Perkalian Bentuk Aljabar

  • Uploaded by: Singgih Pramu Setyadi
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Perkalian Bentuk Aljabar as PDF for free.

More details

  • Words: 1,094
  • Pages: 19
~ BENTUK ALJABAR ~

1. Perkalian suku banyak dengan konstanta  Tiap suku dikalikan konstanta  Contoh  5(a + b + c) = .....  Jawab: 5(a + b + c) = 5a + 5b + 5c  -2(3p – 2q + r) = .....  Jawab: -2(3p – 2q + r) = -2(3p) – (-2)(2q) +

(-2)r

= -6p + 4q – 2r

 3(-4a2b + 2ab2 – 5ab) = .....  Jawab: 3(-4a2b + 2ab2 – 5ab) = -12a2b +

6ab2 – 15ab

2. Perkalian suku banyak dengan suku satu  Tiap suku dikalikan suku satu itu.  Contoh:  a(a + b + c) = .....  Jawab: a(a + b + c) = a2 + ab + ac  -5p(2p2 – p + 1) = .....  Jawab: -5p(2p2 – p + 1) = -10p3 + 5p2 – 5p  2x2yz(-5x2 + 2xy -3xz + y2 – 5yz + z2) = .....  Jawab: 2x2yz(-5x2 + 2xy -3xz + y2 – 5yz +

z2 ) = -10x4yz + 4x3y2z – 6x3yz2 + 2x2y3z – 10x2y2z2 + 2x2yz3

3. Perkalian suku banyak dengan suku banyak  Tiap suku pada suku pertama

dikalikan dengan tiap suku pada suku banyak kedua.  Contoh:  (x – 2y)(2x + 3y) = .....  Jawab: (x – 2y)(2x + 3y) = x(2x + 3y) –

2y(2x + 3y) = 2x2 + 3xy – 4xy – 6y2 = 2x2 – xy – 6y2

3. Perkalian suku banyak dengan suku banyak  Contoh:  (a + b + 2c)(3a – 4b + c) = .....  Jawab: (a + b + 2c)(3a – 4b + c)

= a(3a – 4b + c) + b(3a – 4b + c) + 2c(3a – 4b + c) = 3a2 – 4ab + ac + 3ab – 4b2 + bc + 6ac – 8bc + 2c2 = 3a2 – ab + 7ac – 4b2 – 7bc + 2c2

4. Perkalian Istimewa Bentuk Bentuk Bentuk Bentuk Bentuk Bentuk

(x + a)(x + b) (a + b)2 (a – b)(a + b) (a + b)n (a + b)(a2 – ab + b2) (a – b)(a2 + ab + b2)

a. Bentuk (x + a)(x + b)  (x + a)(x + b) = x(x + b) + a(x + b)

= x2 + bx + ax + ab = x2 + ax + bx + ab = x2 + (a + b)x + ab  (x + a)(x + b) = x2 + (a + b)x + ab jumla h

hasil kali

a. (x + a)(x + b) = x2 + (a + b)x + ab  Contoh:  (x + 5)(x + 2) = .....  Jawab: (x + 5)(x + 2) = x2 + (5 + 2)x +

(5)(2) = x2 + 7x + 10  (a – 6)(a + 3) = .....  Jawab: (a – 6)(a + 3) = a2 + (-6 + 3)a +

(-6)(3) = a2 – 3a – 18

a. (x + a)(x + b) = x2 + (a + b)x + ab  Contoh:  (3p – 2)(3p – 3) = .....  J: (3p – 2)(3p – 3) = (3p)2 + (-2 + (-3))

(3p) + (-2)(-3) = 9p2 + (-5)(3p) + 6 = 9p2 – 15x + 6  (-5y + 2)(-5y – 7) = .....  J: (-5y + 2)(-5y – 7) = (-5y)2 + (2 + (-7))

(-5y) + (2)(-7)

b. Bentuk (a + b)2 dan (a – b)2  (a + b)2 = (a + b)(a + b)

= a(a + b) + b(a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2

 (a + b) = a2 + 2ab + b2  (a – b)2 = a2 + 2a(-b) + (-b)2 = a2 –

2ab + b2

 (a – b)2 = a2 – 2ab + b2

b. (a + b)2 = a2 + 2ab + b2  Contoh:  (x + 5)2 = .....  Jawab: (x + 5)2 = x2 + 2(x)(5) + 52

= x2 + 10x + 25  (2p + 3q)2 = .....  Jawab: (2p + 3q)2 = (2p)2 + 2(2p)(3q) +

(3q)2 = 4p2 + 12pq – 9q2

b. (a – b)2 = a2 – 2ab + b2  Contoh:  (a – 4)2 = .....  Jawab: (a – 4)2 = a2 – 2(a)(4) + (4)2

= a2 – 8a + 16  (5ab – 3c)2 = .....  Jawab: (5ab – 3c4)2 = (5ab)2 – 2(5ab)(3c4)

+ (3c4)2 = 25a2b2 – 30abc4 – 9c8

c. Bentuk (a – b)(a + b)  (a – b)(a + b) = a(a + b) – b(a + b)

= a2 + ab – ab – b2 = a2 – b 2  (a – b)(a + b) = a2 – b2

c. (a – b)(a + b) = a2 – b2  Contoh:  (x – 5)(x + 5) = x2 – 52

= x2 – 25

 (2p + 3q)(2p – 3q) = (2p)2 – (3q)2

= 4p2 – 9q2

 (-5ab + 7c)(-5ab – 7c) = (-5ab)2 –

(7c)2

= 25a2b2 – 49c2

ILUSTRASI a– b

b b a

a a– b a

a

ILUSTRASI a– b

a– b

b

a a+ b a

a a– b a

b a– b

d. Bentuk (a + b)n 1

 Perhatikan SEGITIGA PASCAL 1 1 1

1 1 1

3 4

5

2

3

1 1

6 4 1 10 10 5 1 15 20 15 6 1

 (a + b)0 = 1 1 6  (a + b)1 = a + b  (a + b)2 = a2 + 2ab + b2  (a + b)3 = a3 + 3a2b + 3ab2 + b3

d. Bentuk (a + b)n  Contoh:  (2p + q)3 = .....  Jawab: (2p + q)3 = (2p)3 + 3(2p)2(q) +

3(2p)(q)3 + q3 = 8p3 + 12p2q + 6pq3 + q3  (x + y)4 = .....  Jawab: (x + y)4 = x4 + 4x3y + 6x2y2 +

4xy3 + y4

e. Bentuk (a + b)(a2 – ab + b2)  (a + b)(a2 – ab + b2) =

a(a2 – ab + b2) + b(a2 – ab + b2) = a3 – a2b + ab2 + a2b – ab2 + b3 = a3 + b3

   

Jadi, (a + b)(a2 – ab + b2) = a3 + b3 dan (a – b)(a2 + ab + b2) = a3 – b3

Related Documents


More Documents from "Rianti Hidaiyah"