Chöông 2: PHÖÔNG TRÌNH LÖÔÏ N G GIAÙ C CÔ BAÛ N
⎡ u = v + k2π sin u = sin v ⇔ ⎢ ⎣ u = π − v + k2π cos u = cos v ⇔ u = ± v + k2π π ⎧ ⎪u ≠ + kπ tgu = tgv ⇔ ⎨ 2 ⎪⎩u = v + k ' π ⎧u ≠ kπ cot gu = cot gv ⇔ ⎨ ⎩u = v + k ' π Ñaë c bieä t : sin u = 0 ⇔ u = kπ
π + k2π ( k ∈ Z) 2 π sin u = −1 ⇔ u = − + k2π 2 Chuù yù : sin u ≠ 0 ⇔ cos u ≠ ±1 cos u ≠ 0 ⇔ sin u ≠ ±1 sin u = 1 ⇔ u =
( k, k ' ∈ Z )
cos u = 0 ⇔ u =
π + kπ 2
cos u = 1 ⇔ u = k2π ( k ∈ Z ) cos u = −1 ⇔ u = π + k2π
Baø i 28 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2002) Tìm x ∈ [ 0,14 ] nghieä m ñuù ng phöông trình cos 3x − 4 cos 2x + 3 cos x − 4 = 0 ( * )
Ta coù (*) : ⇔ ( 4 cos3 x − 3 cos x ) − 4 ( 2 cos2 x − 1) + 3 cos x − 4 = 0
⇔ 4 cos3 x − 8 cos2 x = 0 ⇔ 4 cos2 x ( cos x − 2 ) = 0 ⇔ cos x = 0 hay cos x = 2 ( loaïi vì cos x ≤ 1) ⇔ x=
π + kπ ( k ∈ Z ) 2
π + kπ ≤ 14 2 π π 1 14 1 − ≈ 3, 9 ⇔ − ≤ kπ ≤ 14 − ⇔ −0, 5 = − ≤ k ≤ 2 2 2 π 2 ⎧ π 3π 5π 7π ⎫ Maø k ∈ Z neâ n k ∈ {0,1, 2, 3} . Do ñoù : x ∈ ⎨ , , , ⎬ ⎩2 2 2 2 ⎭ Ta coù : x ∈ [ 0,14] ⇔ 0 ≤
Baø i 29 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2004) Giaû i phöông trình : ( 2 cos x − 1)( 2 sin x + cos x ) = sin 2x − sin x ( *)
Ta coù (*) ⇔ ( 2 cos x − 1)( 2 sin x + cos x ) = sin x ( 2 cos x − 1)
⇔ ( 2 cos x − 1) ⎡⎣( 2 sin x + cos x ) − sin x ⎤⎦ = 0 ⇔ ( 2 cos x − 1)( sin x + cos x ) = 0
1 ∨ sin x = − cos x 2 π ⎛ π⎞ ⇔ cos x = cos ∨ tgx = −1 = tg ⎜ − ⎟ 3 ⎝ 4⎠ π π ⇔ x = ± + k2π ∨ x = − + kπ, ( k ∈ Z ) 3 4 ⇔ cos x =
Baø i 30 : Giaû i phöông trình cos x + cos 2x + cos 3x + cos 4x = 0 (*) Ta coù (*) ⇔ ( cos x + cos 4x ) + ( cos 2x + cos 3x ) = 0
5x 3x 5x x .cos + 2 cos .cos = 0 2 2 2 2 5x ⎛ 3x x⎞ 2 cos + cos ⎟ = 0 ⎜ cos 2 ⎝ 2 2⎠ 5x x 4 cos cos x cos = 0 2 2 5x x = 0 ∨ cos x = 0 ∨ cos = 0 cos 2 2 5x π π x π = + kπ ∨ x = + kπ ∨ = + kπ 2 2 2 2 2 π 2kπ π x= + ∨ x = + kπ ∨ x = π + 2π, ( k ∈ Z ) 5 5 2
⇔ 2 cos ⇔ ⇔ ⇔ ⇔ ⇔
Baø i 31: Giaûi phöông trình sin 2 x + sin 2 3x = cos2 2x + cos2 4x ( * )
1 1 1 1 (1 − cos 2x ) + (1 − cos 6x ) = (1 + cos 4x ) + (1 + cos 8x ) 2 2 2 2 ⇔ − ( cos 2x + cos 6x ) = cos 4x + cos 8x Ta coù (*) ⇔
⇔ −2 cos 4x cos 2x = 2 cos 6x cos 2x ⇔ 2 cos 2x ( cos 6x + cos 4x ) = 0 ⇔ 4 cos 2x cos 5x cos x = 0 ⇔ cos 2x = 0 ∨ cos 5x = 0 ∨ cos x = 0 π π π ⇔ 2x = + kπ ∨ 5x + kπ ∨ x = + kπ, k ∈ 2 2 2 π kπ π kπ π ∨x= + ∨ x = + kπ , k ∈ ⇔ x= + 4 2 10 5 2 Baø i 32 : Cho phöông trình ⎛π x⎞ 7 sin x.cos 4x − sin 2 2x = 4 sin 2 ⎜ − ⎟ − ( *) ⎝4 2⎠ 2 Tìm caù c nghieä m cuû a phöông trình thoû a : x − 1 < 3
1 ⎡ π ⎤ 7 (1 − cos 4x ) = 2 ⎢1 − cos ⎛⎜ − x ⎞⎟ ⎥ − 2 ⎝2 ⎠⎦ 2 ⎣ 1 1 3 sin x cos 4x − + cos 4x = − − 2sin x 2 2 2 1 sin x cos 4x + cos 4x + 1 + 2sin x = 0 2 1⎞ 1⎞ ⎛ ⎛ cos 4x ⎜ sin x + ⎟ + 2 ⎜ sin x + ⎟ = 0 2⎠ 2⎠ ⎝ ⎝ 1 ( cos 4x + 2) ⎜⎛ sin x + ⎟⎞ = 0 2⎠ ⎝ π ⎡ ⎡cos 4x = −2 ( loaïi ) x = − + k 2π ⎢ 6 ⎢ ⎢sin x = − 1 = sin ⎛ − π ⎞ ⇔ ⎢ ⎢ x = 7π + 2hπ ⎜ ⎟ ⎢⎣ 2 ⎝ 6⎠ ⎢⎣ 6 coù : x − 1 < 3 ⇔ −3 < x − 1 < 3 ⇔ −2 < x < 4
Ta coù : (*)⇔ sin x.cos 4x −
⇔ ⇔ ⇔ ⇔
⇔ Ta
π + k2π < 4 6 π π 1 1 2 1 −