Pierce Prelim 2009 Am1 & Solution

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Pierce Prelim 2009 Am1 & Solution as PDF for free.

More details

  • Words: 1,703
  • Pages: 5
Additional Mathematics 4038 /Prelim 2009/ Sec 4E AM P1/ Mark Scheme Qn #

Solution

1

 9     5 7 

ab 7 9



5 7

9 5 7



Qn # 4

2

(i)

5 7 5 7

1

1 11  7    10  3  1  Rearranging equations,  y  7 x  13  3 y  11x  9   1 7  y  13          3 11 x   9 

9(5  7 ) 25  7 5 7  2

=



2

5 7   9        5 7   2 

2

25  10 7  7 4 5  8 7 2 5  a  8, b   2 

2

(i)

(ii)

3

1 sin(90   ) 1  cos 3

cosec (90   ) 

1 1  2 sin 2   cos 2 1 1 2 1 3 1 sin   2 2 3 1 1 sin   2 3

f(x) = 9 x 4  5ax 3  7bx 2  5 x  6 x – 1 is a factor  f(1) = 0 9 + 5a – 7b + 5 + 6 = 0 5a – 7b = 20 ……….….. (1) f(1) = 40 9 – 5a – 7b – 5 + 6 = 40 5a + 7b = 50 ……...…….. (2) Solving, a = 3, b = 5

Solution  1 7  A =     3 11 11  7  1 A-1 =    11  21  3  1 

 y  1 11  7 13         x  10  3  1  9   8     3 Point of intersection is (3, 8)

1

2 (ii) 1

1 5(a)

(i)

7 x  y  13 14 x  2 y  5 They are parallel lines and have no point of intersection. OR A singular matrix will be obtained, resulting in no inverse. 2x 2  9x  5  0 (2 x  1)( x  5)  0 1 x5 2 2  x  3 x 2  0 or 3 x 2  x  2  0 

1 (ii)

(b)

1 1

1

1 1

1

(k  3 )(k  3 )  0  3k 3

2

1

x 2  2kx  3 always positive  b 2  4ac  0 4k 2  12  0  k 2  3  0

1

1

(3 x  2)( x  1)  0 1 2 x  1, x  1 3

1

1 1

1

1

Additional Mathematics 4038 /Prelim 2009/ Sec 4E AM P1/ Mark Scheme

6

(i)

1 20 cos 20  20  40 sin   2  400 cos   400 cos sin 

A

 400 cos   200 sin 2

(ii)

(iii)

1 1

(i)

8

 

2

 2 6  6C1 ( 2) 5 x 2  6C2 ( 2) 4 x 2  ...

(ii)

2

 64  192 x 2  240 x 4  ... n  1  1  x   2  1

2

 1   1   1 nC1   x   nC2   x   ...  2   2  1 n(n  1)  1 2   1  nx   x   ... 2 2 4  1 n(n  1) 2  1  nx  x  ... 2 8 1 3 Comparing with 1  nx  x 2 +… 2 2 n(n  1) 3  8 2 2 n  n  12 (n  4)(n  3)  0 n4

1

1

2 6 1

1

1

2  x 

 



 288 x 2  ... Coefficient of x 2 = 288

2 sin 2   sin   1  0 (2 sin   1)(sin   1)  0 1 , sin   1 2  5     or    (  acute) 6 6 6



 ... 

 96 x 2  192 x 2  ...

1 1

sin  

4

3 2  1  1  nx  x  ... 2 2   3   64 x 2   192 x 2 1  ... 2 



 sin   1  2 sin 2   0

7

2 6

2

1

1    400  cos  sin 2  2   dA For maximum area, 0 d 400( sin   cos 2 )  0

n

2  x  1  12 x     64  192 x  240 x

1

1

1

(i)

LHS 

sin A  cosec A cos A  sec A

1 sin A  1 cos A  cos A 2  sin A  1    sin A     cos 2 A  1     cos A  sin 2 A  1 cos A   sin A cos 2 A  1  cos 2 A cos A   sin A  sin 2 A  cot 3 A sin A 

 RHS

1

1

1

Additional Mathematics 4038 /Prelim 2009/ Sec 4E AM P1/ Mark Scheme

(ii)

10(a)

sin A  cosec A  5 cos 3 A cos A  sec A

p  log 2 q 32 log 2  log 2 32  log 2 q q

cot 3 A  5 cos 3 A cos 3 A  5 cos 3 A 3 sin A cos 3 A  5 cos 3 A  0 3 sin A  1  cos 3 A  3  5   0  sin A  1 cos 3 A  0 or 5 0 sin 3 A cos A  0 ( NA) 1 or sin 3 A  5 sin A  0.5848 When sin A = 0.5848,  = 35.8 A = 35.8 or 144.2

9

(i)

 5 p (b)

2 log 2 x 2 log 2 4

log 2 x( x  3)  2 ( x  1)( x  4)  0 x  1, x  4 x  1 (  x  0)

1

(ii)

e x (3e x  2)  5

ARQ = x (s in opp seg)

1

(3e x  5)(e x  1)  0 5 or e x  1 3 5 e x  ( e x  0) 3 5 x  ln 3  0.511 ex 

1

ABS = QRS = x 1

 ABS and QRS are similar 1

 SA  SR  SB  SQ By tan-sec thm,

ST 2  SB  SQ SA  SR  SB  SQ

1

1

3e 2 x  2e x  5  0

ST 2  SA  SR

1

x  3x  4  0

1

AS BS  QS RS

1

2

ABS = x (s in alt seg)

ASB is common

(iii)

log 2 ( x  3)  2 log 4 x  log 6 36

log 2 ( x  3)  log 2 x  2

1

 AQ = RQ (ARQ is isosceles)



(i)

log 2 ( x  3) 

But RAQ = x (vert opp s)

(ii)

1

1

Let SAP = x

ARQ = RAQ

1

1 1

1

1

1

Additional Mathematics 4038 /Prelim 2009/ Sec 4E AM P1/ Mark Scheme

11

(a)

11

3x 2  5x  1  0 5 3 1 Product of roots,   3 New sum, (   )  (    )  0 New product, (   )(   )

Sum of roots,    

1 1 1 (c)

    2   2    2  ( 2   2 )



 2  (   ) 2  2  4  (   ) 4 25  3 9 13  9



1

2



13 0 9 9 x 2  13  0

New equation: x 2  or

(b)

1 1

x 2  8x  m  7  0 Let , 3 be roots. Sum of roots, 4 = 8  = 2 Product of roots, 32 = m + 7 m = 3(4) – 7 = 5 x 2  x  (1  2 )  0 Sum of roots, tan A  tan B  1 Prod of roots, tan A tan B  1  2 tan A  tan B tan( A  B)  1  tan A tan B 1  1  (1  2 ) 1  2

1 1

1

1

Additional Mathematics 4038 /Prelim 2009/ Sec 4E AM P1/ Mark Scheme

12

(i) ln x ln y

0.69 3.53

1.38 5.40

Table Graph (correct axes, correct points) (ii)

(iii)

y  ax

1.79 6.27 (1) (2)

n

ln y  ln a  n ln x

(1)

Y-intercept = 1.8 ln a  1.8

(1)

a  e1.8  6.05 Gradient = 2.5 n = 2.5

(1)

n

(1)

4

ax  x  y  x4

ln y  ln x 4  4 ln x Plot graph of Y  4 ln x Graph x = 1.2

(1) (1)

2.08 7.00

2.30 7.52

Related Documents