Additional Mathematics 4038 /Prelim 2009/ Sec 4E AM P1/ Mark Scheme Qn #
Solution
1
9 5 7
ab 7 9
5 7
9 5 7
Qn # 4
2
(i)
5 7 5 7
1
1 11 7 10 3 1 Rearranging equations, y 7 x 13 3 y 11x 9 1 7 y 13 3 11 x 9
9(5 7 ) 25 7 5 7 2
=
2
5 7 9 5 7 2
2
25 10 7 7 4 5 8 7 2 5 a 8, b 2
2
(i)
(ii)
3
1 sin(90 ) 1 cos 3
cosec (90 )
1 1 2 sin 2 cos 2 1 1 2 1 3 1 sin 2 2 3 1 1 sin 2 3
f(x) = 9 x 4 5ax 3 7bx 2 5 x 6 x – 1 is a factor f(1) = 0 9 + 5a – 7b + 5 + 6 = 0 5a – 7b = 20 ……….….. (1) f(1) = 40 9 – 5a – 7b – 5 + 6 = 40 5a + 7b = 50 ……...…….. (2) Solving, a = 3, b = 5
Solution 1 7 A = 3 11 11 7 1 A-1 = 11 21 3 1
y 1 11 7 13 x 10 3 1 9 8 3 Point of intersection is (3, 8)
1
2 (ii) 1
1 5(a)
(i)
7 x y 13 14 x 2 y 5 They are parallel lines and have no point of intersection. OR A singular matrix will be obtained, resulting in no inverse. 2x 2 9x 5 0 (2 x 1)( x 5) 0 1 x5 2 2 x 3 x 2 0 or 3 x 2 x 2 0
1 (ii)
(b)
1 1
1
1 1
1
(k 3 )(k 3 ) 0 3k 3
2
1
x 2 2kx 3 always positive b 2 4ac 0 4k 2 12 0 k 2 3 0
1
1
(3 x 2)( x 1) 0 1 2 x 1, x 1 3
1
1 1
1
1
Additional Mathematics 4038 /Prelim 2009/ Sec 4E AM P1/ Mark Scheme
6
(i)
1 20 cos 20 20 40 sin 2 400 cos 400 cos sin
A
400 cos 200 sin 2
(ii)
(iii)
1 1
(i)
8
2
2 6 6C1 ( 2) 5 x 2 6C2 ( 2) 4 x 2 ...
(ii)
2
64 192 x 2 240 x 4 ... n 1 1 x 2 1
2
1 1 1 nC1 x nC2 x ... 2 2 1 n(n 1) 1 2 1 nx x ... 2 2 4 1 n(n 1) 2 1 nx x ... 2 8 1 3 Comparing with 1 nx x 2 +… 2 2 n(n 1) 3 8 2 2 n n 12 (n 4)(n 3) 0 n4
1
1
2 6 1
1
1
2 x
288 x 2 ... Coefficient of x 2 = 288
2 sin 2 sin 1 0 (2 sin 1)(sin 1) 0 1 , sin 1 2 5 or ( acute) 6 6 6
...
96 x 2 192 x 2 ...
1 1
sin
4
3 2 1 1 nx x ... 2 2 3 64 x 2 192 x 2 1 ... 2
sin 1 2 sin 2 0
7
2 6
2
1
1 400 cos sin 2 2 dA For maximum area, 0 d 400( sin cos 2 ) 0
n
2 x 1 12 x 64 192 x 240 x
1
1
1
(i)
LHS
sin A cosec A cos A sec A
1 sin A 1 cos A cos A 2 sin A 1 sin A cos 2 A 1 cos A sin 2 A 1 cos A sin A cos 2 A 1 cos 2 A cos A sin A sin 2 A cot 3 A sin A
RHS
1
1
1
Additional Mathematics 4038 /Prelim 2009/ Sec 4E AM P1/ Mark Scheme
(ii)
10(a)
sin A cosec A 5 cos 3 A cos A sec A
p log 2 q 32 log 2 log 2 32 log 2 q q
cot 3 A 5 cos 3 A cos 3 A 5 cos 3 A 3 sin A cos 3 A 5 cos 3 A 0 3 sin A 1 cos 3 A 3 5 0 sin A 1 cos 3 A 0 or 5 0 sin 3 A cos A 0 ( NA) 1 or sin 3 A 5 sin A 0.5848 When sin A = 0.5848, = 35.8 A = 35.8 or 144.2
9
(i)
5 p (b)
2 log 2 x 2 log 2 4
log 2 x( x 3) 2 ( x 1)( x 4) 0 x 1, x 4 x 1 ( x 0)
1
(ii)
e x (3e x 2) 5
ARQ = x (s in opp seg)
1
(3e x 5)(e x 1) 0 5 or e x 1 3 5 e x ( e x 0) 3 5 x ln 3 0.511 ex
1
ABS = QRS = x 1
ABS and QRS are similar 1
SA SR SB SQ By tan-sec thm,
ST 2 SB SQ SA SR SB SQ
1
1
3e 2 x 2e x 5 0
ST 2 SA SR
1
x 3x 4 0
1
AS BS QS RS
1
2
ABS = x (s in alt seg)
ASB is common
(iii)
log 2 ( x 3) 2 log 4 x log 6 36
log 2 ( x 3) log 2 x 2
1
AQ = RQ (ARQ is isosceles)
(i)
log 2 ( x 3)
But RAQ = x (vert opp s)
(ii)
1
1
Let SAP = x
ARQ = RAQ
1
1 1
1
1
1
Additional Mathematics 4038 /Prelim 2009/ Sec 4E AM P1/ Mark Scheme
11
(a)
11
3x 2 5x 1 0 5 3 1 Product of roots, 3 New sum, ( ) ( ) 0 New product, ( )( )
Sum of roots,
1 1 1 (c)
2 2 2 ( 2 2 )
2 ( ) 2 2 4 ( ) 4 25 3 9 13 9
1
2
13 0 9 9 x 2 13 0
New equation: x 2 or
(b)
1 1
x 2 8x m 7 0 Let , 3 be roots. Sum of roots, 4 = 8 = 2 Product of roots, 32 = m + 7 m = 3(4) – 7 = 5 x 2 x (1 2 ) 0 Sum of roots, tan A tan B 1 Prod of roots, tan A tan B 1 2 tan A tan B tan( A B) 1 tan A tan B 1 1 (1 2 ) 1 2
1 1
1
1
Additional Mathematics 4038 /Prelim 2009/ Sec 4E AM P1/ Mark Scheme
12
(i) ln x ln y
0.69 3.53
1.38 5.40
Table Graph (correct axes, correct points) (ii)
(iii)
y ax
1.79 6.27 (1) (2)
n
ln y ln a n ln x
(1)
Y-intercept = 1.8 ln a 1.8
(1)
a e1.8 6.05 Gradient = 2.5 n = 2.5
(1)
n
(1)
4
ax x y x4
ln y ln x 4 4 ln x Plot graph of Y 4 ln x Graph x = 1.2
(1) (1)
2.08 7.00
2.30 7.52