≡ x 3 +4 x 2 − 2 x +4 4. x 4 −2 x 3 +x 2 −5 x +10 ≡ ( x −1) . p ( x ) +5 F. Horner’s Method F . 1 Polynomial is divided by ( x – a ) 1. a. f ( x) = ( x 3 +6 x 2 +3 x −15 ) divided by ( x +3 ) Solution Method 1 x 2 + 3x − 6 x + 3 x3 + 6 x 2 + 3 x −15 x3 + 3 x2 3 x2 + 3 x 3x 2 + 9 x − 6 x − 15
− −
− 6 x −18 − 3
x
3
is called dividend
+6 x 2 +3 x −15
x −3
is called divisor is called quotient
x 2 +3 x −6
3
is remainder
Method 2 Horner method b. f ( x) = ( x 3 +6 x 2 +3 x −15 ) divided by ( x – 3 ) 3
1
1
6
3
-15
-3
-9
18
3
-6
3 = remainder
is called dividend
+6 x 2 +3 x −15
3
x
x −3
is called divisor is called quotient is remainder
x 2 +3 x −6
3
2. f ( x) = (2 x 4 −5 x 2 +2 x −2) divided by ( x −1 ) Method 1 2x 3 + 2 x 2 − 3 x −1 x −1 2 x 4 − 5 x 2 +2 x −2 2 x 4 −2 x 3 2 x 3 −5 x 2
−
2 x3 − 2 x2 − 3x 2 + 2x
−
− 3x 2 +3 x − − x −2 −x +1 − −3
2x
4
is called dividend
−5 x 2 +2 x − 2
x −1
is called divisor
2 x 3 +2 x 2 −3 x −1
is called quotient
-3
is remainder
Method 2 1
2
2
2x
4
0
-5
2
-2
2
2
-3
-1
2
-3
-1
-3
−5 x 2 +2 x − 2
x −1
is called dividend is called divisor
is called quotient
2 x 3 +2 x 2 −3 x −1
-3
is remainder
F . 2 Polynomial is divided by ( ax – b) Polynomials f(x) divided by ( ax – b ) b a
Thus f ( x ) = h( x )( x − ) + s ( x ) h ( x) = quotient s ( x) =remainders
: divide 2 x 3 + 9 x 2 −6 x +4 by 2 x +1
Example x 2 + 4x − 5 2x +1 2x 3 + 9 x 2 − 6x + 4 2x 3 + x 2 8x 2 − 6x
−
8x 2 + 4x − 10 x + 4
−
− 10 x 2 − 5 − 9
Horner’s Method -½
2
9
-6
4
-1
-4
5
8
- 10
9
2 2x
3
is called dividend
+9 x 2 −6 x +2 2 x +1
is called divisor
2 x 2 +8 x 2 −10 = x 2 +4 x 2 −5 2
9
is called quotient is remainder
F . 3 Polynomial is divided by ( x – a)( x – b ) Example Find the quotient and remainders when 2 x 4 + 6 x 3 − 5 x 2 + 3 x − 7 is divided by ( x – 1 )( x + 3)
Solution 1 2 x2 + 2 x − 3 x 2 + 2 x − 3 2x 4 + 6 x 3 − 5x 2 + 3x − 7 2x 4 + 4 x 3 − 6x 2 − 2 x3 + x2 + 3 x 2 x3 + 4 x 2 − 6 x − − 3x 2 + 9 x − 7 − 3x 2 − 6x + 9 15 x −16
Solution 2 Horner ‘s Method 1
2
2 -3 2
6
-5
3
-7
2
8
3
6
8
3
6
-1 = S1
-6
-6
9
2
-3
15 = s 2
S(x) = ( x – 1 ) s 2 + S1 = ( x – 1 ) 15 + ( - 1 ) = (15 x – 15 – 1 ) =15 x – 16 Or -3
2
2 1 2
6
-5
3
-7
-6
0
15
-54
0
-5
18
- 61 = S1
2
2
-3
2
-3
15 = S 2
S ( x ) = ( x + 3 ) S 2 + S1 = ( x +3 ) .15 – 61 = 15x + 45 – 61 = 15 x – 16 Exercise 6 Find the remainders and quotient P (x) divided by q ( x ) using Horner ‘s Method 1. x 4 +3 x 3 +4 x 2 −x +1 : x −1 2. 2 x 4 +6 x 3 4 x 2 −6 x +1 : x −3
3. x 4 −2 x 3 +5 x 2 + 4 x +3 : x + 2 4. 4 x 4 + x 2 −3 x − 7 : x +1 5. x 4 +4 x 3 +8 x 2 −4 x +1 : 2 x −1 6. 3 x 5 −4 x 4 +4 x 3 −7 x 2 +1 : 3 x −1 7. 2 x 4 +4 x 3 +8 x 2 −4 x +1 : x 2 −x −2 8. 2 x 4 − 3 x 3 − 5 x 2 + 6 x + 4 : ( x 2 + 3 x + 2) 9. x 5 +3x 3 −6 x 2 + x −3 : ( x 2 −2 x −8) 10. x 6 −4 x 2 −x +3 : ( x 2 +3 x −4 )
If f(x) and g(x) are polynomials and degree of f( x ) > g(x) than : 1. Degree of g(x) is 1 ,the remainders of f(x) divided by g(x) is s(x), and degree of s(x) is zero 2. Degree of g(x) is 2 ,the remainders of f(x) divided by g(x) is s(x), and degree of s(x) is one 3. Degree of g(x) is 3 ,the remainders of f(x) divided by g(x) is s(x), and degree of s(x) is two 4.
G. The Remainder Theorem Theorem : If polynomial p(x) is divided by ( x – a ) the remainder is S = P ( a ) p ( x ) =( x −a ) . h ( x ) + s ( x −a ) =0 ⇒x =a Substitute a for p ( x ) =( x −a ) . h ( x ) + s p ( a ) =( a −a ) . h ( a ) + s ⇒ p(a)= s
Corollaries 1. If p(x) is divisible by x – a , then the remainders is 0, that is P ( a ) = 0 2. If p (x) is divisible by ( x – a ), ( x – b ), ( x – c ) than is divisible by ( x – a ), ( x – b ), ( x – c ) separately 3. If p ( x ) is divisible (x – a ) then ( x – a ) is factor of p ( x ) and x = a is root of p ( x ) Example 1. Find the remainders if p ( x ) = 2 x 4 − 2 x 3 +5 x 2 −4 x +5 divided by ( x – 1 ) Solution
1
2
-2
5
-4
5
2
2
0
5
1
0
5
1
6
=S=p(1)
2. Find a if p ( x ) = x 4 −x 2 + ax +2 divisible by ( x + 2 ) Solution -2
1
1
So
0
-1
a
2
-2
4
-6
12 – 2a
-2
3
- 6 +a
14 – 2a = S = 0
12 – 2a = 0 a =6
3. If the remainders is 3x – 5, when p ( x ) = x 3 −mx 2 +2 x +4 is divided by x 2 −1 . Find of m. Solution If p ( x ) = x 3 −mx 2 +2 x +4 is divided by x 2 −1 . so 1. x 3 −mx 2 +2 x +4 = ( x −1)( x +1) h( x) +3x −5
13 −m(1) 2 +2.1 +4 =(1 −1 )(1 +1) h(1) + 3.1 − 5 7 −m = −2 m =9
Or 2.
x 3 −mx 2 +2 x +4 = ( x −1)( x +1) h( x ) +3 x −5
( −1) 3 −m( −1) 2 +2.( −1) +4 =( −1 −1 )( −1 +1) h( −1) + 3.( −1 ) − 5 1 −m = −8 m =9
So value of m is 9 4. f(x) is polynomials, 5 is remainder if f(x) divided by ( x – 2).and – 10 is remainders if f(x) divided by ( x + 3). Find remainder if f(x) divided by ( x 2 +x −6 ) Solution f(x) = ( x 2 +x −6 ) h(x) + s(x) f(x) = ( x 2 +x −6 ) h(x) + ( ax + b )
f(x) f(2) 5 5
= ( x +3)( x −2 ) h(x) + (ax + b ) = ( 2 +3)(2 −2 ) h(2) + (2a + b ) = 0 + (2a + b ) = 2a + b ……………… ⇒ ( i )
f(-3) = ( −3 +3)(−3 −2 ) h(-3) + (-3a + b ) f(-3) = 0 + (-3a + b ) - 10 = - 3a + b …………………. ⇒
( ii )
( i ) and ( ii ) 5 = 2a + b - 10 = - 3a + b
thus a = 3 , b = - 1
2 Thus the remainders of f(x) when divided by ( x +x −6 ) is 3 x - 1
Exercise 6 Solve the following problems below 1. When p ( x) =x 3 +3 x 2 − mx +n is divided by ( x – 1 ) and ( x – 2 ) the remainders are 3 and 9 respectively. Find value of m and n 2. When p ( x ) =3 x 3 +2 x 2 − 4 x +n is divided by ( x + 1 ) the remainder is 7. find the value of n 3. x 3 − 4 x 2 + m x + n ≡ ( x 2 − 3x + 2)h( x) + ( 6 − 2 x) . Find the value of m and n 4. If the remainders are 3 and 21 when p(x) is divided by x – 1 and x + 2 respectively, Find the remainders when p(x) is divided by ( x 2 +x −2 ) 5. f(x) is polynomials. When f(x) divided by ( x 2 − x ) has the remainders 4 – 3x and when f(x) divided by ( x 2 + x ) has the remainders (4 – x ). Find the remainders if f(x) divided by ( x 2 −1 ) 6. If the remainders are – 1, - 12 , 31 when p(x) divided by ( x – 1 ), (x – 2 ), ( x – 3 ) respectively, Find the remainders when p(x) id divided by ( x – 1 ). (x – 2 ). ( x – 3 ). 7. When p ( x ) =ax 5 −2 x 4 + 3 x 3 +4 x 2 +bx −6 divided by ( x – 2 ) , ( x- 3 ) has remainders 12 and 159. Find the remainders when p(x) divided by ( x – 1 )(x – 2 )(x – 3) 8. If f ( x) =19( x 21 −x 8 +2) −15( x17 −4 x 3 + 3 ) find remainder if f(x) divided by a. ( x – 1 ) b. ( x + 1) c. d. 9. fff 10. fff 11. fff 12.
H. kkk I. kkk J. kkk K. kkk L. kkk M. kkk N. kkk O. ;;; P. ;;; Q. ;;; R. ;;; S. ;;; T. ;;; U. ;;; V. ;;; W. Value of polynomial