Pierce Prelim 2009 Em2 Solutions

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Pierce Prelim 2009 Em2 Solutions as PDF for free.

More details

  • Words: 1,310
  • Pages: 5
Answer Scheme for 4E/5A Prelim II Mathematics 2009 Paper 2 4016

1a) AC = AX (tangents from ext. point are equal) CAX  BAX AX is common length ABX is congruent to ACX Case : SAS Alternatively : AXB  AXC  90 AX is common AB  AC

ABC  ACX RHS OR BX  CX AX is common AB  AC ABC  ACX SSS 1b) Since ABX is congruent to ACX , X is midpoint of chord BC. BXO  90 (perp bisector of chord passes through O) BCE  90 (right  in semi circle) XBO  CBE (common angle)

 80 2a) A   70 80  90 

80 60 90 90

70  90  60  80 

 80 80 70  1 BA  (1 1 1 1)  70 60 90  80 90 60 2b) 4  90 90 80      80 80 75  It represents the average score of the 3 categories of the admission criteria for the four applicants. 2c)  0.25    X   0.6   0.15     80 AX   70 80  90 

80 60 90 90

70  0.25  78.5  90   0.6    67  60   0.15   83    88.5  80  

3a)(i)  C

M 11

11

9

9

3a)(ii) C  M ' 3a)(iii) n( M  C ' ) = 9 The number of people who only possess motorcycle licenses. 3b)  X

Y

Answer Scheme for 4E/5A Prelim II Mathematics 2009 Paper 2 4016

4a) x 2  x  12 x3 x 2  x  12 x3  4 x 2    2( x 2  16) x3  4 x 2 2( x 2  16) x3 ( x  3)( x  4) x 2 ( x  4)   2( x  4)( x  4) x 3 

x2 2

4b) y  3

x x9

 x  y2  9    x9 ( x  9) y 2  9 x xy 2  9 y 2  9 x xy 2  9 x  9 y 2 x( y 2  9)  9 y 2 x

9 y 2 9 y2 or y2  9 9  y2

4c) 2n 3  mn 7 7(2n)  3(m  n)

14n  3m  3n 11n  3m m 11 2  or 2 n 3 3

4  60 240  x x 3.5  60 210 5b)  x2 x2 5c) 240 210 5(  )  500 x x2 240 210   100 x x2 240( x  2)  210 x  100 x( x  2) 240 x  480  210 x  100 x 2  200 x 100 x 2  250 x  480  0 10 x 2  25 x  48  0 (proven)

5a)

5d) 10 x 2  25 x  48  0 (25)  (25)2  4(10)(48) x 2  10 x  3.772 or  1.272

210  36 3.772+2 Number of patients = 37 also acceptable Number of patients 

6a)(i)

Area =

1 2 11 9   2 9

99 2  155.5  156 cm 2 6a) (ii) 99  ( XA)  9  2 XA  5.5 cm 6a)(iii) OX 2  92  5.52 OX  9 2  5.52 OX  7.1239 

1  (5.50) 2 (7.1239) 3  225.6689517  226 cm 3 Volume =

Answer Scheme for 4E/5A Prelim II Mathematics 2009 Paper 2 4016

(b)

2

2  (30) 2 h   (30)3  255000 3  (30) 2 h  198451.3322 h  70.1878  70.2 cm

7a) (i)  



AC  AD  DC 

2

(3q)  p

3  2q  p

   7a (ii ) HC  HA  AC  3q  2q  p  p  q    7a (iii ) HF  HA  AF

3  3q  (2q  p ) 4 ’ 3 3  3q  q  p 2 4 3 3  p q 4 2    7a (iv ) DE  DA  AE

1  2q  (2q  p ) 2 1  pq 2  3 HF  ( p  2q) 4  1 DE  ( p  2q) 2 Fact 1 : HF and DE are parallel Fact 2 . Ratio of HF : DE = 3:2

A1

Area of ADE  2  4 7(c)(i)    Area of AHF  3  9 Area of ADE AE 1 (ii)   Area of ADC EC 2 Area of ADE 1 1   Area of ABCD 1  1  1  1 4 8) Refer to graph paper 9(a) Chargeable income = $95000 -$15297 = $79703 First $40000 : tax = $900 Next $39703 : tax = $39703 × 8.5% = $3374.76 Total = $900 + $3374.76 = $4274.76 9(b) Loan = 80%  $1200000 = $960000 Year 1 : interest : 3%  $960000 = $28800 Year 2 : interest : 3.5%  $960000 = $33600 Year 3 – 30 : Interest : 5%  $960000  28 = $1344 000 Total value of loan (including interest) = $$960000 + $28800 + $33600 + $1344 000 = $2366400 Monthly Installment = $2366400 ÷ (30  12) = $6573.33 9(c) (i) Principal Amount = $200000 ÷ 1.216 = AUD 164473.68 AUD (c)(ii) $164473.68 × (1 + 5.5÷100)10 = AUD 280944.805 In SGD : 280944.805 × 1.345 = SGD 377870.77

Answer Scheme for 4E/5A Prelim II Mathematics 2009 Paper 2 4016

2

2

2

10 a ) RT  9.8  13.5  2(9.8)(13.5) cos 55 2

RT  126.5216749 RT  11.248  11.2 cm 10b)

sin RTS

sin 55



9.8

sin RTS  0.713699 





11(d) The average weight of 4A2 is lower than that of 4A1. But the weight distribution of 4A2 is less consistent than class 4A1. 



10c )SRT  180  45.5  55  79.5 



Bearing of R from T  360  (79.5 )  280.5





10 d ) tan 40 

QR 9.8

QR  9.8  tan 40

11(a) 25% percentile = 64 kg 75% percentile = 72.5 kg M1 Interquartile range = 72.5 – 64 = 8.5 kg 11(b) 62 ≤ x < 66 : p = 9 70 ≤ x < 74 : q = 14 11(c) Mean = 68 kg Standard Deviation = 5.727  5.73 kg



11.248

RTS  45.53  45.5





QR  8.223  8.22m



21 40 19 18 17 (ii)1  (   ) 40 39 38 469  520

11e(i )

Question 8

10e )(i ) 

sin 55 

RX 9.8 

RX  sin 55  9.8 RX  8.02769  8.03 8.223

(ii) tan QXR 

8.02769 QXR  45.6885



 45.7 (a) q = 6.1 (c)(i) y = 4.3 to 4.4 (ii) 2  x  4 2

( e )3 x  10 x  8  0 3 x  10 

8

0

x 8

(d) Gradient = -1 x  2  x  2 x  8  0 x2

8

 8  2x

x Draw y  8  2 x x  1.4 and 2.0

Answer Scheme for 4E/5A Prelim II Mathematics 2009 Paper 2 4016

Related Documents