ارائه يک روش خطي جديد جهت تخمين حالت سيستم هاي توزيع

  • Uploaded by: saeed
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View ارائه يک روش خطي جديد جهت تخمين حالت سيستم هاي توزيع as PDF for free.

More details

  • Words: 3,991
  • Pages: 7
‫ﺍﺭﺍﺋﻪ ﻳﮏ ﺭﻭﺵ ﺧﻄﻲ ﺟﺪﻳﺪ ﺟﻬﺖ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﻮﺯﻳﻊ‬ ‫ﺻﺎﺩﻕ ﺟﻤﺎﻟﻲ‬

‫ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻢ ﻭ ﺻﻨﻌﺖ ﺍﻳﺮﺍﻥ‬

‫ﻋﻠﻴﺮﺿﺎ ﺟﻠﻴﻠﻴﺎﻥ‬

‫ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻢ ﻭ ﺻﻨﻌﺖ ﺍﻳﺮﺍﻥ‬

‫ﭼﮑﻴﺪﻩ‪ :‬ﺑﺎﺗﻮﺟﻪ ﺑﻪ ﺗﻮﺳﻌﻪ ﺭﻭﺯ ﺍﻓﺰﻭﻥ ﺍﺗﻮﻣﺎﺳـﻴﻮﻥ ﺳﻴـﺴﺘﻢﻫـﺎﻱ‬ ‫ﺗﻮﺯﻳﻊ‪ ،‬ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺑـﻪ ﻋﻨـﻮﺍﻥ ﻳﮑـﻲ ﺍﺯ‬

‫ﻗﺴﻤﺖﻫﺎﻱ ﺍﺻﻠﻲ ﺍﺗﻮﻣﺎﺳﻴﻮﻥ ﺳﻴﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﻣـﻮﺭﺩ ﺗﻮﺟـﻪ‬

‫ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ‪ .‬ﺩﺭ ﺍﻳـﻦ ﻣﻘﺎﻟـﻪ ﺭﻭﺵ ﺟﺪﻳـﺪﻱ ﺑـﺮﺍﻱ ﺗﺨﻤـﻴﻦ‬ ‫ﺣﺎﻟﺖ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﻮﺯﻳﻊ ﺍﺭﺍﺋـﻪ ﻣـﻲﺷـﻮﺩ‪ .‬ﺍﻳـﻦ ﺭﻭﺵ ﺑﺮﺍﺳـﺎﺱ‬ ‫ﺭﻭﺵ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﺑﻨﺎ ﻧﻬﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺩﺭ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩ ﺷـﺪﻩ‬

‫ﻣﺸﮑﻼﺕ ﺭﻭﺵ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﺩﺭ ﻣﻮﺭﺩ ﺷـﺒﮑﻪﻫـﺎﻱ ﺩﺍﺭﺍﻱ ﻣـﺶ‬

‫ﺑﺮ ﻃﺮﻑ ﺷﺪﻩ ﺍﺳﺖ ﻭ ﻫﻤﭽﻨﻴﻦ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﻣﻘـﺎﺩﻳﺮ ﺍﻧـﺪﺍﺯﻩﮔﻴـﺮﻱ‬ ‫ﺷﺪﻩ ﻭﻟﺘﺎﮊ ﻧﻴﺰﺩﺭﻣﻮﺭﺩ ﺷﺒﮑﻪﻫﺎﻱ ﺩﺍﺭﺍﻱ ﻣﺶ ﺍﺳـﺘﻔﺎﺩﻩ ﮐـﺮﺩ‪ .‬ﻳـﮏ‬

‫ﺭﻭﺵ ﺟﺪﻳﺪ ﻧﻴﺰ ﺑﺮﺍﻱ ﻗﻄﺮﻱ ﮐﺮﺩﻥ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺑـﻪ ﻣﻨﻈـﻮﺭ‬ ‫ﮐﺎﻫﺶ ﺣﺠﻢ ﻣﺤﺎﺳﺒﺎﺕ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺩﺭ ﺍﻳﻦ ﺭﻭﺵ ﺷﺎﺧﻪﻫـﺎ‬

‫ﻭ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺑﻪ ﮔﻮﻧﻪﺍﻱ ﻧﺎﻣﮕـﺬﺍﺭﻱ ﻣـﻲﺷـﻮﻧﺪ ﺗـﺎ‬

‫ﺣﺘﻲ ﺍﻻﻣﮑﺎﻥ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻗﻄﺮﻱﺗﺮ ﺷﻮﺩ‪.‬‬

‫ﻭﺍﮊﻩﻫﺎﻱ ﮐﻠﻴـﺪﻱ ‪ :‬ﺗﺨﻤـﻴﻦ ﺣﺎﻟـﺖ‪ ،‬ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ‪،‬‬ ‫ﺍﺗﻮﻣﺎﺳﻴﻮﻥ‪ ،‬ﭘﺨﺶ ﺑﺎﺭ‬

‫ﻋﺒﺎﺱ ﺩﻫﻘﺎﻧﻲ‬

‫ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻢ ﻭ ﺻﻨﻌﺖ ﺍﻳﺮﺍﻥ‬

‫ﺑﺎ ﮐﻤﮏ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺳﻴﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ‪ ،‬ﺍﭘﺮﺍﺗـﻮﺭ ﻣـﻲﺗﻮﺍﻧـﺪ‬

‫ﻣﺤﺎﺳﺒﺎﺕ ﺗﻠﻔﺎﺕ ﻭ ﺑﻬﻴﻨﻪ ﺳﺎﺯﻱ ﻭﻟﺘـﺎﮊ ﻭ ﺗـﻮﺍﻥ ﺭﺍﮐﺘﻴـﻮ ﺭﺍ ﺍﻧﺠـﺎﻡ‬ ‫‪٣‬‬

‫ﺩﻫﺪ‪ .‬ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺭﺍ ﻫﻤﭽﻨﻴﻦ ﻣﻲﺗﻮﺍﻥ ﺩﺭ ﺗﺠﺪﻳﺪ ﭘﻴﮑﺮﺑﻨﺪﻱ ﻭ‬ ‫ﺗﺸﺨﻴﺺ ﺍﺿﺎﻓﻪ ﺑﺎﺭ ﺑﻪ ﮐﺎﺭ ﮔﺮﻓﺖ‪ .‬ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﺨﻤـﻴﻦ ﺣﺎﻟـﺖ‬

‫ﻣﻲ ﺗﻮﺍﻥ ﻗﺎﺑﻠﻴﺖ ﭘﺎﻳﺶ ﺳﻴﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺭﺍ ﺍﻓـﺰﺍﻳﺶ ﺩﺍﺩ ﻭ ﺩﺭ‬

‫ﻧﺘﻴﺠﻪ ﮐﻴﻔﻴﺖ ﺗـﻮﺍﻥ ﻭ ﻗﺎﺑﻠﻴـﺖ ﺍﻃﻤﻴﻨـﺎﻥ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺭﺍ‬

‫ﺍﻓﺰﺍﻳﺶ ﺩﺍﺩ‪ .‬ﺗﺨﻤﻴﻦ ﺣﺎﻟـﺖ ﺍﺯ ‪ ٣٠‬ﺳـﺎﻝ ﭘـﻴﺶ ﺩﺭ ﺳﻴـﺴﺘﻢﻫـﺎﻱ‬ ‫ﻗﺪﺭﺕ ﺑﻪ ﮐﺎﺭ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﻣﻬﻤﺘـﺮﻳﻦ ﺭﻭﺵ ﻣـﻮﺭﺩ ﺍﺳـﺘﻔﺎﺩﻩ‬

‫ﻗــﺮﺍﺭ ﮔﺮﻓﺘ ـﻪ ﺩﺭ ﺗﺨﻤــﻴﻦ ﺣﺎﻟــﺖ‪ ،‬ﺭﻭﺵ ﺣــﺪﺍﻗﻞ ﻣﺮﺑﻌــﺎﺕ ﻭﺯﻥ‬ ‫ﺩﺍﺭ‪ (WLS) ٤‬ﺍﺳﺖ‪ .‬ﻣﻘﺪﺍﺭ ﺑﺎﻻﻱ ﻧﺴﺒﺖ‪ r‬ﺑﻪ ‪ ،x‬ﺗﻌﺪﺍﺩ ﮐـﻢ ﺣﻠﻘـﻪ‬ ‫ﻫﺎﻱ ﺷﺒﮑﻪ‪ ،‬ﭘﺨﺶ ﺷﺪﻥ ﺑﺎﺭﻫﺎ ﺩﺭ ﻃﻮﻝ ﻓﻴﺪﺭ‪ ،‬ﮐﻢ ﺑﻮﺩﻥ ﺗﺠﻬﻴﺰﺍﺕ‬

‫ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ‪ ،‬ﺍﺯ ﺧﺼﻮﺻﻴﺎﺕ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﻮﺯﻳﻊ ﻫﺴﺘﻨﺪ ﮐـﻪ ﺑﺎﻳـﺪ‬ ‫ﺩﺭ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺩﺭ ﻧﻈـﺮ ﮔﺮﻓﺘـﻪ ﺷـﻮﻧﺪ‪.‬‬

‫ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺘﻐﻴﻴﺮ ﺣﺎﻟـﺖ ﺩﺭ ﺣـﻞ ﻣـﺴﺄﻟﻪ‬ ‫ﺗﺨﻤــﻴﻦ ﺣﺎﻟــﺖ ﺍﺯ ﻣﺘــﺪﺍﻭﻟﺘﺮﻳﻦ ﺭﻭﺷﻬﺎﺳــﺖ ]‪ .[۴،۳،۲،۱‬ﺩﺭ ﻧﻈــﺮ‬

‫ﮔﺮﻓﺘﻦ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪﻫﺎ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺘﻐﻴﺮﻫﺎﻱ ﺣﺎﻟﺖ ﺩﺭ ﺳﻴﺴﺘﻢﻫﺎﻱ‬

‫ﺗﻮﺯﻳﻊ ﺩﺍﺭﺍﻱ ﻣﺰﺍﻳﺎﻱ ﻓﺮﺍﻭﺍﻧﻲ ﻣﻲﺑﺎﺷﺪ؛ ﺍﺯ ﺟﻤﻠﻪ ﻣﻲﺗـﻮﺍﻥ ﻣـﺴﺄﻟﻪ‬

‫‪ -۱‬ﻣﻘﺪﻣﻪ‬

‫ﺩﺭ ﺍﺗﻮﻣﺎﺳﻴﻮﻥ ﻭ ﻣﺪﻳﺮﻳﺖ ﻣﺪﺭﻥ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ‪(DMS)١‬‬

‫ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺭﺍ ﺑﺮﺍﻱ ﻫﺮ ﻓﺎﺯ ﺟﺪﺍﮔﺎﻧﻪ ﺑﮑﺎﺭ ﺑﺮﺩ ﮐﻪ ﺑﺎ ﺗﻮﺟـﻪ ﺑـﻪ‬

‫ﻧﺎﻣﺘﻌﺎﺩﻝ ﺑـﻮﺩﻥ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺑـﺴﻴﺎﺭ ﻣﻄﻠـﻮﺏ ﺍﺳـﺖ‪ .‬ﻭ‬

‫ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﻧﻘﺶ ﻣﻬﻤـﻲ ﺭﺍ ﺑـﺎﺯﻱ ﻣـﻲﮐﻨـﺪ‪ .‬ﺗﺨﻤـﻴﻦ ﺣﺎﻟـﺖ‬

‫ﻫﻤﭽﻨﻴﻦ ﺑﻪ ﻋﻠﺖ ﺷﻌﺎﻋﻲ ﺑﻮﺩﻥ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺑـﺎ ﺩﺍﺷـﺘﻦ‬

‫ﻣﺤﺪﻭﺩﻱ ﺍﺯ ﺗﺠﻬﻴﺰﺍﺕ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﻭ ﺍﻃﻼﻋﺎﺕ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺍﺯ‬

‫ﺍﺯﻧﻈﺮﮐﺎﺭﺑﺮﺩﻫﺎﻱ ﻋﻤﻠﻲ‪ ،‬ﺗﺨﻤﻴﻦ ﺣﺎﻟـﺖ ﺑﺎﻳـﺪ ﺑﺘﻮﺍﻧـﺪ ﺍﺯ ﻣﻘـﺎﺩﻳﺮ‬

‫ﻭﺿﻌﻴﺖ ﺳﻴﺴﺘﻢ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺯﻣﺎﻥ ﺣﻘﻴﻘﻲ‪٢‬ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﻌﺪﺍﺩ‬

‫ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﻫﺎ‪ ،‬ﺗﻤﺎﻣﻲ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﺳﻴﺴﺘﻢ ﻗﺎﺑﻞ ﺗﺤﺼﻴﻞ ﺍﺳـﺖ‪.‬‬

‫ﭘﻴﺶﺑﻴﻨﻲ ﺑﺎﺭ ﺗﺨﻤﻴﻦ ﻣﻲﺯﻧﺪ‪.‬‬

‫ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ‪ (MV) ٥‬ﻭﻟﺘﺎﮊ‪ ،‬ﺗﻮﺍﻥ ﻭ ﺟﺮﻳﺎﻥ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﺎﻳﺪ‪ .‬ﺩﺭ‬

‫‪١-Distribution Management System‬‬ ‫‪٢- Real Time‬‬

‫‪٣-Reconfiguration‬‬ ‫‪۴-Wighted Least Square‬‬ ‫‪۵-Measurement Value‬‬

‫ﺭﻭﺵ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﻋﻼﻭﻩ ﺑﺮ ﻣﻘﺎﺩﻳﺮ ﺍﻧـﺪﺍﺯﻩﮔﻴـﺮﻱ ﺷـﺪﺓ ﺟﺮﻳـﺎﻥ ﻭ‬ ‫ﺗﻮﺍﻥ‪ ،‬ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﺓ ﻭﻟﺘﺎﮊ ﺭﺍ ﻧﻴﺰ ﻣـﻲﺗـﻮﺍﻥ ﺩﺭ ﺗﺨﻤـﻴﻦ‬ ‫ﺣﺎﻟﺖ ﺑﮑﺎﺭﮔﺮﻓﺖ‪ .‬ﺩﺭﻣﺮﺟﻊ ]‪ [۳‬ﺭﻭﺷـﻲ ﺑـﺮﺍﻱ ﺍﺳـﺘﻔﺎﺩﻩ ﺍﺯ ‪MV‬‬

‫ﻭﻟﺘﺎﮊ ﺩﺭ ﻣﻮﺭﺩ ﺷﺒﮑﻪﻫﺎﻱ ﺷﻌﺎﻋﻲ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟـﻪ‬

‫ﺑـــﺮﺍﻱ ﺑﺪﺳـــﺖ‬

‫ﺁﻭﺭﺩﻥ ‪∆B‬‬

‫ﻻﺯﻡ ﺍﺳـــﺖ ﺩﺭ ﻫـــﺮ ﺑـــﺎﺭ ﺗﮑـــﺮﺍﺭ‬

‫‪ G = H WH‬ﻣﻌﮑﻮﺱ ﺷﻮﺩ‪ G .‬ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻧﺎﻡ ﺩﺍﺭﺩ ﮐﻪ ﺍﮐﺜـﺮ‬ ‫ﺣﺠﻢ ﻣﺤﺎﺳﺒﺎﺕ‪ ،‬ﻣﺮﺑﻮﻁ ﺑﻪ ﻣﻌﮑﻮﺱ ﮐﺮﺩﻥ ﺍﻳﻦ ﻣﺎﺗﺮﻳﺲ ﻣﻲﺑﺎﺷﺪ‬ ‫‪t‬‬

‫ﻭﺗﻤﺎﻣﻲ ﺭﻭﺷﻬﺎ ﺳﻌﻲ ﺩﺭ ﮐﻢ ﮐﺮﺩﻥ ﺯﻣﺎﻥ ﻣﺤﺎﺳﺒﻪ ﻣﻌﮑـﻮﺱ ﺍﻳـﻦ‬

‫ﺭﻭﺷﻲ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﮐﻪ ﺑﺘﻮﺍﻥ ‪ MV‬ﻭﻟﺘـﺎﮊ ﺭﺍ ﺩﺭ ﻣـﻮﺭﺩ ﺷـﺒﮑﻪﻫـﺎﻱ‬

‫ﻣﺎﺗﺮﻳﺲ ﺭﺍ ﺩﺍﺭﻧﺪ‪.‬‬

‫ﻫﺮ ﻣﺮﺣﻠﻪ ﺗﮑﺮﺍﺭ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ‪ ،‬ﮐﻪ ﺩﺭ ﺍﺩﺍﻣـﻪ ﺗﻌﺮﻳـﻒ ﻣـﻲﺷـﻮﺩ‪،‬‬

‫ﻣﻲﺗﻮﺍﻥ ﻭﻟﺘﺎﮊ ﻭ ﺗﻮﺍﻥ ﮔﺮﻩﻫﺎ ﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﺩ‪.‬‬

‫ﺩﺍﺭﺍﻱ ﻣﺶ ﻫﻢ ﺑﻪ ﮐﺎﺭﺑﺮﺩ‪ .‬ﺩﺭ ﺭﻭﺵ ﺣﺪﺍﻗﻞ ﻣﺮﺑﻌﺎﺕ ﻭﺯﻥ ﺩﺍﺭ ﺩﺭ‬

‫ﻣﻌﮑﻮﺱ ﻣﻲﺷﻮﺩ ﮐﻪ ﺍﻏﻠﺐ ﺯﻣﺎﻥ ﻣﺤﺎﺳﺒﺎﺗﻲ ﺭﺍ ﺑﻪ ﺧﻮﺩ ﺍﺧﺘﺼﺎﺹ‬

‫ﻣﻲﺩﻫﺪ‪ .‬ﻫﺮ ﭼﻪ ﻗﺪﺭ ﻣﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ ﻗﻄـﺮﻱﺗـﺮ ﺑﺎﺷـﺪ ﺯﻣـﺎﻥ ﻻﺯﻡ‬

‫ﺑﺮﺍﻱ ﻣﻌﮑﻮﺱ ﺷﺪﻥ ﻣﺎﺗﺮﻳﺲ ﻧﻴﺰ ﮐﻤﺘـﺮ ﻣـﻲﺷـﻮﺩ‪ .‬ﺗﺮﺗﻴـﺐ ﻗـﺮﺍﺭ‬ ‫ﮔﺮﻓﺘﻦ ﻋﻨﺎﺻﺮ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺑﻪ ﻧﺎﻣﮕﺬﺍﺭﻱ ﺷﺎﺧﻪﻫﺎ ﻭ ﻣﻘـﺎﺩﻳﺮ‬ ‫ﺍﻧـﺪﺍﺯﻩﮔﻴـﺮﻱ ﺷــﺪﻩ ﺑـﺴﺘﮕﻲ ﺩﺍﺭﺩ‪ .‬ﺩﺭ ﺍﻳـﻦ ﻣﻘﺎﻟــﻪ ﺭﻭﺷـﻲ ﺑــﺮﺍﻱ‬

‫ﻧﺎﻣﮕﺬﺍﺭﻱ ﺷﺎﺧﻪ ﻫﺎ ﻭ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴـﺮﻱ ﺷـﺪﻩ ﺍﺭﺍﺋـﻪ ﺷـﺪﻩ ﺗـﺎ‬ ‫ﻣﺎﺗﺮﻳﺲ ﺗﺎ ﺟﺎﻱ ﻣﻤﮑﻦ ﺑﻪ ﻓﺮﻡ ﻗﻄﺮﻱ ﺗﺒﺪﻳﻞ ﺷﻮﺩ‪.‬‬

‫‪ -۲‬ﺭﻭﺵ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺟﺮﻳﺎﻥ‬

‫)‪(1‬‬

‫ﺷﺎﺧﻪ]‪[۱،۲‬‬

‫‪mea‬‬

‫ﮐﻪ ﺩﺭ ﺭﺍﺑﻄﻪ ﻓﻮﻕ‪:‬‬

‫‪ : Vr‬ﻭﻟﺘﺎﮊ ﮔﺮﻩ ﺑﺎﻻﺗﺮ‬

‫‪ : Vs‬ﻭﻟﺘﺎﮊ ﮔﺮﻩ ﭘﺎﻳﻴﻦﺗﺮ‬

‫‪ Bl‬ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﻭ ‪ Zl‬ﺍﻣﭙﺪﺍﻧﺲ ﺷﺎﺧﻪ‪ l‬ﻣﻲ ﺑﺎﺷﻨﺪ‬

‫‪-۳‬ﻭﻳﮋﮔﻲﻫﺎﻱ ﻣﻄﻠﻮﺏ ﻳﮏ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ‬ ‫ﺗﺎﻣﻴﻦ ﮔﺮﺩﻧﺪ‪:‬‬

‫‪ -١‬ﺗﻮﺍﻧﺎﻳﻲ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﻤﺎﻣﻲ ﻣﻘﺎﺩﻳﺮ ﺍﻧـﺪﺍﺯﻩﮔﻴـﺮﻱ ﺷـﺪﻩ ﺍﻋـﻢ ﺍﺯ‬ ‫ﺗﻮﺍﻥ‪ ،‬ﺟﺮﻳﺎﻥ ﻭ ﻭﻟﺘﺎﮊ ﺭﺍ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ‪ .‬ﺩﺭ ﻋﻴﻦ ﺣﺎﻝ ﻣﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ‬

‫ﺧﻄﻲ ﻭ ﺛﺎﺑﺖ ﺑﺎﺷﺪ‪.‬‬

‫‪ -٢‬ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻃﻮﺭﻱ ﺗﺸﮑﻴﻞ ﺷﻮﺩ ﮐﻪ ﺍﺣﺘﻴﺎﺝ ﺑﻪ ﺣﺪﺍﻗﻞ ﺯﻣﺎﻥ‬

‫‪ :B‬ﻣﺘﻐﻴﻴﺮﻫﺎﻱ ﺣﺎﻟﺖ ﻳﻌﻨﻲ ﺟﺮﻳﺎﻥﻫﺎﻱ ﺷﺎﺧﻪ‬

‫ﺑﺮﺍﻱ ﻣﻌﮑﻮﺱ ﺷﺪﻥ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ‪.‬‬

‫‪ : Zimea‬ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﺷﺪﻩ )‪(MV‬‬

‫‪ -٣‬ﻗﺎﺑﻞ ﺗﺠﺰﻳﻪ ﺑـﻪ ﻗـﺴﻤﺖﻫـﺎﻱ ﺣﻘﻴﻘـﻲ ﻭ ﻣﻮﻫـﻮﻣﻲ ﺑﺎﺷـﺪ ﻭ‬

‫‪ : h‬ﻣﺎﺗﺮﻳﺲ ﺗﺎﺑﻊ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ‬

‫ﻫﻤﭽﻨﻴﻦ ﻣﺴﺄﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺭﺍ ﺑﺘﻮﺍﻥ ﺟﺪﺍﮔﺎﻧـﻪ ﺑـﺮﺍﻱ ﻫـﺮ ﻓـﺎﺯ‬

‫‪ : w‬ﻣﺎﺗﺮﻳﺲ ﻭﺯﻥ ﺩﻫﻲ‬

‫ﺣﻞ ﻧﻤﻮﺩ )ﮐﺎﻫﺶ ﺍﺑﻌﺎﺩ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ(‪.‬‬

‫ﻣﻲ ﺑﺎﺷﻨﺪ‪.‬‬

‫ﻣﺎﺗﺮﻳﺲ ﺗﺎﺑﻊ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ )‪ (h‬ﻣﻘـﺎﺩﻳﺮ ﺍﻧـﺪﺍﺯﻩﮔﻴـﺮﻱ ﺷـﺪﻩ ﺭﺍ ﺑـﻪ‬

‫ﻣﺘﻐﻴﻴﺮﻫﺎﻱ ﺣﺎﻟﺖ ﻣﺮﺗﺒﻂ ﻣﻲ ﮐﻨﺪ‪ .‬ﺑـﺮﺍﻱ ﺣـﻞ ﻣـﺴﺄﻟﻪ ﺑـﺎﻻ ﺭﻭﺵ‬ ‫ﺗﮑﺮﺍﺭ ﻧﻴﻮﺗﻮﻥ ﺑﮑﺎﺭ ﮔﺮﻓﺘﻪ ﻣﻲﺷﻮﺩ ﻭ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ‪:‬‬ ‫ﮐﻪ ﺩﺭ ﺭﺍﺑﻄﻪ ﻓﻮﻕ ﺩﺍﺭﻳﻢ‪:‬‬

‫ﮐﻪ ﺩﺭ ﺭﺍﺑﻄﻪ ﻓﻮﻕ‪:‬‬

‫ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺍﺭﺍﺋﻪ ﻣﻲﮔﺮﺩﺩ‪ .‬ﺑﺮﺍﻱ ﺍﻳﻦ ﻣﻨﻈﻮﺭ ﺍﻫﺪﺍﻑ ﺯﻳـﺮ ﺑﺎﻳـﺪ‬

‫‪J ( x) = W ( Z i − h( B))^ 2‬‬

‫)‪(2‬‬

‫)‪(5‬‬

‫‪Vr = Vs + Bl Zl‬‬

‫ﺩﺭﺍﻳﻦ ﻗﺴﻤﺖ ﺑﻪ ﺻﻮﺭﺕ ﻓﻬﺮﺳﺖ ﻭﺍﺭ ﻭﻳﮋﮔﻲﻫﺎﻱ ﻣﻄﻠﻮﺏ ﻳـﮏ‬

‫ﺗﺎﺑﻊ ﻫﺪﻑ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﺑـﺮ ﺍﺳـﺎﺱ ﺭﻭﺵ ‪WLS‬‬

‫ﺑﺮﺍﺑﺮ ﺯﻳﺮ ﺍﺳﺖ‪:‬‬

‫ﺑﻌﺪ ﺍﺯ ﺑﺪﺳﺖ ﺁﻣﺪﻥ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪﻫﺎ ﺑﺎ ﺍﺳـﺘﻔﺎﺩﻩ ﺍﺯ ﺭﻭﺵ ﭘﻴـﺸﺮﻭ‬

‫‪H H∆B = H tW∆I‬‬ ‫‪t‬‬

‫‪ -٤‬ﺑﺘﻮﺍﻥ ﺗﻮﺳﻂ ﺁﻥ ﻭﺿﻌﻴﺖ ﺷﺒﮑﻪﻫﺎﻱ ﺩﺍﺭﺍﻱ ﻣـﺶ ﺿـﻌﻴﻒ ﺭﺍ‬ ‫ﺗﺨﻤﻴﻦ ﺯﺩ ﺩﺭ ﻋﻴﻦ ﺣﺎﻝ ﺳﻪ ﻭﻳﮋﮔﻲ ﺑﺎﻻ ﺭﺍ ﻧﻴﺰ ﺗﺄﻣﻴﻦ ﮐﺮﺩ‪.‬‬

‫‪ -۳-۱‬ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ‬

‫‪ -۳-۱-١‬ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺟﺮﻳﺎﻥ]‪[۲،۷‬‬

‫‪ :H‬ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺗﺎﺑﻊ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ‬

‫ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﺍﮔﺮ‪ MV‬ﺑﻪ ﺻﻮﺭﺕ ﻓﺎﺯﻭﺭ ﺟﺮﻳﺎﻥ ﺑﺎﺷﺪ‪ ،‬ﺑـﺎ ﺗﻮﺟـﻪ‬

‫‪ : ∆B‬ﻣﻘﺎﺩﻳﺮ ﺑﺎﻗﻴﻤﺎﻧﺪﻩ ﺍﻱ‬

‫ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺍﺯ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ‪.‬‬

‫‪ :W‬ﻣﺎﺗﺮﻳﺲ ﻭﺯﻥ ﺩﻫﻲ‬

‫ﺑﻪ ﺗﻌﺮﻳﻒ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻋﻨﺎﺻﺮ ﻣﺮﺑـﻮﻁ ﺑـﻪ ‪ MV‬ﺟﺮﻳـﺎﻥ ﺩﺭ‬

‫‪ : ∆I‬ﻣﺎﺗﺮﻳﺲ ﺧﻄﺎﻱ ﻋﺪﻡ ﺗﻄﺎﺑﻖ‬

‫ﻣﻘﺎﺩﻳﺮ ﺑﺎﻗﻴﻤﺎﻧﺪﻩ ﺍﻱ ) ‪ ( ∆B‬ﺩﺭ ﻫﺮ ﺗﮑـﺮﺍﺭ‪ ،‬ﻣﺤﺎﺳـﺒﻪ ﻭ ﺑـﻪ ﺟﺮﻳـﺎﻥ‬ ‫ﺷﺎﺧﻪﻫﺎ ﺍﻓﺰﻭﺩﻩ ﻣﻲﺷﻮﻧﺪ‪:‬‬ ‫)‪(3‬‬

‫‪= B + ∆B‬‬ ‫‪k‬‬

‫‪k +1‬‬

‫‪B‬‬

‫ﻣﺎﺗﺮﻳﺲ ﺧﻄﺎﻱ ﻋﺪﻡ ﺗﻄﺎﺑﻖ ) ‪ ( ∆I‬ﺗﻔـﺎﻭﺕ ﻣﻘـﺎﺩﻳﺮ ﺟﺮﻳـﺎﻥﻫـﺎﻱ‬ ‫ﻣﻌﺎﺩﻝ ﺷﺎﺧﻪﻫﺎ )ﻳﺎ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ( ﺑﺎ ﻣﺤﺎﺳﺒﻪ ﺷﺪﻩ ﻣﻲﺑﺎﺷﺪ‪:‬‬ ‫)‪(4‬‬

‫‪∆I = I eq − I cal‬‬

‫)‪(6‬‬

‫‪∂I r ‬‬ ‫‪‬‬ ‫‪∂Bi  1 ‬‬ ‫=‬ ‫‪∂I i   1‬‬ ‫‪∂Bi ‬‬

‫‪ ∂I r‬‬ ‫‪ r‬‬ ‫‪∂B‬‬ ‫‪= i‬‬ ‫‪ ∂I‬‬ ‫‪ ∂B‬‬ ‫‪ r‬‬

‫‪H SUB‬‬

‫ﮐﻪ ﺩﺭ ﺍﻳﻦ ﺭﺍﺑﻄﻪ ‪ l‬ﺷﻤﺎﺭﻩ ﺷﺎﺧﻪ ﻭ ‪ I‬ﻣﻘﺪﺍﺭ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺑﻪ‬

‫ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲﺑﺎﺷﺪ‪:‬‬

‫‪I = MV = I lr + jI li‬‬

‫ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻗﻄﺮﻱ ﺑﻮﺩﻥ ﻣﺎﺗﺮﻳﺲ ﻣـﻲﺗـﻮﺍﻥ ﻣﻘـﺎﺩﻳﺮ ﻣﻮﻫـﻮﻣﻲ ﻭ‬

‫‪ MV -١‬ﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﺗﻮﺍﻥ ﺟﺎﺭﻱ ﺧﻄﻮﻁ ﻣﻲﺑﺎﺷـﺪ‪ :‬ﺩﺭ ﺍﻳـﻦ‬

‫ﺧﻮﺍﻫﺪ ﺑﻮﺩ‪ ،‬ﺍﻣﺎ ﺍﮔﺮ‪ MV‬ﺑﻪ ﺻﻮﺭﺕ ﺩﺍﻣﻨﻪ ﺟﺮﻳﺎﻥ ﺑﺎﺷـﺪ ﺧـﻮﺍﻫﻴﻢ‬

‫ﺗﺒﺪﻳﻞ ﮐﺮﺩ‪:‬‬

‫ﺣﻘﻴﻘﻲ ﺭﺍ ﺍﺯ ﻫﻢ ﺟﺪﺍ ﻧﻤﻮﺩ‪ .‬ﺩﺭ ﺿﻤﻦ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻧﻴـﺰ ﻗﻄـﺮﻱ‬ ‫ﺩﺍﺷﺖ‪:‬‬ ‫)‪(7‬‬

‫‪2‬‬ ‫‪2‬‬ ‫‪h( I ) = I r + I i‬‬

‫)‪(8‬‬

‫‪ ∂h‬‬ ‫‪ ∂I r = cos φ‬‬ ‫‪‬‬ ‫‪ ∂h = sin φ‬‬ ‫‪ ∂I i‬‬

‫ﻋﻨﺎﺻﺮﻣﺮﺑﻮﻁ ﺑﻪ ﺍﻳﻦ‪ MV‬ﺩﺍﻣﻨﻪ ﺟﺮﻳﺎﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺳﺖ‪:‬‬

‫ﮐﻪ ﺩﺭ ﺁﻥ‬

‫‪Ii‬‬ ‫‪Ir‬‬

‫‪φ = tan −1‬‬

‫ﻣﻲ ﺑﺎﺷﺪ‪ .‬ﻭﺟﻮﺩ ﺍﻳﻦ ﻋﻨﺎﺻﺮ ﺩﺭ ﻣـﺎﺗﺮﻳﺲ‬

‫ﮊﺍﮐﻮﺑﻴﻦ ﺳﺒﺐ ﭘﻴﺪﺍﻳﺶ ﺟﻤﻼﺕ ﺯﻳﺮ ﺩﺭ ﻣـﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ ﺧﻮﺍﻫـﺪ‬ ‫ﺷﺪ‪:‬‬

‫ﺻﻮﺭﺕ ﻣﻲﺗﻮﺍﻥ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺭﻭﺍﺑﻂ ﺯﻳﺮ ﺁﻥ ﺭﺍ ﺑـﻪ ﺟﺮﻳـﺎﻥ ﻣﻌـﺎﺩﻝ‬ ‫)‪(14‬‬ ‫‪k‬‬

‫*‪S‬‬ ‫‪1 ‬‬ ‫‪flow‬‬ ‫‪r + jI r ⇒ H‬‬ ‫‪= I eq‬‬ ‫=‬ ‫‪eq‬‬ ‫‪sub  1‬‬ ‫*‬ ‫‪k‬‬ ‫‪V‬‬

‫‪ V‬ﻭﻟﺘﺎﮊ ﮔﺮﻩﺍﻱ ﺍﺳﺖ ﮐﻪ ﺟﺮﻳﺎﻥ ﻣﻌﺎﺩﻝ ﺍﺯ ﺁﻥ ﺧﺎﺭﺝ ﻣﻲﺷﻮﺩ‪.‬‬

‫‪ MV-۲‬ﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﺗﻮﺍﻥ ﺑﺎﺭ ﻣﺘﺼﻞ ﺑﻪ ﺑﺎﺳﻬﺎﻣﻲﺑﺎﺷﺪ‪:‬‬

‫ﺍﻳﻦ ﻧﻮﻉ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱﻫﺎ ﻣﻌﻤﻮﻻﹰ ﻧﺘﺎﻳﺞ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺍﺯ ﭘﻴﺶﺑﻴﻨﻲ ﺑﺎﺭ‬

‫ﺍﺳﺖ ﻭ ﺩﺍﺭﺍﻱ ﺩﻗﺖ ﮐﻤﺘﺮﻱ ﻧﺴﺒﺖ ﺑﻪ ﺑﻘﻴـﻪ ‪MV‬ﻫـﺎ ﻣـﻲﺑﺎﺷـﺪ ﻭ‬

‫ﺍﮐﺜﺮ ﻭﺭﻭﺩﻳﻬﺎﻱ ﻣﺴﺄﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺭﺍ ﺗﺸﮑﻴﻞ ﻣﻲﺩﻫﺪ‪ .‬ﺑﺎ ﺗﻮﺟﻪ‬ ‫ﺑﻪ ﺷﮑﻞ ‪ ۱‬ﻭ ﺭﺍﺑﻄﻪ ‪ KCL‬ﻣﻲ ﺗﻮﺍﻥ ﻧﻮﺷﺖ‪:‬‬

‫*‪S‬‬ ‫` ‪r + jI i‬‬ ‫‪I‬‬ ‫=‬ ‫‪= I eq‬‬ ‫‪eq‬‬ ‫‪load V k‬‬ ‫‪I‬‬ ‫‪= B − B‬‬ ‫‪load ∑ in ∑ out‬‬

‫)‪(15‬‬ ‫‪cos φ sin φ ‬‬ ‫‪‬‬ ‫‪sin 2 φ ‬‬

‫)‪(9‬‬

‫‪ cos 2 φ‬‬ ‫‪Gsub = ‬‬ ‫‪ sin φ cos φ‬‬

‫= ‪eq‬‬ ‫‪I mea‬‬

‫)‪(16‬‬

‫ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﻗﺴﻤﺖﻫﺎﻱ ﻣﻮﻫﻮﻣﻲ ﻭ ﺣﻘﻴﻘﻲ ﻣـﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ ﺑـﺎ‬

‫ﻫﻢ ﺗﺮﮐﻴﺐ ﻣﻲﺷﻮﻧﺪ) ﺗﺰﻭﻳﺞ(‪ ،‬ﭼﻮﻥ ﺩﺭ ﻋﺒﺎﺭﺕ ﺑﺎﻻ ‪ φ‬ﮐﻪ ﻣﺮﺑـﻮﻁ‬ ‫ﺑﻪ ﻫﺮ ﺩﻭ ﻗﺴﻤﺖ ﻣﻮﻫﻮﻣﻲ ﻭ ﺣﻘﻴﻘﻲ ﻣﻲﺑﺎﺷﺪ ﻇﺎﻫﺮ ﺷـﺪﻩ ﺍﺳـﺖ‪.‬‬ ‫ﺑﺮﺍﻱ ﺣﻞ ﺍﻳﻦ ﻣﺸﮑﻞ ﻣﻲ ﺗﻮﺍﻥ ﺍﻗﺪﺍﻣﺎﺕ ﺯﻳﺮ ﺭﺍ ﺍﻧﺠﺎﻡ ﺩﺍﺩ‪:‬‬

‫ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻳﻨﮑﻪ ﻣﻴﺰﺍﻥ ﺗﻮﺍﻥ ﺗﺤـﻮﻳﻠﻲ ﭘـﺴﺖ ﺍﺻـﻠﻲ ﺑـﻪ ﺷـﺒﮑﻪ‬

‫ﻣﺸﺨﺺ ﻣﻲﺑﺎﺷﺪ‪ ،‬ﻣﻲﺗﻮﺍﻥ ﺭﻭﺍﺑﻂ ﺯﻳﺮ ﺭﺍ ﻧﻮﺷﺖ‪:‬‬ ‫)‪(10‬‬

‫‪=1<0 pu‬‬ ‫‪S = p + jQ = VI * v‬‬ ‫‪‬‬ ‫* ‪→ S = I‬‬ ‫) ‪⇒ angle( I ) = −angle( S‬‬

‫ﺍﺯ ﺍﻳﻦ ﻣﻘﺪﺍﺭ ﺯﺍﻭﻳﻪ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﻋﻨﻮﺍﻥ ﺯﺍﻭﻳﻪ ﺍﻭﻟﻴﻪ ‪ MV‬ﺩﺍﻣﻨﻪ‬

‫ﺟﺮﻳﺎﻥ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ‪ ،‬ﺑﻨﺎﺑﺮﺍﻳﻦ‪:‬‬

‫‪i‬‬

‫)‪(11‬‬

‫‪I mea < angle( I ) = I + jI‬‬ ‫‪r‬‬

‫ﺑﺮﺍﻱ ﻓﺎﺯﻫﺎﻱ ‪ B‬ﻭ ‪ C‬ﻣﻲﺗﻮﺍﻥ ﺑﺎ ﺍﻓﺰﻭﺩﻥ ‪ +١٢٠‬ﻭ‪ -١٢٠‬ﺩﺭﺟﻪ ﺑـﻪ‬ ‫)‪ angle(I‬ﺭﺍﺑﻄﻪ ﻓﻮﻕ ﺭﺍ ﺑﮑﺎﺭ ﺑـﺮﺩ‪ .‬ﺍﻣـﺎ ﺑـﺮﺍﻱ ﺗﮑﺮﺍﺭﻫـﺎﻱ ﺑﻌـﺪﻱ‬

‫ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺯﺍﻭﻳﻪ ﻣﺤﺎﺳﺒﻪ ﺷﺪﻩ ﺩﺭ ﺗﮑﺮﺍﺭ ﻗﺒﻞ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ‪.‬‬ ‫)‪(12‬‬

‫‪Bik‬‬ ‫‪= I r + jI i‬‬ ‫‪Brk‬‬

‫‪k +1‬‬ ‫‪I mea‬‬ ‫‪= I mea < tan −1‬‬

‫ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ‪:‬‬ ‫)‪(13‬‬

‫‪r‬‬ ‫‪ ∂I mea‬‬ ‫‪=1‬‬ ‫‪‬‬ ‫‪ ∂B r‬‬ ‫‪ i‬‬ ‫‪ ∂I mea = 1‬‬ ‫‪ ∂Bi‬‬

‫ﻋﻨﺎﺻﺮ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻣﺮﺑﻮﻁ ﺑﻪ ﺍﻳﻦ ‪ MV‬ﺩﺭ ﺻﻮﺭﺕ ﺗﺪﺍﺑﻴﺮ‬ ‫ﺑﺎﻻ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺧﻮﺍﻫﺪ ﺑﻮﺩ‪:‬‬

‫‪ -۳-۱-۲‬ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺗﻮﺍﻥ‬

‫ﻣﻌﻤﻮﻻﹰ ‪ MV‬ﺗﻮﺍﻥ ﺑﻪ ﺩﻭ ﺻﻮﺭﺕ ﺍﺳﺖ‪:‬‬

‫‪1 ‬‬ ‫‪H =‬‬ ‫‪‬‬ ‫‪ 1‬‬

‫ﺷﮑﻞ ‪ :١‬ﺭﺍﺑﻄﻪ ‪KCL‬‬

‫ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻣﺮﺑﻮﻁ ﺑﻪ‪ MV‬ﺗﻮﺍﻥ ﺑﺎﺭ )ﺍﻧـﺪﺍﺯﻩ‬ ‫ﮔﻴﺮﻱﻫﺎﻱ ﮐﺎﺫﺏ( ﺩﺭﺷﮑﻞ ‪ ١‬ﺑﺮﺍﺑﺮ ﺯﻳﺮ ﺍﺳﺖ‪:‬‬

‫‪H‬‬ ‫]‪= [+1 + 1 −1 −1‬‬ ‫‪sub‬‬

‫‪ -۳-۱-۳‬ﻣﻘﺎﺩﻳﺮﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﺷﺪﻩ ﻭﻟﺘﺎﮊ]‪[۳‬‬

‫ﺍﮔﺮ‪ MV‬ﻭﻟﺘﺎﮊ ﺑﻪ ﺻﻮﺭﺕ ﺩﺍﻣﻨﻪ ﺑﺎﺷﺪ‪ ،‬ﻣﺜﻞ‪ MV‬ﺟﺮﻳﺎﻥ ﻣﻲﺗﻮﺍﻥ ﺍﺯ‬ ‫ﺯﺍﻭﻳﻪ ﻣﺤﺎﺳﺒﻪ ﺷﺪﻩ ﺩﺭ ﺗﮑﺮﺍﺭ ﻗﺒﻞ ﺍﺳﺘﻔﺎﺩﻩ ﮐﺮﺩ‪.‬‬

‫‪r + jV i‬‬ ‫)‪(17‬‬ ‫‪Veq = Vmea <θ vk −1 = Veq‬‬ ‫‪eq‬‬ ‫ﻣﻘﺎﺩﻳﺮ ﺍﻭﻟﻴﻪ ﺯﺍﻭﻳﺔ ‪ MV‬ﻭﻟﺘﺎﮊﻫﺎ ﺻﻔﺮ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﻣﻴـﺸﻮﺩ ‪ .‬ﺑـﺎ‬

‫ﺻﺮﻑ ﻧﻈﺮ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﺍﻣﭙﺪﺍﻧﺲ ﻣﺘﻘﺎﺑﻞ ﺑﺎﺳـﻬﺎ ﻣـﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ ﺑـﻪ‬ ‫ﺻﻮﺭﺕ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺗﺸﮑﻴﻞ ﻣﻲﺷﻮﺩ‪:‬‬

‫‪‬‬ ‫‪G= T‬‬ ‫‪− X aa Wva Raa‬‬

‫‪r‬‬ ‫‪Ga‬‬ ‫‪T‬‬ ‫‪+ Raa Wva X aa‬‬

‫)‪(18‬‬

‫‪− RT W X + xT W R ‬‬ ‫‪aa va aa‬‬ ‫‪aa va aa ‬‬ ‫‪‬‬ ‫‪Gi‬‬ ‫‪a‬‬ ‫‪‬‬

‫ﻛﻪ ﺩﺭ ﺭﺍﺑﻄﻪ ﻓﻮﻕ‪:‬‬

‫‪r )T W H r + RT W‬‬ ‫‪Gar = ( H aa‬‬ ‫‪pa aa‬‬ ‫‪aa va R aa‬‬ ‫‪TW X‬‬ ‫‪+ X aa‬‬ ‫‪va aa‬‬ ‫‪i )T W H i + RT W R‬‬ ‫‪Gai = ( H aa‬‬ ‫‪qa aa‬‬ ‫‪aa va aa‬‬ ‫‪T‬‬ ‫‪+ X aa Wva X aa‬‬

‫‪ G ar , G ia‬ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﺣﻘﻴﻘﻲ ﻭ ﻣﻮﻫﻮﻣﻲ ﺗﺸﮑﻴﻞ ﺷﺪﻩ ﺗﻮﺳﻂ‬ ‫‪MV‬ﻫﺎﻱ ﻏﻴﺮ ﺍﺯ ﻭﻟﺘﺎﮊ ﻣﺮﺑﻮﻁ ﺑﻪ ﻓﺎﺯ ‪ a‬ﻫﺴﺘﻨﺪ‪.‬‬

‫‪ : R aa , X aa‬ﻣﺠﻤﻮﻋــﻪ ﻗــﺴﻤﺖﻫــﺎﻱ ﻣﻮﻫــﻮﻣﻲ ﻭ ﺣﻘﻴﻘــﻲ‬

‫ﺍﻣﭙﺪﺍﻧﺲﻫﺎﻱ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺑﻴﻦ ﺑﺎﺱ ﺍﺻﻠﻲ ﻭ ﺑﺎﺳـﻲ ﮐـﻪ ﻭﻟﺘـﺎﮊ ﺁﻥ‬ ‫ﺍﻧﺪﺍﺯﻩ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ ﻣﻲ ﺑﺎﺷـﻨﺪ‪.‬‬

‫‪Wva ,Wqa ,Wpa‬‬

‫ﺯﻳـﺮ ﻣـﺎﺗﺮﻳﺲ‬

‫ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻣﻲﺍﻧﺠﺎﻣﺪ‪ .‬ﺩﺭ ﺁﻥ ﺻﻮﺭﺕ ﺯﻣﺎﻥ ﻣﺤﺎﺳﺒﺎﺕ ﺑﻪ ﻃـﺮﺯ‬ ‫ﭼﺸﻤﮕﻴﺮﻱ ﮐﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ‬

‫‪ -۳-۳-١‬ﻋﺪﻡ ﻭﺟﻮﺩ ‪MV‬ﻫﺎﻱ ﻭﻟﺘﺎﮊ‬

‫ﺩﺭ ﺍﻳــﻦ ﺻــﻮﺭﺕ ﻣــﺎﺗﺮﻳﺲ ﮊﺍﮐــﻮﺑﻴﻦ ﺑــﻪ ﺻــﻮﺭﺕ ﺯﻳــﺮ ﺍﺳــﺖ‪:‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪i‬‬ ‫‪H bb ‬‬ ‫‪‬‬

‫‪r‬‬ ‫‪ H aa‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪HI ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬

‫‪i‬‬ ‫‪H aa‬‬

‫ﻫﺎﻱ ﻭﺯﻥﺩﻫﻲ ﻣﺮﺑﻮﻁ ﺑـﻪ ‪MV‬ﻫـﺎﻱ ﺗـﻮﺍﻥ ﻭ ﻭﻟﺘـﺎﮊ ﻣـﻲﺑﺎﺷـﻨﺪ‪.‬‬

‫)‪(19‬‬

‫‪ -۳-۲‬ﻗﻄﺮﻱ ﮐﺮﺩﻥ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ‬

‫ﻫﻤﻴﻨﻄﻮﺭ ﮐﻪ ﻣﺸﺎﻫﺪﻩ ﻣﻴﺸﻮﺩ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﮐﺎﻣﻼﹰ ﻗﻄﺮﻱ ﺍﺳﺖ‬

‫ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﺓ ﻓﺎﺯ‪ b‬ﻭ‪ c‬ﻧﻴﺰ ﺑﻄﻮﺭ ﻣﺸﺎﺑﻪ ﺗﺸﮑﻴﻞ ﻣﻲﺷﻮﻧﺪ‪.‬‬

‫ﺭﺍﺑﻄﻪ ﺷﻤﺎﺭﺓ ‪MV‬ﻫﺎ ﺑﺎ ﺷـﻤﺎﺭﻩ ﺷـﺎﺧﻪﻫـﺎ ﺗﺮﺗﻴـﺐ ﻗـﺮﺍﺭ ﮔـﺮﻓﺘﻦ‬

‫ﻋﻨﺎﺻﺮ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺭﺍ ﻣﺸﺨﺺ ﻣﻲﮐﻨﺪ‪ .‬ﺍﮔﺮ ﺷﻤﺎﺭﻩ ‪MV‬ﻫـﺎ‬

‫‪r‬‬ ‫‪H cc‬‬

‫‪i‬‬ ‫‪H bb‬‬

‫‪r‬‬ ‫‪H bb‬‬

‫ﻭ ﻣﻲﺗﻮﺍﻥ ﺁﻧﺮﺍ ﺑﻄﻮﺭ ﮐﺎﻣﻞ ﺁﻧﺮﺍ ﺑﻪ ﺷﺶ ﺯﻳﺮﻣﺎﺗﺮﻳﺲ ﺗﺠﺰﻳﻪ ﻧﻤﻮﺩ‪.‬‬

‫‪ -۳-۳-٢‬ﻭﺟﻮﺩ ‪MV‬ﻫﺎﻱ ﻭﻟﺘﺎﮊ‬

‫ﺑﺎ ﺷﻤﺎﺭﺓ ﻣﺘﻐﻴﻴﺮﻫﺎﻱ ﺣﺎﻟﺖ ﻣﺮﺑﻮﻃﻪ ﻧﺰﺩﻳﮏ ﺑﺎﺷﺪ‪ ،‬ﻣﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ‬

‫ﺑﺎ ﻓـﺮﺽ ﺍﻳﻨﮑـﻪ ﺩﺭ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﻧـﺴﺒﺖ ‪ r x‬ﺑﺎﻻﺳـﺖ‬ ‫ﻣﻲ ﺗﻮﺍﻥ ﺍﺯ ﻋﻨﺎﺻﺮ ﻣﻮﺟﻮﺩ ﺩﺭ ﻗﻄﺮ ﻓﺮﻋﻲ ﺭﺍﺑﻄﻪ )‪(۱۸‬ﺻﺮﻑ ﻧﻈـﺮ‬

‫‪ -١‬ﺷــﺒﮑﻪ ﺭﺍ ﺑــﻪ ﺻــﻮﺭﺕ ﻻﻳــﻪ ﺑﻨــﺪﻱ ﺩﺭ ﻧﻈــﺮ ﮔﺮﻓﺘــﻪ ﺳــﭙﺲ‬

‫ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﺭﺍ ﺑﻪ ﻗﺴﻤﺖﻫﺎﻱ ﺣﻘﻴﻘﻲ ﻭ ﻣﻮﻫﻮﻣﻲ ﺗﺠﺰﻳﻪ ﻧﻤـﻮﺩ‬

‫ﺑﻪ ﻓﺮﻡ ﻗﻄﺮﻱ ﻧﺰﺩﻳﮏ ﻣﻲﺷﻮﺩ‪.‬‬

‫ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺑﺤﺚ ﺑﺎﻻ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺯﻳﺮ ﭘﻴﺸﻨﻬﺎﺩ ﻣﻲﺷﻮﺩ‪:‬‬

‫ﺷﺎﺧﻪ ﻫﺎﻱ ﻣﻮﺟﻮﺩ ﺩﺭ ﻫﺮ ﻻﻳﻪ ﺑـﻪ ﺗﺮﺗﻴـﺐ ﺷـﻤﺎﺭﻩ ﮔـﺬﺍﺭﻱ ﻣـﻲ‬

‫ﻧﻤﺎﻳﻴﻢ‪ .‬ﺳﭙﺲ ﺑﻪ ﻻﻳﻪ ﺑﻌﺪﻱ ﺭﻓﺘﻪ ﻭ ﺷﺎﺧﻪﻫﺎﻱ ﻻﻳﻪﻫﺎﻱ ﺑﻌـﺪﻱ ﺭﺍ‬ ‫ﺑﻪ ﻫﻤﻴﻦ ﺗﺮﺗﻴﺐ ﻧﺎﻣﮕﺬﺍﺭﻱ ﻣﻲﮐﻨﻴﻢ ﺗﺎ ﺑﻪ ﻻﻳﻪ ﺁﺧﺮ ﺑﺮﺳﻴﻢ‪.‬‬

‫‪-۲‬ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺭﺍ ﺑﻪ ﺩﻭ ﺩﺳﺘﻪ ﺗﻘﺴﻴﻢ ﻣﻲﮐﻨﻴﻢ‬

‫ﮐﺮﺩ‪ .‬ﺩﺭ ﺁﻥ ﺻﻮﺭﺕ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻗﻄـﺮﻱ ﻣـﻲﺷـﻮﺩ ﻭ ﻣـﻲﺗـﻮﺍﻥ‬

‫ﻭ ﻣﺴﺄﻟﻪ ﺭﺍﻣﻲﺗﻮﺍﻥ ﻃﺒﻖ ﺭﻭﺍﺑﻂ ﺯﻳﺮ ﺣﻞ ﻧﻤﻮﺩ‪:‬‬

‫‪r )T W ∆I r − RT W ∆V r‬‬ ‫‪Gar ∆Bar = ( H aa‬‬ ‫‪aa va a‬‬ ‫‪pa a‬‬ ‫‪i‬‬ ‫‪T‬‬ ‫‪− XaaWva ∆Va‬‬ ‫‪i‬‬ ‫‪i‬‬ ‫‪i )T W ∆I i + XT W ∆V r‬‬ ‫‪Ga ∆Ba = ( H aa‬‬ ‫‪qa a‬‬ ‫‪aa va a‬‬ ‫‪T W ∆V i‬‬ ‫‪− Raa‬‬ ‫‪va a‬‬

‫)‪(20‬‬

‫ﺍﻟﻒ(ﻣﻘﺎﺩﻳﺮ ﺟﺮﻳﺎﻥ ﻭ ﺗﻮﺍﻥ ﺟﺎﺭﻱ ﺷﺎﺧﻪﻫﺎ‪ ،‬ﺏ(ﺍﻃﻼﻋﺎﺕ ﺑﺎﺭ‬

‫‪ -٣‬ﺍﮔﺮ ‪ MV‬ﺟﺮﻳﺎﻥ ﻳﺎ ﺗﻮﺍﻥ ﺟﺎﺭﻱ ﺷﺎﺧﻪﻫﺎ ﺑﻮﺩ‪ ،‬ﺷـﻤﺎﺭﺓ ﻣﻘـﺪﺍﺭ‬

‫ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺭﺍ ﺑﺮﺍﺑﺮ ﺑﺎ ﺷﻤﺎﺭﻩ ﺷﺎﺧﻪ ﻣﺮﺑﻮﻃﻪ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﺩ‪.‬‬

‫‪ -٤‬ﺍﮔﺮ ﻣﻘﺪﺍﺭ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺍﻃﻼﻋﺎﺕ ﺑﺎﺭ ﺑـﻮﺩ‪ ،‬ﺑﺮﺭﺳـﻲ ﻣـﻲ‬ ‫ﺷﻮﺩ ﮐﻪ ﺑﺎﺭ ﺑﻪ ﭼﻪ ﺑﺎﺳﻲ ﻣﺘﺼﻞ ﺍﺳﺖ ﻭﭼﻪ ﺷﺎﺧﻪﻫـﺎﻳﻲ ﺑـﻪ ﺍﻳـﻦ‬

‫ﺑﺎﺱ ﻣﺘﺼﻞ ﻫﺴﺘﻨﺪ‪ .‬ﺍﮔﺮ ﺗﻨﻬﺎ ﻳﮏ ﺷﺎﺧﻪ ﻣﺘﺼﻞ ﺑﻮﺩ ﺷـﻤﺎﺭﻩ ‪MV‬‬

‫‪ -۳-۴‬ﻭﺟﻮﺩ ﻣﺶﻫﺎﻱ ﺿﻌﻴﻒ]‪[۲,۳,۹‬‬

‫ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺷﮑﻞ ‪ ۲‬ﻭ ﺭﺍﺑﻄﻪ ‪ KVL‬ﻣﻲﺗﻮﺍﻥ ﻧﻮﺷﺖ‪:‬‬ ‫‪y1‬‬ ‫‪y2‬‬

‫ﺭﺍ ﺑﺮﺍﺑﺮ ﺑﺎ ﺷﻤﺎﺭﻩ ﺍﻳﻦ ﺷﺎﺧﻪ ﺩﺭ ﻧﻈﺮ ﻣﻲﮔﻴﺮﻳﻢ‪ .‬ﻭﮔﺮﻧﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ‬

‫‪y3‬‬

‫ﻣﺤﺪﻭﺩﻳﺖﻫﺎﻱ ﺯﻳﺮ ﺑﺮﺍﺑﺮ ﺑﺎ ﺷﻤﺎﺭﻩ ﻳﮑﻲ ﺍﺯ ﺷﺎﺧﻪﻫﺎﻱ ﻣﺘﺼﻞ ﺑـﻪ‬ ‫ﺑﺎﺱ ﻣﺮﺑﻮﻃﻪ ﻳﺎ ﻧﺰﺩﻳﮏ ﺑﻪ ﺁﻧﻬﺎ ﺩﺭ ﻧﻈﺮﻣﻲﮔﻴﺮﻳﻢ‪.‬‬

‫‪ -١‬ﺍﻳﻦ ﺷﻤﺎﺭﻩ ﻗﺒﻼﹰ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﻧﮕﺮﻓﺘﻪ ﺑﺎﺷﺪ‪.‬‬

‫‪ -٢‬ﺩﺭ ﻧﻬﺎﻳﺖ ﻧﺒﺎﻳﺪ ﺷﻤﺎﺭﻩﺍﻱ ﺑﺰﺭﮔﺘﺮ ﺍﺯ ﺗﻌﺪﺍﺩ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ‬ ‫ﺷﺪﻩ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﻮﺩ‪.‬‬

‫ﻧﮑﺘﻪ ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﺻﻮﺭﺕ ﻭﺟـﻮﺩ ﻣـﺶ ﻳـﺎ ‪MV‬‬

‫‪y4‬‬

‫‪y5‬‬

‫ﺷﮑﻞ ‪۲‬‬

‫‪yiφ Biφ = 0‬‬

‫)‪(21‬‬

‫‪ nl‬ﺗﻌﺪﺍﺩ ﺷﺎﺧﻪﻫﺎﻱ ﻣﻮﺟﻮﺩ ﺩﺭ ﺣﻠﻘﻪ ﻣﻲﺑﺎﺷﺪ‬ ‫‪nl‬‬

‫‪Birφ − xiφ Biiφ + j ∑ riφ Biiφ + xiφ Birφ = 0‬‬ ‫‪i =1‬‬

‫ﻫﻢ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺎﻻ ﻣﻲﺗﻮﺍﻥ ﺷﺮﺍﻳﻂ ﺭﺍ ﺑﻬﺒﻮﺩ ﺑﺨﺸﻴﺪ‪.‬‬

‫ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺭﺍ ﺩﺭ ﻣﻮﺭﺩ ﻫﺮ ﻓﺎﺯ ﺟﺪﺍﮔﺎﻧﻪ ﺑﻪﮐﺎﺭ ﺑـﺮﺩ‪ .‬ﻫﻤﭽﻨـﻴﻦ‬ ‫ﺗﺠﺰﻳﻪ ﻣﺴﺎﻟﻪ ﺑﻪ ﺩﻭ ﻗﺴﻤﺖ ﺣﻘﻴﻘﻲ ﻭ ﻣﻮﻫﻮﻣﻲ ﺑـﻪ ﮐـﺎﻫﺶ ﺍﺑﻌـﺎﺩ‬

‫‪i =1‬‬

‫‪nl‬‬

‫‪∑r‬‬

‫‪iφ‬‬

‫‪B − xiφ B = 0‬‬

‫‪iφ‬‬

‫‪B + xiφ B = 0‬‬

‫‪iφ‬‬

‫‪i‬‬ ‫‪iφ‬‬

‫‪r‬‬ ‫‪iφ‬‬

‫‪r‬‬ ‫‪iφ‬‬

‫‪i‬‬ ‫‪iφ‬‬

‫‪i =1‬‬ ‫‪nl‬‬

‫)‪(22‬‬

‫ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺎ ﻣﺘﻌﺎﺩﻟﻲ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﻮﺯﻳﻊ ﻣﻨﺎﺳﺐ ﺍﺳﺖ ﮐﻪ ﻣﺴﺎﻟﻪ‬

‫∑‬

‫ﺭﺍﺑﻄﻪ)‪(۲۱‬ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻧﻮﺷﺖ‪:‬‬

‫ﻭﻟﺘﺎﮊ ﺩﺭ ﺷﺒﮑﻪ ﺣﺎﻟﺖ ﻗﻄﺮﻱ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﺍﺯ ﺑﻴﻦ ﻣﻲﺭﻭﺩ ﺍﻣﺎ ﺑـﺎﺯ‬

‫‪ -۳-۳‬ﺗﺠﺰﻳﻪ‬

‫م‪n‬‬

‫‪∑r‬‬ ‫‪i =1‬‬ ‫‪nl‬‬

‫‪∑r‬‬ ‫‪i =1‬‬

‫ﺩﺭ ﺣﻘﻴﻘﺖ ﺭﻭﺍﺑﻂ)‪ (۲۲‬ﻗﻴﺪﻫﺎﻱ ﻣﺴﺎﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﻣﻲﺑﺎﺷﻨﺪ‪.‬‬

‫ﺑﺮﺍﻱ ﺣﻞ ﻣﺴﺎﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺑﺎ ﻭﺟﻮﺩ ﻗﻴﺪ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺿﺮﺍﻳﺐ‬

‫ﻻﮔﺮﺍﻧﮋ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ‪ .‬ﺑﻌﺪ ﺍﺯ ﺣﻞ ﻣﺴﺎﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺑﺎ ﺗﻮﺟﻪ‬

‫ﻗﻴﻮﺩ‪،‬ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺿﺮﺍﻳﺐ ﻻﮔﺮﺍﻧﮋ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﺑﻪ ﻓﺮﻡ ﺯﻳﺮ‬

‫ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ]‪:[۹،۶‬‬

‫‪Ct ‬‬ ‫‪‬‬ ‫‪0‬‬

‫)‪(23‬‬

‫‪Gm‬‬ ‫‪‬‬ ‫‪C‬‬

‫‪r‬‬ ‫‪r‬‬ ‫‪raaT  ∆Ba   MIS ‬‬ ‫‪ r  =  r ‬‬ ‫‪0  λ  C a ‬‬

‫‪G aar‬‬ ‫‪‬‬ ‫‪ raa‬‬

‫‪r   ∆B‬‬ ‫‪ i‬‬ ‫‪ λ‬‬

‫‪G‬‬ ‫‪‬‬ ‫‪ raa‬‬

‫‪‬‬ ‫‪‬‬ ‫‪‬‬

‫)‪(27‬‬

‫‪i‬‬

‫‪  MIS‬‬ ‫‪= i‬‬ ‫‪ C a‬‬

‫‪i‬‬ ‫‪a‬‬

‫‪T‬‬ ‫‪aa‬‬

‫‪i‬‬ ‫‪aa‬‬

‫ﮐﻪ ‪ Gm‬ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻗﺴﻤﺖ ﺷﻌﺎﻋﻲ ﺷﺒﮑﻪ ﻭ‪ Cx‬ﻣﺎﺗﺮﻳﺲ‬

‫ﻧﮑﺘﻪ ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﺍﻳـﻨﺴﺘﮑﻪ ﺩﺭ ﺗﺸـﮑﻴﻞ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ‪،‬ﺷﺎﺧﻪ‬

‫ﺍﻣﭙﺪﺍﻧﺲﻫﺎﻱ ﻣﺘﻘﺎﺑﻞ ﺍﺯ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺣﺎﺻﻞ ﻣﻲﺷﻮﺩ‪:‬‬

‫ﺩﺭ ﺣﻘﻴﻘﺖ ﻭﺟﻮﺩ ﻣﺶ‪ ،‬ﺳﺎﺧﺘﺎﺭ ﻣﺎﺗـﺮﻳﺲ ﮊﺍﮐـﻮﺑﻴﻦ ﺭﺍ ﺑﻪ‬

‫ﮊﺍﮐﻮﺑﻴﻦ ﻗﻴﻮﺩ ﻣﻲﺑﺎﺷﻨﺪ‪ .‬ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻗﻴﻮﺩ ﺑﺎ ﺻﺮﻑ ﻧﻈﺮ ﺍﺯ‬

‫)‪(24‬‬

‫‪0 ‬‬ ‫‪0 ‬‬ ‫‪0 ‬‬ ‫‪‬‬ ‫‪0 ‬‬ ‫‪− x bb ‬‬ ‫‪‬‬ ‫‪rbb ‬‬

‫‪0‬‬

‫‪0‬‬

‫‪0‬‬

‫‪− x aa‬‬

‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬

‫‪0‬‬ ‫‪− x bb‬‬ ‫‪rbb‬‬

‫‪0‬‬ ‫‪rbb‬‬ ‫‪x bb‬‬

‫‪raa‬‬ ‫‪0‬‬ ‫‪0‬‬

‫‪raa‬‬ ‫‪x bb‬‬

‫‪0‬‬ ‫‪0‬‬

‫‪0‬‬ ‫‪0‬‬

‫‪0‬‬ ‫‪0‬‬

‫‪ raa‬‬ ‫‪x‬‬ ‫‪ aa‬‬ ‫‪ 0‬‬ ‫‪HC = ‬‬ ‫‪ 0‬‬ ‫‪ 0‬‬ ‫‪‬‬ ‫‪ 0‬‬

‫‪ rcc,rbb,raa‬ﺑﻠﻮﮎﻫﺎﻱ ﻗﺴﻤﺖﻫﺎﻱ ﺣﻘﻴﻘﻲ ﺍﻣﭙﺪﺍﻧﺲﻫﺎﻱ ﺷﺎﺧﻪ‬

‫ﻫﺎﻱ ﺗﺸﮑﻴﻞ ﺩﻫﻨﺪﻩ ﻣﺶ ﻭ ‪ xcc,xbb,xaa‬ﺑﻠﻮﮎﻫﺎﻱ ﻗﺴﻤﺖﻫﺎﻱ‬

‫ﻣﻮﻫﻮﻣﻲ ﺍﻣﭙﺪﺍﻧﺲﻫﺎﻱ ﺷﺎﺧﻪﻫﺎﻱ ﺗﺸﮑﻴﻞ ﺩﻫﻨﺪﻩ ﻣﺶ ﻣﻲﺑﺎﺷﻨﺪ‪.‬‬ ‫ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻗﻄﺮﻱ ﺑﻮﺩﻥ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ‪ ،‬ﻣﺴﺎﻟﻪ ﻗﺎﺑﻞ ﺗﺠﺰﻳﻪ ﺑﻪ‬

‫ﻫﺮ ﻓﺎﺯ ﻣﻲﺑﺎﺷﺪ‪ .‬ﭘﺲ ﻣﺴﺎﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺑﺮﺍﻱ ﻓﺎﺯ ‪ a‬ﺭﺍ ﻣﻲﺗﻮﺍﻥ‬

‫ﺑﻪ ﻓﺮﻡ ﻣﺎﺗﺮﻳﺴﻲ ﺯﻳﺮ ﻧﻮﺷﺖ‪:‬‬

‫)‪(25‬‬

‫‪r‬‬ ‫‪T‬‬ ‫‪ ∆Ba   MIS r ‬‬ ‫‪xaa‬‬ ‫‪‬‬ ‫‪ ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪i‬‬ ‫‪raaT  ∆Ba   MIS i ‬‬ ‫=‪= r ‬‬ ‫‪0  λ   C ar ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪0  λi   C ai ‬‬ ‫‪‬‬ ‫‪‬‬

‫‪raaT‬‬

‫‪hr‬‬

‫‪T‬‬ ‫‪− xaa‬‬

‫‪i‬‬ ‫‪G aa‬‬ ‫‪− xaa‬‬

‫‪0‬‬

‫‪raa‬‬

‫‪0‬‬

‫‪G aar‬‬ ‫‪ i‬‬ ‫‪h‬‬ ‫‪ raa‬‬ ‫‪‬‬ ‫‪ xaa‬‬

‫ﮐﻪ ‪ λi ,λr‬ﺿﺮﺍﻳﺐ ﻻﮔﺮﺍﻧـﮋ ﻭﺳـﺎﻳﺮ ﭘﺎﺭﺍﻣﺘﺮﻫـﺎ ﺑـﻪ ﺻـﻮﺭﺕ ﺯﻳـﺮ‬

‫ﻣﻲﺑﺎﺷﻨﺪ‪:‬‬

‫ﻫﻢ ﻧﻤﻲﺯﻧﺪ‪.‬‬

‫‪-۴‬ﺍﺟﺮﺍﻱ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺮﺭﻭﻱ ﻳﮏ ﺷﺒﮑﻪ ﻧﻤﻮﻧﻪ‬

‫ﺷﺒﮑﻪ ﻧﻤﻮﻧﻪ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﻳﮏ ﺷﺒﮑﻪ ‪ ۲۵‬ﺷﻴﻨﻪ ‪IEEE‬‬

‫‪ ۴/۱۶‬ﮐﻴﻠﻮ ﻭﻟﺖ ﻣﻲﺑﺎﺷﺪ ﮐﻪ ﺩﺍﺭﺍﻱ ‪ ۲‬ﻣﺶ ﻣﻲﺑﺎﺷﺪ‪ .‬ﺩﺭ ﻗﺴﻤﺖ‬

‫ﺍﻭﻝ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﻭﻟﺘﺎﮊ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﻧﻤﻲﺷﻮﺩ ﻭﻟﻲ ﺩﺭ‬ ‫ﻗﺴﻤﺖ ﺑﻌﺪﻱ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﻭﻟﺘﺎﮊ ﻧﻴﺰ ﺑﻪ ﻋﻨﻮﺍﻥ‬ ‫ﻭﺭﻭﺩﻱ ﻣﺴﺎﻟﻪ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ‪ .‬ﺩﺭ ﺟﺪﻭﻝ ‪ ۱‬ﺗﻌﺪﺍﺩ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩ‬

‫ﮔﻴﺮﻱ ﺷﺪﻩ ﺁﻣﺪﻩ ﺍﺳﺖ‪ .‬ﻣﻮﻗﻌﻴﺖ ﺍﻳﻦ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻳﻬﺎ ﻧﻴﺰ ﺩﺭ ﺷﮑﻞ‬ ‫‪ ۳‬ﻣﺸﺨﺺ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺍﻳﻦ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻳﻬﺎ ﻧﺘﺎﻳﺞ ﺑﺨﺶ ﺑﺎﺭ ﺷﺒﮑﻪ‬ ‫ﻣﻮﺭﺩ ﻧﻈﺮ ﻫﺴﺘﻨﺪ ﮐﻪ ﺑﺎ ﺍﻓﺰﻭﺩﻥ ‪۱۰‬ﺩﺭﺻﺪ ﺧﻄﺎ ﺑﻪ ﻣﻘﺎﺩﻳﺮ ﺟﺮﻳﺎﻥ‬ ‫ﻭ ﻭﻟﺘﺎﮊ ﻭ ‪ ۳۰‬ﺩﺭﺻﺪ ﺧﻄﺎ ﺑﻪ ﻣﻘﺎﺩﻳﺮ ﺗﻮﺍﻥ ﺗﺰﺭﻳﻘﻲ ﺑﺪﺳﺖ ﺁﻣﺪﻩ‬

‫ﺍﺳﺖ‪ .‬ﻣﺘﻮﺳﻂ ﻧﺴﺒﺖ ‪ r‬ﺍﻣﭙﺪﺍﻧﺲ ﺷﺎﺧﻪ ﻫﺎ ﺑﺮﺍﺑﺮ ‪ ۱/۲‬ﻣﻲ‬ ‫‪x‬‬ ‫ﺑﺎﺷﺪ‪ .‬ﻧﺘﺎﻳﺞ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺩﺭ ﺷﮑﻞ ‪ ۴‬ﻭ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ‬ ‫‪MV‬ﻫﺎﻱ ﻭﻟﺘﺎﮊ ﻭ‪MV‬ﻫﺎﻱ ﺟﺮﻳﺎﻥ ﻭ ﻣﻌﺎﺩﻝ ﺟﺮﻳﺎﻥ ﺩﺭ ﺷﮑﻞ‬

‫‪ ۵‬ﻭ‪ ۶‬ﺁﻣﺪﻩ ﺍﺳﺖ‪ .‬ﻫﻤﺎﻧﻄﻮﺭ ﮐﻪ ﻣﺸﺎﻫﺪﻩ ﻣﻲﺷﻮﺩ ﺑﺎ ﺍﺣﺘﺴﺎﺏ‬

‫‪nl‬‬

‫‪C ar = −∑ ri ∆Bir − xi ∆Bii‬‬ ‫‪i =1‬‬ ‫‪nl‬‬

‫‪C a = −∑ ri ∆Bii + xi ∆Bir‬‬ ‫‪i‬‬

‫‪i =1‬‬

‫‪h = − RaaT Wva X aa + X aaT Wva Raa‬‬ ‫‪r‬‬

‫‪h i = − X aaT Wva Raa + RaaT Wva X aa‬‬ ‫‪MIS r = ( H aar ) T Wpa ∆I ar − RaaT Wva ∆Var − xaaT Wva ∆Vai‬‬ ‫‪MIS i = (H aai ) Wqa ∆I ai + xaaT Wxa ∆Var − RaaT Wva ∆Vai‬‬ ‫‪T‬‬

‫ﮐﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﻓﻮﻕ‪ ،‬ﺭﺍﺑﻄﻪ)‪ (۲۵‬ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﻓﺮﻡ‬ ‫ﺯﻳﺮ ﻧﻮﺷﺖ‪:‬‬

‫)‪(26‬‬

‫ﻫﺎﻳﻲ ﮐﻪ ﺑﺎﻋﺚ ﺍﻳﺠﺎﺩ ﻣﺶ ﺷﺪﻩﺍﻧﺪ ﺩﺭ ﻧﻈﺮ ﮔـﺮﻓﺘﻪ ﻧﻤﻲ ﺷﻮﻧﺪ‪.‬‬

‫‪T  ∆B r ‬‬ ‫‪ MIS r ‬‬ ‫‪‬‬ ‫‪xaa‬‬ ‫‪a‬‬ ‫‪ r   r ‬‬ ‫‪0  λ  C a ‬‬ ‫=‬ ‫‪raaT  ∆Bai   MIS i ‬‬ ‫‪‬‬ ‫‪0  λi  C br ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ ‬‬

‫‪hr‬‬ ‫‪− xaa‬‬

‫‪raaT‬‬ ‫‪0‬‬

‫‪G aai‬‬

‫‪T‬‬ ‫‪− xaa‬‬

‫‪raa‬‬

‫‪0‬‬

‫‪G aar‬‬ ‫‪‬‬ ‫‪ raa‬‬ ‫‪ hi‬‬ ‫‪‬‬ ‫‪ xaa‬‬

‫ﻣﻘﺎﺩﻳﺮ ‪ xaa , h r , h i‬ﻧﺴﺒﺖ ﺑﻪ ﻣﻘﺎﺩﻳﺮ ﻣﻮﺟﻮﺩ ﺩﺭ ﻗﻄﺮ ﺍﺻﻠﻲ ﺑﺴﻴﺎﺭ‬

‫ﮐﻮﭼﮑﺘﺮ ﻫﺴﺘﻨﺪ‪ .‬ﺑﺎ ﺻﺮﻓﻨﻈﺮ ﺍﺯ ﺁﻧﻬﺎ ﻣﺴﺎﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ‪ ،‬ﺑﻪ ﺩﻭ‬ ‫ﻗﺴﻤﺖ ﻭ ﺣﻘﻴﻘﻲ ﻭ ﻣﻮﻫﻮﻣﻲ ﺗﺠﺰﻳﻪ ﻣﻲﺷﻮﺩ‪.‬‬

‫ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﻭﻟﺘﺎﮊ ﺩﻗﺖ ﻣﺴﺎﻟﻪ ﺍﻓﺰﺍﻳﺶ ﭘﻴﺪﺍ ﻣﻲﮐﻨﺪ ﺍﻣﺎ‬

‫ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻧﻴﺰ ﺍﺯ ﺣﺎﻟﺖ ﻗﻄﺮﻱ ﺧﺎﺭﺝ ﻣﻲﺷﻮﺩ‪ .‬ﺩﺭ ﻗﺴﻤﺖ‬ ‫ﺍﻭﻝ ﻣﺴﺎﻟﻪ ﺑﺎ ‪ ۲‬ﺗﮑﺮﺍﺭ ﻭ ﺩﺭ ﻗﺴﻤﺖ ﺩﻭﻡ ﻣﺴﺎﻟﻪ ﺑﺎ ‪ ۴‬ﺗﮑﺮﺍﺭ ﺑﻪ‬

‫ﻫﻤﮕﺮﺍﻳﻲ ﻣﻲﺭﺳﺪ‪ .‬ﺩﺭ ﻗﺴﻤﺖ ﺍﻭﻝ‪ ،‬ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻓﻘﻂ ﺍﺯ‬ ‫ﻋﻨﺎﺻﺮ ‪۱‬ﻭ‪ -۱‬ﺗﺸﮑﻴﻞ ﺷﺪﻩ ﻭﻟﻲ ﺩﺭ ﻗﺴﻤﺖ ﺩﻭﻡ‪ ،‬ﻣﻘﺎﺩﻳﺮ ﺍﻣﭙﺪﺍﻧﺲ‬

‫ﺷﺎﺧﻪ ﻫﺎ ﻧﻴﺰ ﺩﺭ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻇﺎﻫﺮ ﺷﺪﻩ ﺍﻧﺪ ﺍﻣﺎ ﺩﺭ ﻫﺮ ﺩﻭ‬

‫ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺩﺍﺭﺍﻱ ﻣﻘﺎﺩﻳﺮ ﺛﺎﺑﺖ ﻣﻲﺑﺎﺷﺪ‪ .‬ﺑﻪ ﻋﻠﺖ ﺗﻘﺮﻳﺒﻬﺎﻱ‬

‫ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺩﺭ ﻗﺴﻤﺖ ‪ ۲‬ﺗﻌﺪﺍﺩ ﺗﮑﺮﺍﺭﻫﺎ ﻧﻴﺰ ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ‬

‫ﺍﺳﺖ‪.‬‬

‫ﺟﺪﻭﻝ‪:۱‬ﺗﻌﺪﺍﺩ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻳﻬﺎ‬

‫ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﮐﺎﺫﺏ‬ ‫‪۲۳‬‬

‫ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﺟﺮﻳﺎﻥ‬ ‫‪۳‬‬

‫ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﻭﻟﺘﺎﮊ‬ ‫‪۵‬‬

‫‪١‬‬ ‫‪٣‬‬ ‫‪٧‬‬ ‫‪١٤‬‬ ‫‪٢٠‬‬

‫‪٦‬‬

‫‪٥‬‬ ‫‪١٠‬‬

‫‪١١‬‬

‫‪١٢‬‬

‫‪١٣‬‬ ‫‪٢۶‬‬

‫‪٢‬‬

‫‪٢۵‬‬

‫‪١٨‬‬

‫‪١٩‬‬

‫‪٩‬‬

‫‪١٧‬‬

‫‪٤‬‬ ‫‪٨‬‬ ‫‪١٦‬‬

‫‪١۵‬‬

‫‪٢١‬‬

‫‪٢٢‬‬ ‫‪٢۴‬‬

‫ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮ ﺟﺮﻳﺎﻥ‬

‫ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮ ﺗﻮﺍﻥ)ﺍﻃﻼﻋﺎﺕ ﮐﺎﺫﺏ(‬

‫‪٢٣‬‬

‫ﺷﮑﻞ‪ :٣‬ﺷﺒﮑﻪ ﻧﻤﻮﻧﻪ‬

‫ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮ ﻭﻟﺘﺎﮊ‬

‫ﻓﺎﮐﺘﻮﺭﻳﺰﻩ ﺷﻮﺩ‪ .‬ﻫﻤﭽﻨﻴﻦ ﺍﻟﮕﻮﺭﻳﺘﻤﻲ ﺑﺮﺍﻱ ﻧﺎﻣﮕﺬﺍﺭﻱ ﺷﺎﺧﻪﻫﺎ ﻭ‬

‫ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺍﺭﺍﺋﻪ ﺷﺪ ﺗﺎ ﺑﺎ ﮐﻤﮏ ﺁﻥ ﺑﺘﻮﺍﻥ ﺑﻪ ﻳﮏ‬

‫ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻗﻄﺮﻱ ﺩﺳﺖ ﻳﺎﻓﺖ‪ .‬ﺩﺭ ﺍﻳﻦ ﺻﻮﺭﺕ ﺣﺠﻢ‬ ‫ﻣﺤﺎﺳﺒﺎﺕ ﻧﻴﺰ ﺑﻪ ﺧﺎﻃﺮ ﻗﻄﺮﻱ ﺷﺪﻥ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﮐﺎﻫﺶ‬

‫ﻣﻲﻳﺎﺑﺪ‪ .‬ﻫﻤﭽﻨﻴﻦ ﺭﻭﺵ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺷﺒﮑﻪﻫﺎﻱ ﺩﺍﺭﺍﻱ ﻣﺶ ﺿﻌﻴﻒ‬ ‫ﻧﻴﺰ ﺭﺍ ﺗﺤﺖ ﭘﻮﺷﺶ ﻗﺮﺍﺭ ﻣﻲﺩﻫﺪ‪ .‬ﺑﺎ ﮐﻤﮏ ﺿﺮﺍﻳﺐ ﻻﮔﺮﺍﻧﮋ‬

‫ﻣﻲﺗﻮﺍﻥ ﻗﻴﻮﺩ ﺍﻳﺠﺎﺩ ﺷﺪﻩ ﺗﻮﺳﻂ ‪ KVL‬ﺭﺍ ﻟﺤﺎﻅ ﻧﻤﻮﺩ‪ .‬ﺍﺯ ﺩﻳﮕﺮ‬

‫ﻣﺰﺍﻳﺎﻱ ﺭﻭﺵ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﻣﻲﺗﻮﺍﻥ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ‬

‫ﺷﺪﻩ ﻭﻟﺘﺎﮊ ﺩﺭ ﻣﻮﺭﺩ ﺷﺒﮑﻪ ﺩﺍﺭﺍﻱ ﻣﺶ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﺩﺍﺩ‪ .‬ﺩﺭ‬

‫ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩ ﺷﺪﻩ ﻓﺎﺯﻫﺎﻱ ﺳﻪﮔﺎﻧﻪ ﺟﺪﺍﮔﺎﻧﻪ ﺗﺨﻤﻴﻦ ﺯﺩﻩ‬

‫ﻣﻲﺷﻮﻧﺪ ﮐﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺎﻣﺘﻌﺎﺩﻝ ﺑﻮﺩﻥ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﻮﺯﻳﻊ ﺑﺴﻴﺎﺭ‬

‫ﻣﻄﻠﻮﺏ ﻣﻲﺑﺎﺷﺪ‪ .‬ﺣﺘﻲ ﻗﺴﻤﺘﻬﺎﻱ ﺣﻘﻴﻘﻲ ﻭ ﻣﻮﻫﻮﻣﻲ ﻣﺴﺎﻟﻪ ﻧﻴﺰ‬

‫ﺷﮑﻞ ‪ :۴‬ﻧﺘﺎﻳﺞ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺷﺒﮑﻪ ﻧﻤﻮﻧﻪ ‪ ۲۵‬ﺷﻴﻨﻪ‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬

‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬

‫‪0 0‬‬ ‫‪0 0‬‬ ‫‪0 0‬‬ ‫‪0 Z 23‬‬ ‫‪0 0‬‬

‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬

‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬

‫‪0 0‬‬ ‫‪0 0‬‬ ‫‪0 0‬‬ ‫‪0 0‬‬ ‫‪0 Z19‬‬

‫‪0 0‬‬ ‫‪0 0‬‬ ‫‪0 Z17‬‬ ‫‪0 Z17‬‬ ‫‪0 0‬‬

‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬

‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬

‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬

‫‪0 0‬‬ ‫‪0 0‬‬ ‫‪0 0‬‬ ‫‪0 0‬‬ ‫‪0 Z12‬‬

‫‪0 0‬‬ ‫‪0 0‬‬ ‫‪0 Z10‬‬ ‫‪0 Z10‬‬ ‫‪0 0‬‬

‫‪0‬‬ ‫‪Z8‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬

‫‪Z7‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬

‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪Z6‬‬

‫‪0 0‬‬ ‫‪0 Z5‬‬ ‫‪0 Z5‬‬ ‫‪0 Z5‬‬ ‫‪0 0‬‬

‫‪Z3‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪Z3‬‬

‫‪0‬‬ ‫‪Z2‬‬ ‫‪Z2‬‬ ‫‪Z2‬‬ ‫‪0‬‬

‫‪ Z1‬‬ ‫‪Z‬‬ ‫‪ 1‬‬ ‫‪H V =  Z1‬‬ ‫‪‬‬ ‫‪ Z1‬‬ ‫‪ Z1‬‬ ‫‪‬‬

‫ﺷﮑﻞ‪ :۵‬ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ‪MV‬ﻫﺎﻱ ﻭﻟﺘﺎﮊ‬

‫‪-۵‬ﻧﺘﻴﺠﻪ ﮔﻴﺮﻱ‬

‫ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻳﻦﮐﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺑﺎﻳﺪ ﺑﻪ ﺻﻮﺭﺕ ﺯﻣﺎﻥ ﺣﻘﻴﻘﻲ‬

‫ﻋﻤﻞ ﻧﻤﺎﻳﺪ‪ .‬ﺑﺎﻳﺪ ﻣﻨﺎﺳﺒﺘﺮﻳﻦ ﻭ ﺩﻗﻴﻘﺘﺮﻳﻦ ﺟﻮﺍﺏ ﺭﺍﺩﺭ ﮐﻤﺘﺮﻳﻦ‬

‫ﺯﻣﺎﻥ ﻣﻤﮑﻦ ﺍﺭﺍﺋﻪ ﺩﻫﺪ‪ .‬ﺗﻤﺎﻣﻲ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ ﺑﻪ ﻧﻮﻋﻲ ﺩﺭ ﺑﻬﺒﻮﺩ‬

‫ﻫﺪﻑ ﺑﺎﻻ ﺍﺭﺍﺋﻪ ﻣﻲﺷﻮﻧﺪ‪ .‬ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﻳﮏ ﺭﻭﺵ ﻓﻮﻕ ﺍﻟﻌﺎﺩﻩ‬ ‫ﺧﻄﻲ ﺑﺮ ﺍﺳﺎﺱ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﻫﺎ ﺍﺭﺍﺋﻪ ﺷﺪ‪ .‬ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻳﻦ‬ ‫ﺧﺼﻮﺻﻴﺖ ﺩﻳﮕﺮ ﺍﺣﺘﻴﺎﺝ ﻧﻴﺴﺖ ﮐﻪ ﺩﺭ ﻫﺮ ﺗﮑﺮﺍﺭ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ‬

‫ﺗﺠﺰﻳﻪ ﻣﻲﺷﻮﻧﺪ ﮐﻪ ﻧﺘﻴﺠﻪ ﺁﻥ ﮐﺎﻫﺶ ﺍﺑﻌﺎﺩ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻭ ﺑﻪ ﺗﺒﻊ‬

‫ﺁﻥ ﮐﺎﻫﺶ ﺣﺠﻢ ﻣﺤﺎﺳﺒﺎﺕ ﻣﻲﺷﻮﺩ‪ .‬ﺩﺭ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩ ﺷﺪﻩ‬

‫ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺗﻤﺎﻣﻲ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺩﺭ ﺟﻬﺖ ﺑﻬﺒﻮﺩ ﭘﺎﺳﺦ‬

‫ﻣﺴﺎﻟﻪ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ‪ .‬ﺍﻣﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﺷﺪﻩ‬ ‫ﻭﻟﺘﺎﮊ ﺑﺎﻋﺚ ﺍﻓﺰﺍﻳﺶ ﺯﻣﺎﻥ ﻣﺤﺎﺳﺒﺎﺕ ﻣﻲﺷﻮﺩ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺘﺎﻳﺞ‬

‫ﻋﻤﻠﻲ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﺷﺪﻩ ﻭﻟﺘﺎﮊ ﺩﺭ ﺗﻤﺎﻣﻲ ﺑﺎﺳﻬﺎ‬

‫ﻫﻢ ﺑﻪ ﺩﻻﻳﻞ ﺍﻗﺘﺼﺎﺩﻱ ﻭ ﻫﻢ ﺑﻪ ﺩﻻﻳﻞ ﺑﺎﻻ ﺑﻪ ﺻﺮﻓﻪ ﻧﻴﺴﺖ‪.‬‬ ‫ﻭﺟﻮﺩ ﻣﺶ ﺩﺭ ﺷﺒﮑﻪﻫﺎ ﺑﺎﻋﺚ ﻣﻲﺷﻮﺩ ﮐﻪ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﺑﺎ ﺗﻮﺟﻪ‬

‫ﺑﻪ ﺿﺮﺍﻳﺐ ﻻﮔﺮﺍﻧﮋ ﺍﺯ ﻓﺮﻡ ﻗﻄﺮﻱ ﺧﺎﺭﺝ ﺷﻮﺩ‪ .‬ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ‬ ‫ﺷﺒﮑﻪ ﺩﺍﺭﺍﻱ ﻣﺶ ﺑﺪﻭﻥ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺿﺮﺍﻳﺐ ﻻﮔﺮﺍﻧﮋ ﺍﺯ ﺍﻫﺪﺍﻑ‬

‫ﺗﺤﻘﻴﻘﺎﺕ ﺁﻳﻨﺪﻩ ﻣﻲﺑﺎﺷﺪ‪.‬‬

1 −1 −1

1

−1 −1

1 1

−1 −1 −1

1

−1 −1

1

−1 −1

1

−1 −1

1 1 1 1 1 HI =

−1

1

−1

1 1 1

−1

1

−1

1 1

1 −1

1

1 1 1 −1

1 1

−1 −1

‫ﻫﺎﻱ ﺟﺮﻳﺎﻥ ﻭ ﻣﻌﺎﺩﻝ ﺟﺮﻳﺎﻥ‬MV ‫ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ‬: ۶‫ﺷﮑﻞ‬

‫ﻣﺮﺍﺟﻊ‬ [1] M. E. Baran and A. W. Kelly,"A Branch-CurrentBased State Estimation for Distribution Systems", IEEE Trans. on Power Systems, vol. 10, no.1, pp. 483-491, Feb. 1995 [2] Whei-Min Lin,Jen-Hao,and Shi-Jaw Chen,"A Highly Efficient Algorithm in Treating-CurrentBased Distribution StateEstimation", IEEE Trans on Power Delivery, vol. 16, no. 3, July 2001 [3] J-H. Teng,"Using Voltage Measurements to Improve the Results of Branch-Current-Based State Estimators for Distribution Systems", IEE proc Trns. Distrib, vol. 149, No. 6, November 2002 [4] Youman Deng, Ying He, and Boming Zhang"A Branch-Estimation-Based State Estimation Method for Radial Distribution Systems", IEEE Transactions on Power Delivery, vol. No.4, October 2002 [5] C. L. Lawson and R. J. Hanson, Solving Least Square Problems: Prentice-Hall, 1974. [6] G.H.Golub,"Numerical Methods for Solving Linear Least Square Problems", Numersche Mathematik, vol, 7, 1965 [7] Lin, W. M, and Teng, J. H "Distribution FastDecoupled State Estimation by Measurement Pairing ", IEEE proc, Gener. Transm. Distrib,1996, 143, pp. 43-48 [8] F. F. Wu, W.H.E.Liu,and S.-M.Lun,"Observability Analysis and Bad Data Processing for State Estimation With Equality Constraints", IEEE Trans. on Power Systems, vol. 3, no. 2, pp. 541548, May 1988 [9] W. M. Lin and J. H. Teng, "Stat Estimation for Distribution Ststems With Zero-Injection Constraint", IEEE Trans. on Power Systems, vol. 11, no. 1, pp. 518-524, Feb. 1996. [10] M.E.Baran,"State Estimation for Real-Time Monitoring of Distribution Systems", IEEE Trans on. Power Systems, vol. 9, no.3, pp.1601-1609, Aug [11] L. Holten, A. Gjelsvik, S. Aam, F.F. Wu,and W.-H. E. Liu, "Comparison of Different Methods for State Estimation", IEEE Trans. on PAS, vol. 3, no. 4, pp. 1798-1806, Nov. 1988

More Documents from "saeed"

Titlepagebwisitapp.docx
December 2019 13
October 2019 27
October 2019 26
May 2020 6
May 2020 5
May 2020 14