NTU50235100
PIEZOELECTRIC TRANSDUCERS 11/29
周元昉
NTU50235100
•Introduction •Electrostatics •Piezoelectricity •Signal conditioning Pierre and Jacques Curie (1880)
•Applications 11/29
周元昉
NTU50235100
Introduction •1880 Pierre and Jacques Curie: discovered the piezoelectric effect - mechanical stress induces surface electric charges •1881 Lippman: predicted the converse piezoelectric effect - electric field induces mechanical deformation •Lord Kelvin, Pockels, Duhem, Voigt, R. E. Gibbs, Max Born: established theories and models •Langevin: device for detecting submarines in World War I •1917 A. M. Nicolson: loud speakers, microphones, phonograph pickups, crystal oscillator •1921 Cady: Quartz crystal oscillators (GT cut) •1942 W. P. Mason: frequency filters •1950s~1960s R. D. Mindlin, H. F. Tiersten: vibration of piezoelectric plates 11/29
周元昉
NTU50235100
Eve
11/29
周元昉
NTU50235100
• Comparison of sensing principles
11/29
Principle
Strain Sensitivity (V/µ*)
Threshold (µ*)
Span to threshold ratio
Piezoelectric
5.0
0.00001
100.000.000
Piezoresistive
0.0001
0.0001
2.500.000
Inductive
0.001
0.0005
2.000.000
Capacitive
0.005
0.0001
750.000
周元昉
NTU50235100
Applications High-voltage sources Spark source Transformer
Sensors Microphone Contact microphone Microbalance Accelerometer Hydrophone
Actuators Loudspeaker Ultrasonic Acousto-optic modulator Inkjet head Fuel injector
Frequency standard Quartz resonator 11/29
周元昉
NTU50235100
Electrostatics •Electric field
F: force q: charge E: electric field
F = qE
- Coulomb’s law F = kq1q2
x1 − x 2
3
x1 − x 2
- Electric field of a point charge E = kq1
11/29
x − x1 x − x1
3
周元昉
NTU50235100
- Electric field due to a charge density E = k ∫ ρ (x′)
x − x′ x − x′
3
ρ ( x)
dx ′
N ⋅ m2 ⎞ k≡ = 10 c = 8.988 × 10 ⎜ 2⎟ 4πε 0 ⎝ Coul ⎠ 1
9⎛
−7 2
ε 0 = 8.8542 × 10
−12 ⎛
Coul 2 ⎞ ⎜ ⎟ : dielectric constant in vacuum ⎝ N ⋅ m2 ⎠
- Gauss’s law ∫ E ⋅ nds =
1
ε0
∇⋅E =
∫V ρ (x)dx
ρ ε0
- Scalar potential E = −∇ϕ
,
ϕ (x) =
1
ρ (x′)
4πε 0 ∫ x − x ′
dx ′
,
∇×E=0
ϕ : electrostatic potential 11/29
周元昉
NTU50235100
- Poisson and Laplace equations ∇⋅E =
ρ ε0
∇ ⋅ ( −∇ϕ ) = ∇ 2ϕ = −
ρ ε0
In regions of space where there is no charge density
ρ : Poisson equation ε0
∇ 2ϕ = 0 : Laplace equation
- Boundary conditions Dirichlet B.C.
ϕ
Neumann B.C.
∂ϕ specified ∂n
specified
- Discontinuities in the field and potential ( E2 − E1 ) ⋅ n =
σ ε0
;
ϕ1 = ϕ 2
σ : surface - charge density ( Coul/m2 ) 11/29
周元昉
NTU50235100
- Conductors Equipotential region, equipotential surface E1 = 0 ; E 2 = −∇ϕ ∇ϕ ⋅ n =
∂ϕ ∂ϕ σ ; =− ∂n ∂n ε0
- Parallel-plate condenser ϕ1 − ϕ 2 = V , V : " voltage" Qd σ V = Ed = d = A ε0 ε0 Q Aε 0 C=
11/29
V
=
d
Coul ⎞ ⎛ , C: capatance ⎜ Farad= ⎟ ⎝ Volt ⎠
周元昉
NTU50235100
- Electric dipole p = qd : dipole moment p=qd , d: points from − q to +q
ϕ (R ) =
11/29
1 p⋅R : dipole potential 4πε 0 R 3
周元昉
NTU50235100
- Potential for lump of charges Far field approximation, di << R
ϕ (R ) =
1 ⎛ Q p⋅R ⎞ ⎜ + 3 +L⎟ ⎠ 4πε 0 ⎝ R R
Q = ∑ qi ; p = ∑ qi di
For a neutral object, Q = 0
ϕ (R ) =
11/29
1 p⋅R : dipole potential 4πε 0 R 3
周元昉
NTU50235100
- Dielectrics V= C=
σ ( d − b) ε0 ε0 A
d (1 − b / d )
The capacitance is increased.
Faraday discovered that the capacitance ⇒ is increased when an insulator is put between the plates.
11/29
The net charge inside the surface must be lower than it woiuld be without the dielectric.
周元昉
NTU50235100
- The polarization vector P Q=0 pi ≠ 0
Q=0 p=0
∑ pi = 0
Q=0 pi ≠ 0
Q=0 p≠0
∑ pi Polarization P = Δv
∑ pi ≠ 0
: dipole moment per unit volume
If the field is not too enormous P ∝ E 11/29
(or Pi = aij E j for anisotropic materials) 周元昉
NTU50235100
- Polarization charges p=ql
: dipole moment per molecule
l : effective movement of positive charges w.r.t. negative charges
q: number of positive charges per molecule number of molecules N= unit volume Nq l ⋅ d S = N p ⋅ d S = P ⋅ d S : positive charges leave through dS
1. Surface polarization charge density
σp =
P ⋅ dS = n ⋅ P : surface polarization charge density dS
On the interface of two materials
σ p = n ⋅ ( P1 − P2 ) 11/29
周元昉
NTU50235100
2. Polarization charge density
∫ P ⋅ dS
: total positive charges leave volume V = net negative charges in volume V = − ∫V ρ p dV
ρ p : polarization charge density
∫ P ⋅ d S + ∫V ρ p dV = 0 ∫V (∇ ⋅ P + ρ p )dV = 0
11/29
ρ p = −∇ ⋅ P
周元昉
NTU50235100
- Inside dielectric ∇⋅E =
ρ f + ρp ε0
,
ρ f : free charge density
ε 0∇ ⋅ E = ρ f + ρ p = ρ f − ∇ ⋅ P or
∇ ⋅ ( ε 0E + P ) = ρ f
Define “electric displacement” D = ε 0E + P
Governing equations ∇⋅D = ρf
and
∇×E=0 11/29
周元昉
NTU50235100
- Constitutive equation Isotropic materials
Anisotropic materials
P = χ e ε 0E
Pi = ε 0 χij E j
D = (1 + χ e )ε 0E = ε r ε 0E = ε E
Di = ε 0 (δ ij + χ ij ) E j = ε ij E j
χe ε0 εr ε
: susceptibility : permittivity of empty space : dielectric constant (relative permittivity) : permittivity
Di = ε ij E j = − ε ijϕ , j
Governing equation Di ,i = ρ f
εijϕ , ji = − ρ f
- Boundary conditions σ f +σp ( E 2 − E1 ) ⋅ n = ε0 ε 0 ( E 2 − E1 ) ⋅ n = σ f + (P1 − P2 ) ⋅ n (D 2 − D1 ) ⋅ n = σ f
ε1 11/29
∂ϕ1 ∂ϕ − ε2 2 = σ f ∂n ∂n
Boundary condition ( Di ni ) 2 − ( Di ni )1 = σ f (εijϕ , j ni )1 − (εijϕ , j ni ) 2 = σ f
and and
ϕ1 = ϕ 2
ϕ1 = ϕ 2 周元昉
NTU50235100
Piezoelectricity
11/29
周元昉
NTU50235100
• Quartz
Photo Copyright © 2000 by John H. Betts.
11/29
周元昉
NTU50235100
11/29
周元昉
NTU50235100
Potential is created Quartz in rest state
11/29
Force is applied
周元昉
NTU50235100
Temperature effect
11/29
周元昉
NTU50235100
•Ferroelectric material: PZT PbTiO3, PbZrO3
PZT unit cell above the Curie temperature
PZT unit cell below the Curie temperature
11/29
周元昉
NTU50235100
Poling of piezoelectric ceramic
Electric dipoles in domains: (1) unpoled ferroelectric ceramic, (2) during and (3) after poling 11/29
周元昉
NTU50235100
• Constitutive equations E Tij = cijkl Skl − ekij E k
Tij : stress
Di = eikl Skl + εijS E j
Skl : strain
• Alternate forms of constitutive equations E D Sij = sijkl Tkl + d kij E k Sij = sijkl Tkl + g kij Dk Di = dikl Tkl + εikT E k
Ei = − gikl Tkl + βikT Dk
D Tij = cijkl Skl − hkij Dk
Ei = − hikl Skl + βikS Dk
• Governing equations Tij , i = ρ u&&j Di ,i = 0
⇒
E cijkl uk ,li + ekijϕ ,ki = ρ u&& j
ekij ui , jk − εijSϕ ,ij = 0
• Boundary conditions For a surface of discontinuity ni TijI = ni TijII u Ij = u IIj ni DiI = ni DiII 11/29
ϕ I = ϕ II
ni Tij = 0 for a traction free surface uj = 0 for a fixed surface ni Di = 0 at an air-dielectric interface ϕ =0 short-circuited electrodes 周元昉
NTU50235100
Material constants for PZT
11/29
周元昉
NTU50235100
Signal Conditioning • Piezoelectric transducers
11/29
g33 ≡
e /t field produced in direction 3 = 0 stress applied in direction 3 f i / ( wl )
d 33 ≡
charge generated in direction 3 Q = fi force applied in direction 3
周元昉
NTU50235100
Charge generated by the crystal q = Kq xi
,
xi :deflection
Current generated by the crystal dq dx icr = = Kq i dt dt icr = iC + i R
eo = eC
iC dt ∫ (icr − iR ) dt ∫ = = C
C
de dx e C ⎛⎜ o ⎞⎟ = icr − iR = Kq ⎛⎜ i ⎞⎟ − o ⎝ dt ⎠ ⎝ dt ⎠ R
11/29
周元昉
NTU50235100
Frequency response function xi = X i exp(iω t ) eo = Vo exp(iω t )
( K q / C )i ω iτω ( Kq / C ) V0 = = X i iω + (1 / CR ) iτω + 1
τ = CR Step response xi = A for 0 < t < T xi = 0 for T < t eo = eo =
11/29
Kq A
Kq A C
C
exp( − t / τ )
0< t < T
[exp( − T / τ ) − 1]exp[ − ( t − T ) / τ ]
T< t
周元昉
NTU50235100
Use series resistor - sacrifices sensitivity
11/29
周元昉
NTU50235100
• Charge Amplifiers
Output voltage change
− Vc ΔC Δvo = Cf or
Sensor
− ΔQ Δvo = Cf Lower cutoff frequency (-3dB)
f cp1
1 = 2πR f C f
Upper cutoff frequency (-3dB)
f cp 2 11/29
1 = 2πR1C 周元昉
NTU50235100
Example 1: Piezoelectric Transducer Charge Amplifier
11/29
周元昉
NTU50235100
Spice simulation 1
Sensor
11/29
周元昉
NTU50235100
11/29
周元昉
NTU50235100
Spice simulation 2
Sensor
11/29
周元昉
NTU50235100
11/29
周元昉
NTU50235100
Example 2
11/29
周元昉
NTU50235100
Example 3
Alessandro Gandelli & Roberto Ottoboni, 1993 11/29
周元昉
NTU50235100
• Impedance converter
11/29
周元昉
NTU50235100
Applications • Piezoelectric accelerometers
11/29
周元昉
NTU50235100
11/29
周元昉
NTU50235100
Model (Single axis or triaxial)
Single axis linear
Range
g
±2000
Sensitivity
pC/g
-10.000
Frequency Range
Hz
5...10000
Resolution, Threshold
mgrms
1
Transverse Sensitivity
%
1.5
Non linearity
% FSO
±1
Shock
g
5000
Temp. coef. of sensitivity
%/°C
0.13
Operating temperature range
°C
-70...250
Housing/Base
stainless steel
Sealing
hermetic (IP68)
Ground isolation
No
Mass
g
Connector
11/29
14.5 10-32 neg.
Diameter
mm
16
Height
mm
12.19
Mounting
stud/wax
Mounting thread
10-32 UNF x 3,3 周元昉
NTU50235100
11/29
周元昉
NTU50235100
• Quartz torque sensor The torque sensor consists of two steel disks, between which a ring is fitted which contains several shear-sensitive quartz plates. The crystal axes of the quartz plates are oriented tangentially to the peripheral direction and therefore yield a charge exactly proportional to the applied torque.
Application examples • Adjusting torques of pneumatic screw-drivers • Testing of screw connections • Calibration measurements of manual torque wrenches • Testing torsion of springs • Measurements of friction clutches • Measuring starting torques, variations in synchronization and torsional vibrations of fractional horsepower and stepping motors. • Testing of rotary switch 11/29
周元昉
NTU50235100
11/29
周元昉
NTU50235100
The torque sensor must be mounted under elastic preload as the torque must be transmitted by static friction onto the front parts of the sensor.
Testing of rotary switch 11/29
周元昉
NTU50235100
• Quartz Load Washers The force to be measured acts through the cover and base of the tightly welded steel housing on the quartz sensing elements. Quartz yields an electric charge proportional to the mechanical load. Application examples • forces in spot welding • forces in presses • force variations in bolted connections under high static preload • shock and fatigue resistance • cutting and forming forces • forces in railroad brakes • impact forces
11/29
周元昉
NTU50235100
Mounting The load washers must be installed between two plane-parallel, rigid and fine-machined (preferably ground) faces. This is necessary to achieve a good load distribution on one hand and a wide frequency response on the other hand. The load washers should always be installed under preload.
Preloading screw
Centering clip
11/29
周元昉
NTU50235100
• 3-Component Quartz Crash Force Elements
Specification Measuring Range
Fx
kN
0...500
Fy, Fz
kN
±100
% FSO
<±0.5
fnx
kHz
≈4
fny, fnz
kHz
≈1.7
°C
0...50
Non linearity Natural Frequency
Operating temperature range Sealing
11/29
IP65
周元昉
NTU50235100
11/29
周元昉
Application
11/29
NTU50235100
周元昉
NTU50235100
11/29
周元昉
NTU50235100
•
Piezoelectric pressure sensors Specification Type 6005 Measuring range
bar
0...1000
Overload
bar
1500.0
Sensitivity
pC/bar
10
Natural Frequency
kHz
≈140
Non linearity
% FSO
<±0.8
Operating temperature range
°C
-196...200
Acceleration sensitivity
bar/g
<0.001
Thread
Without thread
Cooling
not cooled
Diameter
mm
5.5
Length
mm
6
Connector
11/29
M4x0,35 neg.
周元昉
NTU50235100
• Dynamometer - Cutting force measurement
Calibration
calibrated Fx, Fy Fz
kN kN
±20 ±30
Mz
N·m
±1100
1/min
max.5000
Fx, Fy Fz
mV/N mV/N
≈-0.5 ≈-0.33
Mz
mV/N· m kHz
≈9
°C
0...60
mm
156
Height
mm
55
Mass
kg
7.5
Measuring Range
Speed Sensitivity
Natural Frequency Operating temperature range Diameter
11/29
≈1
Connection
Non-contacting
Sealing
welded/epoxy (IP67)
周元昉
NTU50235100
• Torque
Wheel-Sensor
Model
Piezoelectric
Measuring Range
My
kN·m
±3
Natural Frequency
fny
kHz
1.1 Natural Frequency fny: free
Mass
kg
4.4
Maximum r.p.m.
1/min
2200 Max. speed ≈250 km/h
Crosstalk
Fy → My
N·m/kN
<±2
Offset/Variation
Fz → My
N·m/kN
<±2
Non linearity
% FSO
<±1
Diameter
mm
289
Hysteresis
% FSO
≤1
Sealing
11/29
IP65
周元昉
NTU50235100
11/29
周元昉
NTU50235100
• Hydrophone
11/29
周元昉