Phuong Trinh Luong Giac Co Ban

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Phuong Trinh Luong Giac Co Ban as PDF for free.

More details

  • Words: 6,590
  • Pages: 16
Chöông 2: PHÖÔNG TRÌNH LÖÔÏ N G GIAÙ C CÔ BAÛ N

⎡ u = v + k2π sin u = sin v ⇔ ⎢ ⎣ u = π − v + k2π cos u = cos v ⇔ u = ± v + k2π π ⎧ ⎪u ≠ + kπ tgu = tgv ⇔ ⎨ 2 ⎪⎩u = v + k ' π ⎧u ≠ kπ cot gu = cot gv ⇔ ⎨ ⎩u = v + k ' π Ñaë c bieä t : sin u = 0 ⇔ u = kπ

π + k2π ( k ∈ Z) 2 π sin u = −1 ⇔ u = − + k2π 2 Chuù yù : sin u ≠ 0 ⇔ cos u ≠ ±1 cos u ≠ 0 ⇔ sin u ≠ ±1 sin u = 1 ⇔ u =

( k, k ' ∈ Z )

cos u = 0 ⇔ u =

π + kπ 2

cos u = 1 ⇔ u = k2π ( k ∈ Z ) cos u = −1 ⇔ u = π + k2π

Baø i 28 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2002) Tìm x ∈ [ 0,14 ] nghieä m ñuù ng phöông trình cos 3x − 4 cos 2x + 3 cos x − 4 = 0 ( * )

Ta coù (*) : ⇔ ( 4 cos3 x − 3 cos x ) − 4 ( 2 cos2 x − 1) + 3 cos x − 4 = 0

⇔ 4 cos3 x − 8 cos2 x = 0 ⇔ 4 cos2 x ( cos x − 2 ) = 0 ⇔ cos x = 0 hay cos x = 2 ( loaïi vì cos x ≤ 1) ⇔ x=

π + kπ ( k ∈ Z ) 2

π + kπ ≤ 14 2 π π 1 14 1 − ≈ 3, 9 ⇔ − ≤ kπ ≤ 14 − ⇔ −0, 5 = − ≤ k ≤ 2 2 2 π 2 ⎧ π 3π 5π 7π ⎫ Maø k ∈ Z neâ n k ∈ {0,1, 2, 3} . Do ñoù : x ∈ ⎨ , , , ⎬ ⎩2 2 2 2 ⎭ Ta coù : x ∈ [ 0,14] ⇔ 0 ≤

Baø i 29 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2004) Giaû i phöông trình : ( 2 cos x − 1)( 2 sin x + cos x ) = sin 2x − sin x ( *)

Ta coù (*) ⇔ ( 2 cos x − 1)( 2 sin x + cos x ) = sin x ( 2 cos x − 1)

⇔ ( 2 cos x − 1) ⎡⎣( 2 sin x + cos x ) − sin x ⎤⎦ = 0 ⇔ ( 2 cos x − 1)( sin x + cos x ) = 0

1 ∨ sin x = − cos x 2 π ⎛ π⎞ ⇔ cos x = cos ∨ tgx = −1 = tg ⎜ − ⎟ 3 ⎝ 4⎠ π π ⇔ x = ± + k2π ∨ x = − + kπ, ( k ∈ Z ) 3 4 ⇔ cos x =

Baø i 30 : Giaû i phöông trình cos x + cos 2x + cos 3x + cos 4x = 0 (*) Ta coù (*) ⇔ ( cos x + cos 4x ) + ( cos 2x + cos 3x ) = 0

5x 3x 5x x .cos + 2 cos .cos = 0 2 2 2 2 5x ⎛ 3x x⎞ 2 cos + cos ⎟ = 0 ⎜ cos 2 ⎝ 2 2⎠ 5x x 4 cos cos x cos = 0 2 2 5x x = 0 ∨ cos x = 0 ∨ cos = 0 cos 2 2 5x π π x π = + kπ ∨ x = + kπ ∨ = + kπ 2 2 2 2 2 π 2kπ π x= + ∨ x = + kπ ∨ x = π + 2π, ( k ∈ Z ) 5 5 2

⇔ 2 cos ⇔ ⇔ ⇔ ⇔ ⇔

Baø i 31: Giaûi phöông trình sin 2 x + sin 2 3x = cos2 2x + cos2 4x ( * )

1 1 1 1 (1 − cos 2x ) + (1 − cos 6x ) = (1 + cos 4x ) + (1 + cos 8x ) 2 2 2 2 ⇔ − ( cos 2x + cos 6x ) = cos 4x + cos 8x Ta coù (*) ⇔

⇔ −2 cos 4x cos 2x = 2 cos 6x cos 2x ⇔ 2 cos 2x ( cos 6x + cos 4x ) = 0 ⇔ 4 cos 2x cos 5x cos x = 0 ⇔ cos 2x = 0 ∨ cos 5x = 0 ∨ cos x = 0 π π π ⇔ 2x = + kπ ∨ 5x + kπ ∨ x = + kπ, k ∈ 2 2 2 π kπ π kπ π ∨x= + ∨ x = + kπ , k ∈ ⇔ x= + 4 2 10 5 2 Baø i 32 : Cho phöông trình ⎛π x⎞ 7 sin x.cos 4x − sin 2 2x = 4 sin 2 ⎜ − ⎟ − ( *) ⎝4 2⎠ 2 Tìm caù c nghieä m cuû a phöông trình thoû a : x − 1 < 3

1 ⎡ π ⎤ 7 (1 − cos 4x ) = 2 ⎢1 − cos ⎛⎜ − x ⎞⎟ ⎥ − 2 ⎝2 ⎠⎦ 2 ⎣ 1 1 3 sin x cos 4x − + cos 4x = − − 2sin x 2 2 2 1 sin x cos 4x + cos 4x + 1 + 2sin x = 0 2 1⎞ 1⎞ ⎛ ⎛ cos 4x ⎜ sin x + ⎟ + 2 ⎜ sin x + ⎟ = 0 2⎠ 2⎠ ⎝ ⎝ 1 ( cos 4x + 2) ⎜⎛ sin x + ⎟⎞ = 0 2⎠ ⎝ π ⎡ ⎡cos 4x = −2 ( loaïi ) x = − + k 2π ⎢ 6 ⎢ ⎢sin x = − 1 = sin ⎛ − π ⎞ ⇔ ⎢ ⎢ x = 7π + 2hπ ⎜ ⎟ ⎢⎣ 2 ⎝ 6⎠ ⎢⎣ 6 coù : x − 1 < 3 ⇔ −3 < x − 1 < 3 ⇔ −2 < x < 4

Ta coù : (*)⇔ sin x.cos 4x −

⇔ ⇔ ⇔ ⇔

⇔ Ta

π + k2π < 4 6 π π 1 1 2 1 −
Baø i 33 : Giaû i phöông trình sin 3 x cos 3x + cos3 x sin 3x = sin 3 4x ( * ) Ta coù : (*)⇔ sin 3 x ( 4 cos3 x − 3 cos x ) + cos3 x ( 3sin x − 4 sin 3 x ) = sin 3 4x

⇔ 4 sin3 x cos3 x − 3sin3 x cos x + 3sin x cos3 x − 4 sin3 x cos3 x = sin3 4x ⇔ 3sin x cos x ( cos2 x − sin 2 x ) = sin 3 4x ⇔

3 sin 2x cos 2x = sin3 4x 2

3 sin 4x = sin3 4x 4 ⇔ 3sin 4x − 4 sin3 4x = 0 ⇔ sin12x = 0 ⇔

kπ ( k ∈ Z) 12 Baø i 34 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i B, naê m 2002) Giaû i phöông trình : sin 2 3x − cos2 4x = sin 2 5x − cos2 6a ( * ) ⇔ 12x = kπ

⇔ x=

Ta coù : (*)⇔ 1 1 1 1 (1 − cos 6x ) − (1 + cos 8x ) = (1 − cos10x ) − (1 + cos12x ) 2 2 2 2 ⇔ cos 6x + cos 8x = cos10x + cos12x ⇔ 2 cos7x cos x = 2 cos11x cos x ⇔ 2 cos x ( cos 7x − cos11x ) = 0

⇔ cos x = 0 ∨ cos7x = cos11x π ⇔ x = + kπ ∨ 7x = ±11x + k 2π 2 π kπ kπ ∨x= ,k ∈ ⇔ x = + kπ ∨ x = − 2 2 9 Baø i 35 : Giaû i phöông trình ( sin x + sin 3x ) + sin 2x = ( cos x + cos 3x ) + cos 2x ⇔ 2sin 2x cos x + sin 2x = 2 cos 2x cos x + cos 2x ⇔ sin 2x ( 2 cos x + 1) = cos 2x ( 2 cos x + 1) ⇔ ( 2 cos x + 1) ( sin 2x − cos 2x ) = 0

1 2π = cos ∨ sin 2x = cos 2x 2 3 2π π + k2π ∨ tg2x = 1 = tg ⇔ x=± 3 4 2π π π + k2π ∨ x = + k , ( k ∈ Z ) ⇔ x=± 3 8 2 ⇔ cos x = −

Baø i 36: Giaû i phöông trình cos 10x + 2 cos2 4x + 6 cos 3x. cos x = cos x + 8 cos x. cos3 3x ( * ) Ta coù : (*)⇔ cos10x + (1 + cos 8x ) = cos x + 2 cos x ( 4 cos3 3x − 3 cos 3x )

⇔ ( cos10x + cos 8x ) + 1 = cos x + 2 cos x.cos 9x ⇔ 2 cos 9x cos x + 1 = cos x + 2 cos x.cos 9x ⇔ cos x = 1 ⇔ x = k2π ( k ∈ Z ) Baø i 37 : Giaû i phöông trình

4 sin 3 x + 3 cos3 x − 3sin x − sin 2 x cos x = 0 ( * )

Ta coù : (*) ⇔ sin x ( 4 sin 2 x − 3) − cos x ( sin 2 x − 3 cos2 x ) = 0

⇔ sin x ( 4 sin 2 x − 3) − cos x ⎡⎣sin 2 x − 3 (1 − sin 2 x ) ⎤⎦ = 0 ⇔ ( 4 sin 2 x − 3) ( sin x − cos x ) = 0 ⇔ ⎡⎣ 2 (1 − cos 2x ) − 3⎤⎦ ( sin x − cos x ) = 0 1 2π ⎡ cos 2x cos = − = ⇔ ⎢ 2 3 ⎢ ⎣sin x = cos x

2π ⎡ 2x = ± + k2π ⎢ ⇔ 3 ⎢ ⎣ tgx = 1

π ⎡ x = ± + kπ ⎢ 3 ⇔ ⎢ ⎢ x = π + kπ ⎢⎣ 4

( k ∈ Z)

Baø i 38 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i B naê m 2005) Giaû i phöông trình : sin x + cos x + 1 + sin 2x + cos 2x = 0 ( * ) Ta coù : (*) ⇔ sin x + cos x + 2sin x cos x + 2 cos2 x = 0 ⇔ sin x + cos x + 2 cos x ( sin x + cos x ) = 0

⇔ ( sin x + cos x ) (1 + 2 cos x ) = 0

⎡sin x = − cos x ⇔ ⎢ ⎢cos 2x = − 1 = cos 2π 2 3 ⎣ ⎡ tgx = −1 ⇔ ⎢ ⎢ x = ± 2π + k 2π 3 ⎣ π ⎡ ⎢ x = − 4 + kπ ⇔ ⎢ ( k ∈ Z) ⎢ x = ± 2π + k2π ⎢⎣ 3 Baø i 39 : Giaû i phöông trình ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + 4 cos2 x = 3 ( *) Ta coù : (*) ⇔ ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + 4 (1 − sin 2 x ) − 3 = 0

⇔ ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + (1 + 2 sin x )(1 − 2 sin x ) = 0 ⇔ ( 2 sin x + 1) ⎡⎣ 3 cos 4x + 2 sin x − 4 + (1 − 2 sin x ) ⎤⎦ = 0 ⇔ 3 ( cos 4x − 1)( 2 sin x + 1) = 0 ⇔ cos 4x = 1 ∨ sin x = −

1 ⎛ π⎞ = sin ⎜ − ⎟ 2 ⎝ 6⎠

π 7π + k2π ∨ x = + k2π 6 6 kπ π 7π ∨ x = − + k2π ∨ x = + k2π, ( k ∈ Z) ⇔ x= 2 6 6 ⇔ 4x = k2π ∨ x = −

Baø i 40: Giaû i phöông trình sin 6 x + cos6 x = 2 ( sin 8 x + cos8 x ) ( * ) Ta coù : (*) ⇔ sin6 x − 2sin8 x + cos6 x − 2 cos8 x = 0 ⇔ sin 6 x (1 − 2 sin 2 x ) − cos6 x ( 2 cos2 x − 1) = 0

⇔ sin6 x cos 2x − cos6 x. cos 2x = 0 ⇔ cos 2x ( sin 6 x − cos6 x ) = 0 ⇔ cos 2x = 0 ∨ sin6 x = cos6 x ⇔ cos 2x = 0 ∨ tg 6 x = 1 π ⇔ 2x = ( 2k + 1) ∨ tgx = ±1 2 π π ⇔ x = ( 2k + 1) ∨ x = ± + kπ 4 4 π kπ ⇔ x= + ,k ∈ 4 2 Baø i 41 : Giaû i phöông trình

1 ( *) 16 Ta thaá y x = kπ khoâ n g laø nghieä m cuû a (*) vì luù c ñoù cos x = ±1, cos 2x = cos 4x = cos 8x = 1 1 (*) thaøn h : ±1 = voâ nghieä m 16 Nhaâ n 2 veá cuû a (*) cho 16sin x ≠ 0 ta ñöôï c (*) ⇔ (16 sin x cos x ) cos 2x.cos 4x.cos 8x = sin x vaø sin x ≠ 0

cos x.cos 2x.cos 4x.cos 8x =

⇔ ( 8 sin 2x cos 2x ) cos 4x.cos 8x = sin x vaø sin x ≠ 0 ⇔ ( 4 sin 4x cos 4x ) cos 8x = sin x vaø sin x ≠ 0 ⇔ 2sin 8x cos 8x = sin x vaø sin x ≠ 0 ⇔ sin16x = sin x vaø sin x ≠ 0 k2π π kπ ∨x= + , ( k ∈ Z) ⇔x = 15 17 17 Do : x = hπ khoâ n g laø nghieä m neâ n k ≠ 15m vaø 2k + 1 ≠ 17n ( n, m ∈ Z ) 3 Baø i 42: Giaû i phöông trình 8cos ⎛⎜ x +



Ñaët t = x +

π π ⇔x=t− 3 3

π⎞



3⎠

= cos 3x ( * )

Thì cos 3x = cos ( 3t − π ) = cos ( π − 3t ) = − cos 3t Vaä y (*) thaø n h 8 cos3 t = − cos 3t ⇔ 8 cos3 t = −4 cos3 t + 3 cos t ⇔ 12 cos3 t − 3 cos t = 0 ⇔ 3 cos t ( 4 cos2 t − 1) = 0

⇔ 3 cos t ⎡⎣2 (1 + cos 2t ) − 1⎤⎦ = 0 ⇔ cos t ( 2 cos 2t + 1) = 0

1 2π = cos 2 3 π 2π + k2π ⇔ t = ( 2k + 1) ∨ 2t = ± 2 3 π π ⇔ t = + kπ ∨ t = ± + kπ 2 3 π Maø x = t − 3 π 2π + kπ, ( vôùik ∈ Z ) Vaä y (*) ⇔ x = + k2π ∨ x = kπ ∨ x = 6 3 Ghi chuù : Khi giaû i caù c phöông trình löôï n g giaù c coù chöù a tgu, cotgu, coù aå n ôû maã u , hay chöù a caê n baä c chaü n ... ta phaû i ñaë t ñieà u kieä n ñeå phöông trình xaù c ñònh. Ta seõ duø n g caù c caù c h sau ñaâ y ñeå kieå m tra ñieà u kieä n xem coù nhaä n nghieä m hay khoâ n g. + Thay caùc giaù trò x tìm ñöôï c vaø o ñieà u kieä n thöû laï i xem coù thoû a Hoaë c + Bieå u dieã n caù c ngoï n cung ñieà u kieä n vaø caù c ngoï n cung tìm ñöôïc treâ n cuø n g moä t ñöôø n g troø n löôï n g giaù c . Ta seõ loaï i boû ngoï n cung cuû a nghieä m khi coù truø n g vôù i ngoï n cung cuû a ñieà u kieä n . Hoaë c + So vôi caù c ñieà u kieä n trong quaù trình giaûi phöông trình. ⇔ cos t = 0 ∨ cos 2t = −

Baø i 43 : Giaû i phöông trình tg 2 x − tgx.tg3x = 2 ( * ) π hπ ⎧cos x ≠ 0 ⇔ cos3x ≠ 0 ⇔ x ≠ + Ñieà u kieä n ⎨ 3 6 3 ⎩cos 3x = 4 cos x − 3 cos x ≠ 0 Luù c ñoù ta coù (*) ⇔ tgx ( tgx − tg3x ) = 2

sin x ⎛ sin x sin 3x ⎞ − ⎜ ⎟=2 cos x ⎝ cos x cos 3x ⎠ ⇔ sin x ( sin x cos 3x − cos x sin 3x ) = 2 cos2 x cos 3x



⇔ sin x sin ( −2x ) = 2 cos2 x. cos 3x ⇔ −2 sin2 x cos x = 2 cos2 x cos 3x ⇔ − sin2 x = cos x cos 3x (do cos x ≠ 0 ) 1 1 ⇔ − (1 − cos 2x ) = ( cos 4x + cos 2x ) 2 2 ⇔ cos 4x = −1 ⇔ 4x = π + k2π

π kπ + ( k ∈ Z) 4 2 so vôù i ñieà u kieä n π kπ 2 ⎛ 3π 3kπ ⎞ + ≠ 0 ( nhaän ) Caù c h 1 : Khi x = + thì cos 3x = cos ⎜ ⎟=± 2 ⎠ 2 4 2 ⎝ 4 Caù c h 2 : Bieå u dieã n caù c ngoï n cung ñieà u kieä n vaø ngoï n cung nghieä m ta thaá y khoâ n g coù ngoï n cung naø o truø n g nhau. Do ñoù : π kπ (*) ⇔ x = + 4 2 Löu yù caù c h 2 raá t maá t thôøi gian Caù c h 3 : 3π 3kπ π + = + hπ Neá u 3x = 4 2 2 Thì 3 + 6k = 2 + 4h ⇔ 1 = 4h − 6k 1 ⇔ = 2h − 3k (voâ lyù vì k, h ∈ Z ) 2 ⇔x =

Baø i 44: Giaûi phöông trình

11 ( *) 3 ⎧cos x ≠ 0 ⎪ Ñieà u kieä n ⎨sin x ≠ 0 ⇔ sin 2x ≠ 0 ⎪sin 2x ≠ 0 ⎩

tg 2 x + cot g 2 x + cot g 2 2x =

Do ñoù : ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ 11 − 1⎟ + ⎜ − 1⎟ + ⎜ − 1⎟ = (*) ⇔ ⎜ 2 2 2 3 ⎝ cos x ⎠ ⎝ sin x ⎠ ⎝ sin 2x ⎠ 1 1 1 20 + + = ⇔ 2 2 2 2 cos x sin x 4 sin x cos x 3 2 2 4 sin x + 4 cos x + 1 20 = ⇔ 4 sin2 x cos2 x 3 5 20 = ⇔ sin2 2x 3 3 ⇔ sin2 2x = (nhaä n do sin2x ≠ 0 ) 4 1 3 ⇔ (1 − cos 4x ) = 2 4 1 2π ⇔ cos 4x = − = cos 2 3 2π + k2π ⇔ 4x = ± 3 π kπ ⇔x = ± + ( k ∈ Z) 6 2

Chuù yù : Coù theå deã daø n g chöù n g minh : tgx + cot gx = 2 ⎛ 1 ⎞ 11 Vaä y (*) ⇔ ( tgx + cot gx ) − 2 + ⎜ − 1⎟ = 2 3 ⎝ sin x ⎠ 5 20 = ⇔ 2 sin 2x 3

2 sin 2x

Baø i 45 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2003) Giaû i phöông trình x ⎛x π⎞ sin 2 ⎜ − ⎟ tg 2 x − cos2 = 0 ( *) 2 ⎝2 4⎠ Ñieà u kieä n : cos x ≠ 0 ⇔ sin x ≠ ±1 luù c ñoù : 1⎡ π ⎞ ⎤ sin 2 x 1 ⎛ − [1 + cos x ] = 0 (*) ⇔ ⎢1 − cos ⎜ x − ⎟ ⎥ 2⎣ 2 ⎠ ⎦ cos2 x 2 ⎝

(1 − sin x ) (1 − cos2 x )

− (1 + cos x ) = 0 1 − sin 2 x 1 − cos2 x − (1 + cos x ) = 0 ⇔ 1 + sin x ⎡ 1 − cos x ⎤ − 1⎥ = 0 ⇔ (1 + cos x ) ⎢ ⎣ 1 + sin x ⎦ ⇔ (1 + cos x ) ( − cos x − sin x ) = 0 ⇔

⎡cos x = −1 ( nhaändo cos x ≠ 0 ) ⇔ ⎢ ⎣ tgx = −1 ⎡ x = π + k2π ⇔ ⎢ ⎢ x = − π + kπ ⎣ 4 Baø i 46 : Giaû i phöông trình sin 2x ( cot gx + tg2x ) = 4 cos2 x ( * )

⎧sin x ≠ 0 Ñieà u kieä n : ⎨ ⎩cos 2x ≠ 0



⎧sin x ≠ 0 ⎨ 2 ⎩2 cos x − 1 ≠ 0



cos x sin 2x + sin x cos 2x cos 2x cos x + sin 2x sin x = sin x cos 2x cos x = sin x cos 2x cos x ⎛ ⎞ 2 Luù c ñoù : (*) ⇔ 2 sin x cos x ⎜ ⎟ = 4 cos x ⎝ sin x cos 2x ⎠ Ta coù : cot gx + tg2x =

⎧cos x ≠ ±1 ⎪ ⎨ 2 ⎪cos x ≠ ± 2 ⎩

2 cos2 x = 4 cos2 x ( Do sin x ≠ 0 ) ⇔ cos 2x ⎡ ⎛ ⎞ 2 vaø ≠ ±1 ⎟⎟ ⎡cos x = 0 ⎢cos x = 0 ⎜⎜ Nhaän do cos x ≠ 2 ⎝ ⎠ ⇔ ⎢ 1 ⇔ ⎢ ⎢ ⎢ =2 1 π ⎣ cos 2x ⎢cos 2x = = cos , ( nhaän do sin x ≠ 0) 2 3 ⎣ π ⎡ ⎢ x = 2 + kπ ⇔ ⎢ ( k ∈ Z) ⎢ x = ± π + kπ ⎢⎣ 6 Baø i 47 : Giaû i phöông trình: cot g 2 x − tg 2 x = 16 (1 + cos 4x ) cos 2x cos2 x sin 2 x − Ta coù : cot g 2 x − tg 2 x = sin2 x cos2 x cos4 x − sin4 x 4 cos 2x = = sin2 x cos2 x sin2 2x ⎧sin 2x ≠ 0 Ñieà u kieä n : ⎨ ⇔ sin 4x ≠ 0 ⎩cos 2x ≠ 0 4 = 16 (1 + cos 4x ) Luù c ñoù (*) ⇔ sin2 2x ⇔ 1 = 4 (1 + cos 4x ) sin2 2x

⇔ 1 = 2 (1 + cos 4x ) (1 − cos 4x )

(

)

⇔ 1 = 2 1 − cos2 4x = 2 sin 2 4x 1 ( nhaän do sin 4x ≠ 0) 2 1 1 ⇔ (1 − cos 8x ) = 2 2 π kπ ⇔ cos 8x = 0 ⇔ x = + ,k ∈ 16 8 ⇔ sin2 4x =

Baø i 48: Giaûi phöông trình: sin 4 x + cos4 x =

⎧ π⎞ ⎛ ⎪sin ⎜ x + 3 ⎟ ≠ 0 ⎪ ⎝ ⎠ Ñieà u kieä n ⎨ ⇔ ⎪sin ⎛ π − x ⎞ ≠ 0 ⎜ ⎟ ⎪⎩ ⎝6 ⎠

⎧ ⎛ ⎪sin ⎜ x + ⎪ ⎝ ⎨ ⎪cos ⎛ x + ⎜ ⎪⎩ ⎝

π⎞ 7 ⎛ ⎛π ⎞ cot g ⎜ x + ⎟ cot g ⎜ − x ⎟ ( *) 8 3⎠ ⎝ ⎝6 ⎠

π⎞ ⎟≠0 3⎠ π⎞ ⎟≠0 3⎠

2π ⎞ ⎛ ⇔ sin ⎜ 2x + ⎟≠0 3 ⎠ ⎝

1 3 ⇔ − sin 2x + cos 2x ≠ 0 2 2 ⇔ tg2x ≠ 3

(

Ta coù : sin4 x + cos4 x = sin2 x + cos2 x

)

2

− 2sin2 x.cos2 x = 1 −

1 sin2 2x 2

π⎞ π⎞ ⎛π ⎛ ⎛π ⎞ ⎛ ⎞ Vaø : cot g ⎜ x + ⎟ .cot g ⎜ − x ⎟ = cot g ⎜ x + ⎟ .tg ⎜ + x ⎟ = 1 3⎠ 3⎠ ⎝3 ⎝ ⎝6 ⎠ ⎝ ⎠ 1 7 Luù c ñoù : (*) ⇔ 1 − sin2 2x = 2 8 1 1 ⇔ − (1 − cos 4x ) = − 4 8 1 ⇔ cos 4x = 2 π π kπ ⇔ 4x = ± + k2π ⇔ x = ± + 3 12 2 3 (nhaä n do tg2x = ± ≠ 3) 3

Baø i 49: Giaû i phöông trình 2tgx + cot g2x = 2 sin 2x +

1 ( *) sin 2x

⎧cos 2x ≠ 0 Ñieà u kieä n : ⎨ ⇔ sin 2x ≠ 0 ⇔ cos 2x ≠ ±1 ⎩sin 2x ≠ 0 2 sin x cos 2x 1 + = 2 sin 2x + Luù c ñoù : (*) ⇔ cos x sin 2x sin 2x 2 2 ⇔ 4 sin x + cos 2x = 2 sin 2x + 1

(

)

⇔ 4 sin2 x + 1 − 2 sin 2 x = 8 sin2 x cos2 x + 1

(

)

⇔ 2 sin2 x 1 − 4 cos2 x = 0 ⇔ 2 sin2 x ⎡⎣1 − 2 (1 + cos 2x ) ⎤⎦ = 0 ⎡sin x = 0 ( loaïi do sin 2x ≠ 0 ⇒ sin x ≠ 0 ) ⇔⎢ ⎢cos 2x = − 1 = cos 2π ( nhaän do cos 2x ≠ ±1) ⎢⎣ 2 3 2π ⇔ 2x = ± + k2π ( k ∈ Z ) 3 π ⇔ x = ± + kπ, k ∈ 3

Baø i 51: Giaû i phöông trình:

3 ( sin x + tgx ) tgx − sin x

− 2 (1 + cos x ) = 0 ( *)

sin x − sin x ≠ 0 cos x ⎧sin x ≠ 0 sin x (1 − cos x ) ⎪ ≠ 0 ⇔ ⎨cos x ≠ 0 ⇔ sin 2x ≠ 0 ⇔ cos x ⎪cos x ≠ 1 ⎩ Ñieà u kieä n : tgx − sin x ≠ 0 ⇔

Luù c ñoù (*)⇔



3 ( sin x + tgx ) .cot gx − 2 (1 + cos x ) = 0 ( tgx − sin x ) .cot gx

3 ( cos x + 1) − 2 (1 + cos x ) = 0 (1 − cos x )

3 − 2 = 0 ( do sin x ≠ 0 neân cos x + 1 ≠ 0) 1 − cos x ⇔ 1 + 2 cos x = 0 1 ⇔ cos x = − (nhaä n so vôù i ñieà u kieä n ) 2 2π + k2π, k ∈ ⇔ x=± 3 Baø i 52 : Giaû i phöông trình 2 2 (1 − cos x ) + (1 + cos x ) − tg 2 x sin x = 1 1 + sin x + tg 2 x * ( ) ( ) 4 (1 − sin x ) 2 ⇔

⎧cos x ≠ 0 Ñieà u kieä n : ⎨ ⇔ cos x ≠ 0 ⎩sin x ≠ 1 2 (1 + cos2 x ) sin 3 x 1 sin 2 x − = 1 + sin x + Luù c ñoù (*)⇔ ( ) 4 (1 − sin x ) 1 − sin 2 x 2 1 − sin 2 x

⇔ (1 + cos2 x ) (1 + sin x ) − 2 sin 3 x = (1 + sin x ) (1 − sin 2 x ) + 2 sin 2 x ⇔ (1 + sinx ) (1 + cos2 x ) = (1 + sin x ) cos2 x + 2 sin 2 x (1 + sin x ) ⎡1 + sin x = 0 ⇔ ⎢ 2 2 2 ⎣1 + cos x = cos x + 2 sin x ⎡sin x = −1 ( loaïi do cos x ≠ 0 ) ⇔ ⎢ ⇔ cos2x = 0 ⎣1 = 1 − cos 2x π ⇔ 2x = + kπ 2 π π ⇔ x = + k (nhaä n do cosx ≠ 0) 4 2

Baø i 53 : Giaû i phöông trình Ñieà u kieä n cos 5x ≠ 0 Luù c ñoù : (*) ⇔ cos 3x.

cos 3x.tg5x = sin 7x ( * )

sin 5x = sin 7x cos 5x

⇔ sin 5x.cos 3x = sin 7x.cos 5x 1 1 ⇔ [sin 8x + sin 2x ] = [sin12x + sin 2x ] 2 2 ⇔ sin 8x = sin12x ⇔ 12x = 8x + k2π ∨ 12x = π − 8x + k2π kπ π kπ ∨ x= + ⇔x = 2 20 10 So laï i vôù i ñieà u kieä n kπ 5kπ kπ x= thì cos 5x = cos = cos (loaï i neá u k leû ) 2 2 2 kπ π ⎛ π kπ ⎞ x= thì cos 5x = cos ⎜ + + ⎟ ≠ 0 nhaän 2 ⎠ 20 10 ⎝4 π kπ + Do ñoù : (*)⇔ x = hπ ∨ x = , vôù i k, h ∈ 20 10 Baø i 54 : Giaû i phöông trình sin4 x + cos4 x 1 = ( tgx + cot g2x ) ( *) sin 2x 2 Ñieà u kieä n : sin 2x ≠ 0

Ta coù : sin 4 x + cos4 x = ( sin 2 x + cos2 x ) − 2 sin 2 x cos2 x 2

=1−

1 sin2 2x 2

sin x cos 2x + cos x sin 2x sin 2x sin x + cos x cos 2x = cos x sin 2x cos ( 2x − x ) 1 = = cos x sin 2x sin 2x 1 1 − sin 2 2x 1 2 Do ñoù : (*) ⇔ = sin 2x 2 sin 2x 1 1 ⇔ 1 − sin 2 2x = 2 2 2 ⇔ sin 2x = 1 ( nhaän do sin 2x ≠ 0 ) tgx + cot g2x =

⇔ cos2 2x = 0 π + kπ, k ∈ 2 π kπ , k ∈ ⇔x = + 4 2 ⇔ 2x =

Baø i 55 : Giaû i phöông trình tg 2 x.cot g 2 2x.cot g3x = tg 2 x − cot g 2 2x + cot g3x ( * ) Ñieà u kieä n : cos x ≠ 0 ∧ sin 2x ≠ 0 ∧ sin 3x ≠ 0

⇔ sin 2x ≠ 0 ∧ sin 3x ≠ 0

Luùc ñoù (*) ⇔ cotg3x ( tg 2 x cot g 2 2x − 1) = tg 2 x − cot g 2 2x ⎡⎛ 1 − cos 2x ⎞ ⎛ 1 + cos 4x ⎞ ⎤ 1 − cos 2x 1 + cos 4x ⇔ cot g3x ⎢⎜ − ⎟⎜ ⎟ − 1⎥ = ⎣⎝ 1 + cos 2x ⎠ ⎝ 1 − cos 4x ⎠ ⎦ 1 + cos 2x 1 − cos 4x

⇔ cot g3x ⎡⎣(1 − cos 2x )(1 + cos 4x ) − (1 + cos 2x )(1 − cos 4x ) ⎤⎦ = (1 − cos 2x )(1 − cos 4x ) − (1 + cos 4x )(1 + cos 2x )

⇔ cot g3x [ 2 cos 4x − 2 cos 2x ] = −2 ( cos 4x + cos 2x ) cos 3x [ −4 sin 3x sin x] = −4 cos 3x cos x sin 3x ⇔ cos 3x sin x = cos 3x cos x ( do sin 3x ≠ 0) ⇔

⇔ cos 3x = 0 ∨ sin x = cos x π + kπ ∨ tgx = 1 2 π kπ π ⇔x= + ∨ x = + lπ ( k, l ∈ Z ) 6 3 4 So vôù i ñieà u kieä n : sin 2x.sin 3x ≠ 0 π kπ ⎛ π 2kπ ⎞ ⎛π ⎞ * Khi x = + thì sin ⎜ + ⎟ .sin ⎜ + kπ ⎟ ≠ 0 3 ⎠ 6 3 ⎝3 ⎝2 ⎠ ⎛ 1 + 2k ⎞ ⇔ sin ⎜ ⎟π ≠ 0 ⎝ 3 ⎠ Luoâ n ñuù n g ∀ k thoûa 2k + 1 ≠ 3m ( m ∈ Z ) ⇔ 3x =

* Khi x =

π 2 ⎛π ⎞ ⎛ 3π ⎞ + lπ thì sin ⎜ + 2lπ ⎟ sin ⎜ + 3lπ ⎟ = ± ≠0 2 4 ⎝2 ⎠ ⎝ 4 ⎠

luoâ n ñuù n g

π kπ ⎡ ⎢ x = 6 + 3 , k ∈ Z ∧ 2k ≠ 3m − 1 ( m ∈ ) Do ñoù : (*) ⇔ ⎢ ⎢ x = π + lπ, l ∈ ⎢⎣ 4 Caù c h khaù c: (*) ⇔ cotg3x ( tg 2 x cot g 2 2x − 1) = tg 2 x − cot g 2 2x

tg 2 x − cot g 2 2x tg 2 2x.tg 2 x − 1 = tg 2 x cot g 2 2x − 1 tg 2 x − tg 2 2x (1 + tg2x.tgx ) (1 − tg2x.tgx ) ⇔ cot g3x = (tg2x − tgx) ( tg2x + tgx) ⇔ cot g3x = cot gx. cotg3x ⇔ cos 3x = 0 ∨ sin x = cos x

⇔ cot g3x =

BAØI TAÄP

1.

2.

3.

⎛π ⎞ Tìm caù c nghieä m treâ n ⎜ , 3π ⎟ cuû a phöông trình: ⎝3 ⎠ 5π ⎞ 7π ⎞ ⎛ ⎛ sin ⎜ 2x + ⎟ − 3 cos ⎜ x − ⎟ = 1 + 2 sin x 2 ⎠ 2 ⎠ ⎝ ⎝ ⎛ π⎞ Tìm caù c nghieä m x treâ n ⎜ 0, ⎟ cuû a phöông trình ⎝ 2⎠ 2 2 sin 4x − cos 6x = sin (10, 5π + 10x ) Giaû i caù c phöông trình sau: a/ sin 3 x + cos3 x = 2 sin5 x + cos5 x

(

)

sin x + sin 2x + sin 3x = 3 cos x + cos 2x + cos 3x 1 + cos x c/ tg 2 x = 1 − sin x d/ tg2x − tg3x − tg5x = tg2x.tg3x.tg5x 4 e/ cos x = cos2 x 3 π⎞ 1 1 ⎛ + f/ 2 2 sin ⎜ x + ⎟ = 4 ⎠ sin x cos x ⎝ 2 i/ 2tgx + cot g2x = 3 + sin 2x 2 h/ 3tg3x + cot g2x = 2tgx + sin 4x 2 2 2 k/ sin x + sin 2x + sin 3x = 2 sin 2x + 2 cos x = 0 l/ 1 + sin x b/

m/

25 − 4x 2 ( 3sin 2πx + 8 sin πx ) = 0

sin x.cot g5x =1 cos 9x 2 = 2tg2x − cot g4x o/ 3tg6x − sin 8x p/ 2 sin 3x 1 − 4 sin 2 x = 1 n/

(

q/ tg 2 x =

)

1 + cos x 1 − sin x

r/ cos3 x cos 3x + sin 3 x sin 3x =

2 4

⎛x⎞ ⎛x⎞ 5 s/ sin4 ⎜ ⎟ + cos4 ⎜ ⎟ = ⎝ 3⎠ ⎝ 3⎠ 8 3 3 t/ cos x − 4 sin x − 3 cos x sin2 x + sin x = 0 x x u/ sin4 + cos4 = 1 − 2sin x 2 2

π⎞ π⎞ ⎛ ⎛ v/ sin ⎜ 3x − ⎟ = sin 2x.sin ⎜ x + ⎟ 4⎠ 4⎠ ⎝ ⎝

( 2 − sin x ) sin 3x w/ tg x + 1 = 2

4

4.

cos4 x

x ⎛ ⎞ y/ tgx + cos x − cos2 x = sin x ⎜ 1 + tg tgx ⎟ 2 ⎝ ⎠ Cho phöông trình: ( 2 sin x − 1)( 2 cos 2x + 2 sin x + m ) = 3 − 4 cos2 x (1)

a/ Giaû i phöông trình khi m = 1 b/ Tìm m ñeå (1) coù ñuù n g 2 nghieä m treâ n [ 0, π ] 5.

( ÑS: m = 0 ∨ m < −1 ∨ m > 3 ) Cho phöông trình: 4 cos5 x sin x − 4 sin5 x.cos x = sin2 4x + m (1) Bieá t raè n g x = π laø moä t nghieä m cuû a (1). Haõ y giaû i phöông trình trong tröôø n g hôï p ñoù .

Th.S Phạm Hồng Danh TT luyện thi Đại học CLC Vĩnh Viễn

Related Documents