ﺍﺭﺍﺋﻪ ﻳﮏ ﺭﻭﺵ ﺧﻄﻲ ﺟﺪﻳﺪ ﺟﻬﺖ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﻮﺯﻳﻊ ﺻﺎﺩﻕ ﺟﻤﺎﻟﻲ
ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻢ ﻭ ﺻﻨﻌﺖ ﺍﻳﺮﺍﻥ
ﻋﻠﻴﺮﺿﺎ ﺟﻠﻴﻠﻴﺎﻥ
ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻢ ﻭ ﺻﻨﻌﺖ ﺍﻳﺮﺍﻥ
ﭼﮑﻴﺪﻩ :ﺑﺎﺗﻮﺟﻪ ﺑﻪ ﺗﻮﺳﻌﻪ ﺭﻭﺯ ﺍﻓﺰﻭﻥ ﺍﺗﻮﻣﺎﺳـﻴﻮﻥ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳﻊ ،ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺑـﻪ ﻋﻨـﻮﺍﻥ ﻳﮑـﻲ ﺍﺯ
ﻗﺴﻤﺖﻫﺎﻱ ﺍﺻﻠﻲ ﺍﺗﻮﻣﺎﺳﻴﻮﻥ ﺳﻴﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﻣـﻮﺭﺩ ﺗﻮﺟـﻪ
ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ .ﺩﺭ ﺍﻳـﻦ ﻣﻘﺎﻟـﻪ ﺭﻭﺵ ﺟﺪﻳـﺪﻱ ﺑـﺮﺍﻱ ﺗﺨﻤـﻴﻦ ﺣﺎﻟﺖ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﻮﺯﻳﻊ ﺍﺭﺍﺋـﻪ ﻣـﻲﺷـﻮﺩ .ﺍﻳـﻦ ﺭﻭﺵ ﺑﺮﺍﺳـﺎﺱ ﺭﻭﺵ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﺑﻨﺎ ﻧﻬﺎﺩﻩ ﺷﺪﻩ ﺍﺳﺖ .ﺩﺭ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩ ﺷـﺪﻩ
ﻣﺸﮑﻼﺕ ﺭﻭﺵ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﺩﺭ ﻣﻮﺭﺩ ﺷـﺒﮑﻪﻫـﺎﻱ ﺩﺍﺭﺍﻱ ﻣـﺶ
ﺑﺮ ﻃﺮﻑ ﺷﺪﻩ ﺍﺳﺖ ﻭ ﻫﻤﭽﻨﻴﻦ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﻣﻘـﺎﺩﻳﺮ ﺍﻧـﺪﺍﺯﻩﮔﻴـﺮﻱ ﺷﺪﻩ ﻭﻟﺘﺎﮊ ﻧﻴﺰﺩﺭﻣﻮﺭﺩ ﺷﺒﮑﻪﻫﺎﻱ ﺩﺍﺭﺍﻱ ﻣﺶ ﺍﺳـﺘﻔﺎﺩﻩ ﮐـﺮﺩ .ﻳـﮏ
ﺭﻭﺵ ﺟﺪﻳﺪ ﻧﻴﺰ ﺑﺮﺍﻱ ﻗﻄﺮﻱ ﮐﺮﺩﻥ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺑـﻪ ﻣﻨﻈـﻮﺭ ﮐﺎﻫﺶ ﺣﺠﻢ ﻣﺤﺎﺳﺒﺎﺕ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﺭﻭﺵ ﺷﺎﺧﻪﻫـﺎ
ﻭ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺑﻪ ﮔﻮﻧﻪﺍﻱ ﻧﺎﻣﮕـﺬﺍﺭﻱ ﻣـﻲﺷـﻮﻧﺪ ﺗـﺎ
ﺣﺘﻲ ﺍﻻﻣﮑﺎﻥ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻗﻄﺮﻱﺗﺮ ﺷﻮﺩ.
ﻭﺍﮊﻩﻫﺎﻱ ﮐﻠﻴـﺪﻱ :ﺗﺨﻤـﻴﻦ ﺣﺎﻟـﺖ ،ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ، ﺍﺗﻮﻣﺎﺳﻴﻮﻥ ،ﭘﺨﺶ ﺑﺎﺭ
ﻋﺒﺎﺱ ﺩﻫﻘﺎﻧﻲ
ﺩﺍﻧﺸﮕﺎﻩ ﻋﻠﻢ ﻭ ﺻﻨﻌﺖ ﺍﻳﺮﺍﻥ
ﺑﺎ ﮐﻤﮏ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺳﻴﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ،ﺍﭘﺮﺍﺗـﻮﺭ ﻣـﻲﺗﻮﺍﻧـﺪ
ﻣﺤﺎﺳﺒﺎﺕ ﺗﻠﻔﺎﺕ ﻭ ﺑﻬﻴﻨﻪ ﺳﺎﺯﻱ ﻭﻟﺘـﺎﮊ ﻭ ﺗـﻮﺍﻥ ﺭﺍﮐﺘﻴـﻮ ﺭﺍ ﺍﻧﺠـﺎﻡ ٣
ﺩﻫﺪ .ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺭﺍ ﻫﻤﭽﻨﻴﻦ ﻣﻲﺗﻮﺍﻥ ﺩﺭ ﺗﺠﺪﻳﺪ ﭘﻴﮑﺮﺑﻨﺪﻱ ﻭ ﺗﺸﺨﻴﺺ ﺍﺿﺎﻓﻪ ﺑﺎﺭ ﺑﻪ ﮐﺎﺭ ﮔﺮﻓﺖ .ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﺨﻤـﻴﻦ ﺣﺎﻟـﺖ
ﻣﻲ ﺗﻮﺍﻥ ﻗﺎﺑﻠﻴﺖ ﭘﺎﻳﺶ ﺳﻴﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺭﺍ ﺍﻓـﺰﺍﻳﺶ ﺩﺍﺩ ﻭ ﺩﺭ
ﻧﺘﻴﺠﻪ ﮐﻴﻔﻴﺖ ﺗـﻮﺍﻥ ﻭ ﻗﺎﺑﻠﻴـﺖ ﺍﻃﻤﻴﻨـﺎﻥ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺭﺍ
ﺍﻓﺰﺍﻳﺶ ﺩﺍﺩ .ﺗﺨﻤﻴﻦ ﺣﺎﻟـﺖ ﺍﺯ ٣٠ﺳـﺎﻝ ﭘـﻴﺶ ﺩﺭ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﻗﺪﺭﺕ ﺑﻪ ﮐﺎﺭ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ .ﻣﻬﻤﺘـﺮﻳﻦ ﺭﻭﺵ ﻣـﻮﺭﺩ ﺍﺳـﺘﻔﺎﺩﻩ
ﻗــﺮﺍﺭ ﮔﺮﻓﺘ ـﻪ ﺩﺭ ﺗﺨﻤــﻴﻦ ﺣﺎﻟــﺖ ،ﺭﻭﺵ ﺣــﺪﺍﻗﻞ ﻣﺮﺑﻌــﺎﺕ ﻭﺯﻥ ﺩﺍﺭ (WLS) ٤ﺍﺳﺖ .ﻣﻘﺪﺍﺭ ﺑﺎﻻﻱ ﻧﺴﺒﺖ rﺑﻪ ،xﺗﻌﺪﺍﺩ ﮐـﻢ ﺣﻠﻘـﻪ ﻫﺎﻱ ﺷﺒﮑﻪ ،ﭘﺨﺶ ﺷﺪﻥ ﺑﺎﺭﻫﺎ ﺩﺭ ﻃﻮﻝ ﻓﻴﺪﺭ ،ﮐﻢ ﺑﻮﺩﻥ ﺗﺠﻬﻴﺰﺍﺕ
ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ،ﺍﺯ ﺧﺼﻮﺻﻴﺎﺕ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﻮﺯﻳﻊ ﻫﺴﺘﻨﺪ ﮐـﻪ ﺑﺎﻳـﺪ ﺩﺭ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺩﺭ ﻧﻈـﺮ ﮔﺮﻓﺘـﻪ ﺷـﻮﻧﺪ.
ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺘﻐﻴﻴﺮ ﺣﺎﻟـﺖ ﺩﺭ ﺣـﻞ ﻣـﺴﺄﻟﻪ ﺗﺨﻤــﻴﻦ ﺣﺎﻟــﺖ ﺍﺯ ﻣﺘــﺪﺍﻭﻟﺘﺮﻳﻦ ﺭﻭﺷﻬﺎﺳــﺖ ] .[۴،۳،۲،۱ﺩﺭ ﻧﻈــﺮ
ﮔﺮﻓﺘﻦ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪﻫﺎ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺘﻐﻴﺮﻫﺎﻱ ﺣﺎﻟﺖ ﺩﺭ ﺳﻴﺴﺘﻢﻫﺎﻱ
ﺗﻮﺯﻳﻊ ﺩﺍﺭﺍﻱ ﻣﺰﺍﻳﺎﻱ ﻓﺮﺍﻭﺍﻧﻲ ﻣﻲﺑﺎﺷﺪ؛ ﺍﺯ ﺟﻤﻠﻪ ﻣﻲﺗـﻮﺍﻥ ﻣـﺴﺄﻟﻪ
-۱ﻣﻘﺪﻣﻪ
ﺩﺭ ﺍﺗﻮﻣﺎﺳﻴﻮﻥ ﻭ ﻣﺪﻳﺮﻳﺖ ﻣﺪﺭﻥ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ (DMS)١
ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺭﺍ ﺑﺮﺍﻱ ﻫﺮ ﻓﺎﺯ ﺟﺪﺍﮔﺎﻧﻪ ﺑﮑﺎﺭ ﺑﺮﺩ ﮐﻪ ﺑﺎ ﺗﻮﺟـﻪ ﺑـﻪ
ﻧﺎﻣﺘﻌﺎﺩﻝ ﺑـﻮﺩﻥ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺑـﺴﻴﺎﺭ ﻣﻄﻠـﻮﺏ ﺍﺳـﺖ .ﻭ
ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﻧﻘﺶ ﻣﻬﻤـﻲ ﺭﺍ ﺑـﺎﺯﻱ ﻣـﻲﮐﻨـﺪ .ﺗﺨﻤـﻴﻦ ﺣﺎﻟـﺖ
ﻫﻤﭽﻨﻴﻦ ﺑﻪ ﻋﻠﺖ ﺷﻌﺎﻋﻲ ﺑﻮﺩﻥ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﺑـﺎ ﺩﺍﺷـﺘﻦ
ﻣﺤﺪﻭﺩﻱ ﺍﺯ ﺗﺠﻬﻴﺰﺍﺕ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﻭ ﺍﻃﻼﻋﺎﺕ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺍﺯ
ﺍﺯﻧﻈﺮﮐﺎﺭﺑﺮﺩﻫﺎﻱ ﻋﻤﻠﻲ ،ﺗﺨﻤﻴﻦ ﺣﺎﻟـﺖ ﺑﺎﻳـﺪ ﺑﺘﻮﺍﻧـﺪ ﺍﺯ ﻣﻘـﺎﺩﻳﺮ
ﻭﺿﻌﻴﺖ ﺳﻴﺴﺘﻢ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺯﻣﺎﻥ ﺣﻘﻴﻘﻲ٢ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﻌﺪﺍﺩ
ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﻫﺎ ،ﺗﻤﺎﻣﻲ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﺳﻴﺴﺘﻢ ﻗﺎﺑﻞ ﺗﺤﺼﻴﻞ ﺍﺳـﺖ.
ﭘﻴﺶﺑﻴﻨﻲ ﺑﺎﺭ ﺗﺨﻤﻴﻦ ﻣﻲﺯﻧﺪ.
ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ (MV) ٥ﻭﻟﺘﺎﮊ ،ﺗﻮﺍﻥ ﻭ ﺟﺮﻳﺎﻥ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﺎﻳﺪ .ﺩﺭ
١-Distribution Management System ٢- Real Time
٣-Reconfiguration ۴-Wighted Least Square ۵-Measurement Value
ﺭﻭﺵ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﻋﻼﻭﻩ ﺑﺮ ﻣﻘﺎﺩﻳﺮ ﺍﻧـﺪﺍﺯﻩﮔﻴـﺮﻱ ﺷـﺪﺓ ﺟﺮﻳـﺎﻥ ﻭ ﺗﻮﺍﻥ ،ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﺓ ﻭﻟﺘﺎﮊ ﺭﺍ ﻧﻴﺰ ﻣـﻲﺗـﻮﺍﻥ ﺩﺭ ﺗﺨﻤـﻴﻦ ﺣﺎﻟﺖ ﺑﮑﺎﺭﮔﺮﻓﺖ .ﺩﺭﻣﺮﺟﻊ ] [۳ﺭﻭﺷـﻲ ﺑـﺮﺍﻱ ﺍﺳـﺘﻔﺎﺩﻩ ﺍﺯ MV
ﻭﻟﺘﺎﮊ ﺩﺭ ﻣﻮﺭﺩ ﺷﺒﮑﻪﻫﺎﻱ ﺷﻌﺎﻋﻲ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟـﻪ
ﺑـــﺮﺍﻱ ﺑﺪﺳـــﺖ
ﺁﻭﺭﺩﻥ ∆B
ﻻﺯﻡ ﺍﺳـــﺖ ﺩﺭ ﻫـــﺮ ﺑـــﺎﺭ ﺗﮑـــﺮﺍﺭ
G = H WHﻣﻌﮑﻮﺱ ﺷﻮﺩ G .ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻧﺎﻡ ﺩﺍﺭﺩ ﮐﻪ ﺍﮐﺜـﺮ ﺣﺠﻢ ﻣﺤﺎﺳﺒﺎﺕ ،ﻣﺮﺑﻮﻁ ﺑﻪ ﻣﻌﮑﻮﺱ ﮐﺮﺩﻥ ﺍﻳﻦ ﻣﺎﺗﺮﻳﺲ ﻣﻲﺑﺎﺷﺪ t
ﻭﺗﻤﺎﻣﻲ ﺭﻭﺷﻬﺎ ﺳﻌﻲ ﺩﺭ ﮐﻢ ﮐﺮﺩﻥ ﺯﻣﺎﻥ ﻣﺤﺎﺳﺒﻪ ﻣﻌﮑـﻮﺱ ﺍﻳـﻦ
ﺭﻭﺷﻲ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﮐﻪ ﺑﺘﻮﺍﻥ MVﻭﻟﺘـﺎﮊ ﺭﺍ ﺩﺭ ﻣـﻮﺭﺩ ﺷـﺒﮑﻪﻫـﺎﻱ
ﻣﺎﺗﺮﻳﺲ ﺭﺍ ﺩﺍﺭﻧﺪ.
ﻫﺮ ﻣﺮﺣﻠﻪ ﺗﮑﺮﺍﺭ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ،ﮐﻪ ﺩﺭ ﺍﺩﺍﻣـﻪ ﺗﻌﺮﻳـﻒ ﻣـﻲﺷـﻮﺩ،
ﻣﻲﺗﻮﺍﻥ ﻭﻟﺘﺎﮊ ﻭ ﺗﻮﺍﻥ ﮔﺮﻩﻫﺎ ﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﺩ.
ﺩﺍﺭﺍﻱ ﻣﺶ ﻫﻢ ﺑﻪ ﮐﺎﺭﺑﺮﺩ .ﺩﺭ ﺭﻭﺵ ﺣﺪﺍﻗﻞ ﻣﺮﺑﻌﺎﺕ ﻭﺯﻥ ﺩﺍﺭ ﺩﺭ
ﻣﻌﮑﻮﺱ ﻣﻲﺷﻮﺩ ﮐﻪ ﺍﻏﻠﺐ ﺯﻣﺎﻥ ﻣﺤﺎﺳﺒﺎﺗﻲ ﺭﺍ ﺑﻪ ﺧﻮﺩ ﺍﺧﺘﺼﺎﺹ
ﻣﻲﺩﻫﺪ .ﻫﺮ ﭼﻪ ﻗﺪﺭ ﻣﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ ﻗﻄـﺮﻱﺗـﺮ ﺑﺎﺷـﺪ ﺯﻣـﺎﻥ ﻻﺯﻡ
ﺑﺮﺍﻱ ﻣﻌﮑﻮﺱ ﺷﺪﻥ ﻣﺎﺗﺮﻳﺲ ﻧﻴﺰ ﮐﻤﺘـﺮ ﻣـﻲﺷـﻮﺩ .ﺗﺮﺗﻴـﺐ ﻗـﺮﺍﺭ ﮔﺮﻓﺘﻦ ﻋﻨﺎﺻﺮ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺑﻪ ﻧﺎﻣﮕﺬﺍﺭﻱ ﺷﺎﺧﻪﻫﺎ ﻭ ﻣﻘـﺎﺩﻳﺮ ﺍﻧـﺪﺍﺯﻩﮔﻴـﺮﻱ ﺷــﺪﻩ ﺑـﺴﺘﮕﻲ ﺩﺍﺭﺩ .ﺩﺭ ﺍﻳـﻦ ﻣﻘﺎﻟــﻪ ﺭﻭﺷـﻲ ﺑــﺮﺍﻱ
ﻧﺎﻣﮕﺬﺍﺭﻱ ﺷﺎﺧﻪ ﻫﺎ ﻭ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴـﺮﻱ ﺷـﺪﻩ ﺍﺭﺍﺋـﻪ ﺷـﺪﻩ ﺗـﺎ ﻣﺎﺗﺮﻳﺲ ﺗﺎ ﺟﺎﻱ ﻣﻤﮑﻦ ﺑﻪ ﻓﺮﻡ ﻗﻄﺮﻱ ﺗﺒﺪﻳﻞ ﺷﻮﺩ.
-۲ﺭﻭﺵ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺟﺮﻳﺎﻥ
)(1
ﺷﺎﺧﻪ][۱،۲
mea
ﮐﻪ ﺩﺭ ﺭﺍﺑﻄﻪ ﻓﻮﻕ:
: Vrﻭﻟﺘﺎﮊ ﮔﺮﻩ ﺑﺎﻻﺗﺮ
: Vsﻭﻟﺘﺎﮊ ﮔﺮﻩ ﭘﺎﻳﻴﻦﺗﺮ
Blﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﻭ Zlﺍﻣﭙﺪﺍﻧﺲ ﺷﺎﺧﻪ lﻣﻲ ﺑﺎﺷﻨﺪ
-۳ﻭﻳﮋﮔﻲﻫﺎﻱ ﻣﻄﻠﻮﺏ ﻳﮏ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺗﺎﻣﻴﻦ ﮔﺮﺩﻧﺪ:
-١ﺗﻮﺍﻧﺎﻳﻲ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﻤﺎﻣﻲ ﻣﻘﺎﺩﻳﺮ ﺍﻧـﺪﺍﺯﻩﮔﻴـﺮﻱ ﺷـﺪﻩ ﺍﻋـﻢ ﺍﺯ ﺗﻮﺍﻥ ،ﺟﺮﻳﺎﻥ ﻭ ﻭﻟﺘﺎﮊ ﺭﺍ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ .ﺩﺭ ﻋﻴﻦ ﺣﺎﻝ ﻣﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ
ﺧﻄﻲ ﻭ ﺛﺎﺑﺖ ﺑﺎﺷﺪ.
-٢ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻃﻮﺭﻱ ﺗﺸﮑﻴﻞ ﺷﻮﺩ ﮐﻪ ﺍﺣﺘﻴﺎﺝ ﺑﻪ ﺣﺪﺍﻗﻞ ﺯﻣﺎﻥ
:Bﻣﺘﻐﻴﻴﺮﻫﺎﻱ ﺣﺎﻟﺖ ﻳﻌﻨﻲ ﺟﺮﻳﺎﻥﻫﺎﻱ ﺷﺎﺧﻪ
ﺑﺮﺍﻱ ﻣﻌﮑﻮﺱ ﺷﺪﻥ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ.
: Zimeaﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﺷﺪﻩ )(MV
-٣ﻗﺎﺑﻞ ﺗﺠﺰﻳﻪ ﺑـﻪ ﻗـﺴﻤﺖﻫـﺎﻱ ﺣﻘﻴﻘـﻲ ﻭ ﻣﻮﻫـﻮﻣﻲ ﺑﺎﺷـﺪ ﻭ
: hﻣﺎﺗﺮﻳﺲ ﺗﺎﺑﻊ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ
ﻫﻤﭽﻨﻴﻦ ﻣﺴﺄﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺭﺍ ﺑﺘﻮﺍﻥ ﺟﺪﺍﮔﺎﻧـﻪ ﺑـﺮﺍﻱ ﻫـﺮ ﻓـﺎﺯ
: wﻣﺎﺗﺮﻳﺲ ﻭﺯﻥ ﺩﻫﻲ
ﺣﻞ ﻧﻤﻮﺩ )ﮐﺎﻫﺶ ﺍﺑﻌﺎﺩ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ(.
ﻣﻲ ﺑﺎﺷﻨﺪ.
ﻣﺎﺗﺮﻳﺲ ﺗﺎﺑﻊ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ) (hﻣﻘـﺎﺩﻳﺮ ﺍﻧـﺪﺍﺯﻩﮔﻴـﺮﻱ ﺷـﺪﻩ ﺭﺍ ﺑـﻪ
ﻣﺘﻐﻴﻴﺮﻫﺎﻱ ﺣﺎﻟﺖ ﻣﺮﺗﺒﻂ ﻣﻲ ﮐﻨﺪ .ﺑـﺮﺍﻱ ﺣـﻞ ﻣـﺴﺄﻟﻪ ﺑـﺎﻻ ﺭﻭﺵ ﺗﮑﺮﺍﺭ ﻧﻴﻮﺗﻮﻥ ﺑﮑﺎﺭ ﮔﺮﻓﺘﻪ ﻣﻲﺷﻮﺩ ﻭ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ: ﮐﻪ ﺩﺭ ﺭﺍﺑﻄﻪ ﻓﻮﻕ ﺩﺍﺭﻳﻢ:
ﮐﻪ ﺩﺭ ﺭﺍﺑﻄﻪ ﻓﻮﻕ:
ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺍﺭﺍﺋﻪ ﻣﻲﮔﺮﺩﺩ .ﺑﺮﺍﻱ ﺍﻳﻦ ﻣﻨﻈﻮﺭ ﺍﻫﺪﺍﻑ ﺯﻳـﺮ ﺑﺎﻳـﺪ
J ( x) = W ( Z i − h( B))^ 2
)(2
)(5
Vr = Vs + Bl Zl
ﺩﺭﺍﻳﻦ ﻗﺴﻤﺖ ﺑﻪ ﺻﻮﺭﺕ ﻓﻬﺮﺳﺖ ﻭﺍﺭ ﻭﻳﮋﮔﻲﻫﺎﻱ ﻣﻄﻠﻮﺏ ﻳـﮏ
ﺗﺎﺑﻊ ﻫﺪﻑ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﺑـﺮ ﺍﺳـﺎﺱ ﺭﻭﺵ WLS
ﺑﺮﺍﺑﺮ ﺯﻳﺮ ﺍﺳﺖ:
ﺑﻌﺪ ﺍﺯ ﺑﺪﺳﺖ ﺁﻣﺪﻥ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪﻫﺎ ﺑﺎ ﺍﺳـﺘﻔﺎﺩﻩ ﺍﺯ ﺭﻭﺵ ﭘﻴـﺸﺮﻭ
H H∆B = H tW∆I t
-٤ﺑﺘﻮﺍﻥ ﺗﻮﺳﻂ ﺁﻥ ﻭﺿﻌﻴﺖ ﺷﺒﮑﻪﻫﺎﻱ ﺩﺍﺭﺍﻱ ﻣـﺶ ﺿـﻌﻴﻒ ﺭﺍ ﺗﺨﻤﻴﻦ ﺯﺩ ﺩﺭ ﻋﻴﻦ ﺣﺎﻝ ﺳﻪ ﻭﻳﮋﮔﻲ ﺑﺎﻻ ﺭﺍ ﻧﻴﺰ ﺗﺄﻣﻴﻦ ﮐﺮﺩ.
-۳-۱ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ
-۳-۱-١ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺟﺮﻳﺎﻥ][۲،۷
:Hﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺗﺎﺑﻊ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ
ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﺍﮔﺮ MVﺑﻪ ﺻﻮﺭﺕ ﻓﺎﺯﻭﺭ ﺟﺮﻳﺎﻥ ﺑﺎﺷﺪ ،ﺑـﺎ ﺗﻮﺟـﻪ
: ∆Bﻣﻘﺎﺩﻳﺮ ﺑﺎﻗﻴﻤﺎﻧﺪﻩ ﺍﻱ
ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺍﺯ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ.
:Wﻣﺎﺗﺮﻳﺲ ﻭﺯﻥ ﺩﻫﻲ
ﺑﻪ ﺗﻌﺮﻳﻒ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻋﻨﺎﺻﺮ ﻣﺮﺑـﻮﻁ ﺑـﻪ MVﺟﺮﻳـﺎﻥ ﺩﺭ
: ∆Iﻣﺎﺗﺮﻳﺲ ﺧﻄﺎﻱ ﻋﺪﻡ ﺗﻄﺎﺑﻖ
ﻣﻘﺎﺩﻳﺮ ﺑﺎﻗﻴﻤﺎﻧﺪﻩ ﺍﻱ ) ( ∆Bﺩﺭ ﻫﺮ ﺗﮑـﺮﺍﺭ ،ﻣﺤﺎﺳـﺒﻪ ﻭ ﺑـﻪ ﺟﺮﻳـﺎﻥ ﺷﺎﺧﻪﻫﺎ ﺍﻓﺰﻭﺩﻩ ﻣﻲﺷﻮﻧﺪ: )(3
= B + ∆B k
k +1
B
ﻣﺎﺗﺮﻳﺲ ﺧﻄﺎﻱ ﻋﺪﻡ ﺗﻄﺎﺑﻖ ) ( ∆Iﺗﻔـﺎﻭﺕ ﻣﻘـﺎﺩﻳﺮ ﺟﺮﻳـﺎﻥﻫـﺎﻱ ﻣﻌﺎﺩﻝ ﺷﺎﺧﻪﻫﺎ )ﻳﺎ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ( ﺑﺎ ﻣﺤﺎﺳﺒﻪ ﺷﺪﻩ ﻣﻲﺑﺎﺷﺪ: )(4
∆I = I eq − I cal
)(6
∂I r ∂Bi 1 = ∂I i 1 ∂Bi
∂I r r ∂B = i ∂I ∂B r
H SUB
ﮐﻪ ﺩﺭ ﺍﻳﻦ ﺭﺍﺑﻄﻪ lﺷﻤﺎﺭﻩ ﺷﺎﺧﻪ ﻭ Iﻣﻘﺪﺍﺭ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺑﻪ
ﺻﻮﺭﺕ ﺯﻳﺮ ﻣﻲﺑﺎﺷﺪ:
I = MV = I lr + jI li
ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻗﻄﺮﻱ ﺑﻮﺩﻥ ﻣﺎﺗﺮﻳﺲ ﻣـﻲﺗـﻮﺍﻥ ﻣﻘـﺎﺩﻳﺮ ﻣﻮﻫـﻮﻣﻲ ﻭ
MV -١ﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﺗﻮﺍﻥ ﺟﺎﺭﻱ ﺧﻄﻮﻁ ﻣﻲﺑﺎﺷـﺪ :ﺩﺭ ﺍﻳـﻦ
ﺧﻮﺍﻫﺪ ﺑﻮﺩ ،ﺍﻣﺎ ﺍﮔﺮ MVﺑﻪ ﺻﻮﺭﺕ ﺩﺍﻣﻨﻪ ﺟﺮﻳﺎﻥ ﺑﺎﺷـﺪ ﺧـﻮﺍﻫﻴﻢ
ﺗﺒﺪﻳﻞ ﮐﺮﺩ:
ﺣﻘﻴﻘﻲ ﺭﺍ ﺍﺯ ﻫﻢ ﺟﺪﺍ ﻧﻤﻮﺩ .ﺩﺭ ﺿﻤﻦ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻧﻴـﺰ ﻗﻄـﺮﻱ ﺩﺍﺷﺖ: )(7
2 2 h( I ) = I r + I i
)(8
∂h ∂I r = cos φ ∂h = sin φ ∂I i
ﻋﻨﺎﺻﺮﻣﺮﺑﻮﻁ ﺑﻪ ﺍﻳﻦ MVﺩﺍﻣﻨﻪ ﺟﺮﻳﺎﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺍﺳﺖ:
ﮐﻪ ﺩﺭ ﺁﻥ
Ii Ir
φ = tan −1
ﻣﻲ ﺑﺎﺷﺪ .ﻭﺟﻮﺩ ﺍﻳﻦ ﻋﻨﺎﺻﺮ ﺩﺭ ﻣـﺎﺗﺮﻳﺲ
ﮊﺍﮐﻮﺑﻴﻦ ﺳﺒﺐ ﭘﻴﺪﺍﻳﺶ ﺟﻤﻼﺕ ﺯﻳﺮ ﺩﺭ ﻣـﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ ﺧﻮﺍﻫـﺪ ﺷﺪ:
ﺻﻮﺭﺕ ﻣﻲﺗﻮﺍﻥ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺭﻭﺍﺑﻂ ﺯﻳﺮ ﺁﻥ ﺭﺍ ﺑـﻪ ﺟﺮﻳـﺎﻥ ﻣﻌـﺎﺩﻝ )(14 k
*S 1 flow r + jI r ⇒ H = I eq = eq sub 1 * k V
Vﻭﻟﺘﺎﮊ ﮔﺮﻩﺍﻱ ﺍﺳﺖ ﮐﻪ ﺟﺮﻳﺎﻥ ﻣﻌﺎﺩﻝ ﺍﺯ ﺁﻥ ﺧﺎﺭﺝ ﻣﻲﺷﻮﺩ.
MV-۲ﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﺗﻮﺍﻥ ﺑﺎﺭ ﻣﺘﺼﻞ ﺑﻪ ﺑﺎﺳﻬﺎﻣﻲﺑﺎﺷﺪ:
ﺍﻳﻦ ﻧﻮﻉ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱﻫﺎ ﻣﻌﻤﻮﻻﹰ ﻧﺘﺎﻳﺞ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺍﺯ ﭘﻴﺶﺑﻴﻨﻲ ﺑﺎﺭ
ﺍﺳﺖ ﻭ ﺩﺍﺭﺍﻱ ﺩﻗﺖ ﮐﻤﺘﺮﻱ ﻧﺴﺒﺖ ﺑﻪ ﺑﻘﻴـﻪ MVﻫـﺎ ﻣـﻲﺑﺎﺷـﺪ ﻭ
ﺍﮐﺜﺮ ﻭﺭﻭﺩﻳﻬﺎﻱ ﻣﺴﺄﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺭﺍ ﺗﺸﮑﻴﻞ ﻣﻲﺩﻫﺪ .ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺷﮑﻞ ۱ﻭ ﺭﺍﺑﻄﻪ KCLﻣﻲ ﺗﻮﺍﻥ ﻧﻮﺷﺖ:
*S ` r + jI i I = = I eq eq load V k I = B − B load ∑ in ∑ out
)(15 cos φ sin φ sin 2 φ
)(9
cos 2 φ Gsub = sin φ cos φ
= eq I mea
)(16
ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﻗﺴﻤﺖﻫﺎﻱ ﻣﻮﻫﻮﻣﻲ ﻭ ﺣﻘﻴﻘﻲ ﻣـﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ ﺑـﺎ
ﻫﻢ ﺗﺮﮐﻴﺐ ﻣﻲﺷﻮﻧﺪ) ﺗﺰﻭﻳﺞ( ،ﭼﻮﻥ ﺩﺭ ﻋﺒﺎﺭﺕ ﺑﺎﻻ φﮐﻪ ﻣﺮﺑـﻮﻁ ﺑﻪ ﻫﺮ ﺩﻭ ﻗﺴﻤﺖ ﻣﻮﻫﻮﻣﻲ ﻭ ﺣﻘﻴﻘﻲ ﻣﻲﺑﺎﺷﺪ ﻇﺎﻫﺮ ﺷـﺪﻩ ﺍﺳـﺖ. ﺑﺮﺍﻱ ﺣﻞ ﺍﻳﻦ ﻣﺸﮑﻞ ﻣﻲ ﺗﻮﺍﻥ ﺍﻗﺪﺍﻣﺎﺕ ﺯﻳﺮ ﺭﺍ ﺍﻧﺠﺎﻡ ﺩﺍﺩ:
ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻳﻨﮑﻪ ﻣﻴﺰﺍﻥ ﺗﻮﺍﻥ ﺗﺤـﻮﻳﻠﻲ ﭘـﺴﺖ ﺍﺻـﻠﻲ ﺑـﻪ ﺷـﺒﮑﻪ
ﻣﺸﺨﺺ ﻣﻲﺑﺎﺷﺪ ،ﻣﻲﺗﻮﺍﻥ ﺭﻭﺍﺑﻂ ﺯﻳﺮ ﺭﺍ ﻧﻮﺷﺖ: )(10
=1<0 pu S = p + jQ = VI * v * → S = I ) ⇒ angle( I ) = −angle( S
ﺍﺯ ﺍﻳﻦ ﻣﻘﺪﺍﺭ ﺯﺍﻭﻳﻪ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﻋﻨﻮﺍﻥ ﺯﺍﻭﻳﻪ ﺍﻭﻟﻴﻪ MVﺩﺍﻣﻨﻪ
ﺟﺮﻳﺎﻥ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ ،ﺑﻨﺎﺑﺮﺍﻳﻦ:
i
)(11
I mea < angle( I ) = I + jI r
ﺑﺮﺍﻱ ﻓﺎﺯﻫﺎﻱ Bﻭ Cﻣﻲﺗﻮﺍﻥ ﺑﺎ ﺍﻓﺰﻭﺩﻥ +١٢٠ﻭ -١٢٠ﺩﺭﺟﻪ ﺑـﻪ ) angle(Iﺭﺍﺑﻄﻪ ﻓﻮﻕ ﺭﺍ ﺑﮑﺎﺭ ﺑـﺮﺩ .ﺍﻣـﺎ ﺑـﺮﺍﻱ ﺗﮑﺮﺍﺭﻫـﺎﻱ ﺑﻌـﺪﻱ
ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺯﺍﻭﻳﻪ ﻣﺤﺎﺳﺒﻪ ﺷﺪﻩ ﺩﺭ ﺗﮑﺮﺍﺭ ﻗﺒﻞ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ. )(12
Bik = I r + jI i Brk
k +1 I mea = I mea < tan −1
ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ: )(13
r ∂I mea =1 ∂B r i ∂I mea = 1 ∂Bi
ﻋﻨﺎﺻﺮ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻣﺮﺑﻮﻁ ﺑﻪ ﺍﻳﻦ MVﺩﺭ ﺻﻮﺭﺕ ﺗﺪﺍﺑﻴﺮ ﺑﺎﻻ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺧﻮﺍﻫﺪ ﺑﻮﺩ:
-۳-۱-۲ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺗﻮﺍﻥ
ﻣﻌﻤﻮﻻﹰ MVﺗﻮﺍﻥ ﺑﻪ ﺩﻭ ﺻﻮﺭﺕ ﺍﺳﺖ:
1 H = 1
ﺷﮑﻞ :١ﺭﺍﺑﻄﻪ KCL
ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻣﺮﺑﻮﻁ ﺑﻪ MVﺗﻮﺍﻥ ﺑﺎﺭ )ﺍﻧـﺪﺍﺯﻩ ﮔﻴﺮﻱﻫﺎﻱ ﮐﺎﺫﺏ( ﺩﺭﺷﮑﻞ ١ﺑﺮﺍﺑﺮ ﺯﻳﺮ ﺍﺳﺖ:
H ]= [+1 + 1 −1 −1 sub
-۳-۱-۳ﻣﻘﺎﺩﻳﺮﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﺷﺪﻩ ﻭﻟﺘﺎﮊ][۳
ﺍﮔﺮ MVﻭﻟﺘﺎﮊ ﺑﻪ ﺻﻮﺭﺕ ﺩﺍﻣﻨﻪ ﺑﺎﺷﺪ ،ﻣﺜﻞ MVﺟﺮﻳﺎﻥ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺯﺍﻭﻳﻪ ﻣﺤﺎﺳﺒﻪ ﺷﺪﻩ ﺩﺭ ﺗﮑﺮﺍﺭ ﻗﺒﻞ ﺍﺳﺘﻔﺎﺩﻩ ﮐﺮﺩ.
r + jV i )(17 Veq = Vmea <θ vk −1 = Veq eq ﻣﻘﺎﺩﻳﺮ ﺍﻭﻟﻴﻪ ﺯﺍﻭﻳﺔ MVﻭﻟﺘﺎﮊﻫﺎ ﺻﻔﺮ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﻣﻴـﺸﻮﺩ .ﺑـﺎ
ﺻﺮﻑ ﻧﻈﺮ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﺍﻣﭙﺪﺍﻧﺲ ﻣﺘﻘﺎﺑﻞ ﺑﺎﺳـﻬﺎ ﻣـﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ ﺑـﻪ ﺻﻮﺭﺕ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺗﺸﮑﻴﻞ ﻣﻲﺷﻮﺩ:
G= T − X aa Wva Raa
r Ga T + Raa Wva X aa
)(18
− RT W X + xT W R aa va aa aa va aa Gi a
ﻛﻪ ﺩﺭ ﺭﺍﺑﻄﻪ ﻓﻮﻕ:
r )T W H r + RT W Gar = ( H aa pa aa aa va R aa TW X + X aa va aa i )T W H i + RT W R Gai = ( H aa qa aa aa va aa T + X aa Wva X aa
G ar , G iaﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﺣﻘﻴﻘﻲ ﻭ ﻣﻮﻫﻮﻣﻲ ﺗﺸﮑﻴﻞ ﺷﺪﻩ ﺗﻮﺳﻂ MVﻫﺎﻱ ﻏﻴﺮ ﺍﺯ ﻭﻟﺘﺎﮊ ﻣﺮﺑﻮﻁ ﺑﻪ ﻓﺎﺯ aﻫﺴﺘﻨﺪ.
: R aa , X aaﻣﺠﻤﻮﻋــﻪ ﻗــﺴﻤﺖﻫــﺎﻱ ﻣﻮﻫــﻮﻣﻲ ﻭ ﺣﻘﻴﻘــﻲ
ﺍﻣﭙﺪﺍﻧﺲﻫﺎﻱ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺑﻴﻦ ﺑﺎﺱ ﺍﺻﻠﻲ ﻭ ﺑﺎﺳـﻲ ﮐـﻪ ﻭﻟﺘـﺎﮊ ﺁﻥ ﺍﻧﺪﺍﺯﻩ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ ﻣﻲ ﺑﺎﺷـﻨﺪ.
Wva ,Wqa ,Wpa
ﺯﻳـﺮ ﻣـﺎﺗﺮﻳﺲ
ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻣﻲﺍﻧﺠﺎﻣﺪ .ﺩﺭ ﺁﻥ ﺻﻮﺭﺕ ﺯﻣﺎﻥ ﻣﺤﺎﺳﺒﺎﺕ ﺑﻪ ﻃـﺮﺯ ﭼﺸﻤﮕﻴﺮﻱ ﮐﺎﻫﺶ ﻣﻲﻳﺎﺑﺪ
-۳-۳-١ﻋﺪﻡ ﻭﺟﻮﺩ MVﻫﺎﻱ ﻭﻟﺘﺎﮊ
ﺩﺭ ﺍﻳــﻦ ﺻــﻮﺭﺕ ﻣــﺎﺗﺮﻳﺲ ﮊﺍﮐــﻮﺑﻴﻦ ﺑــﻪ ﺻــﻮﺭﺕ ﺯﻳــﺮ ﺍﺳــﺖ: i H bb
r H aa HI
i H aa
ﻫﺎﻱ ﻭﺯﻥﺩﻫﻲ ﻣﺮﺑﻮﻁ ﺑـﻪ MVﻫـﺎﻱ ﺗـﻮﺍﻥ ﻭ ﻭﻟﺘـﺎﮊ ﻣـﻲﺑﺎﺷـﻨﺪ.
)(19
-۳-۲ﻗﻄﺮﻱ ﮐﺮﺩﻥ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ
ﻫﻤﻴﻨﻄﻮﺭ ﮐﻪ ﻣﺸﺎﻫﺪﻩ ﻣﻴﺸﻮﺩ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﮐﺎﻣﻼﹰ ﻗﻄﺮﻱ ﺍﺳﺖ
ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﺓ ﻓﺎﺯ bﻭ cﻧﻴﺰ ﺑﻄﻮﺭ ﻣﺸﺎﺑﻪ ﺗﺸﮑﻴﻞ ﻣﻲﺷﻮﻧﺪ.
ﺭﺍﺑﻄﻪ ﺷﻤﺎﺭﺓ MVﻫﺎ ﺑﺎ ﺷـﻤﺎﺭﻩ ﺷـﺎﺧﻪﻫـﺎ ﺗﺮﺗﻴـﺐ ﻗـﺮﺍﺭ ﮔـﺮﻓﺘﻦ
ﻋﻨﺎﺻﺮ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺭﺍ ﻣﺸﺨﺺ ﻣﻲﮐﻨﺪ .ﺍﮔﺮ ﺷﻤﺎﺭﻩ MVﻫـﺎ
r H cc
i H bb
r H bb
ﻭ ﻣﻲﺗﻮﺍﻥ ﺁﻧﺮﺍ ﺑﻄﻮﺭ ﮐﺎﻣﻞ ﺁﻧﺮﺍ ﺑﻪ ﺷﺶ ﺯﻳﺮﻣﺎﺗﺮﻳﺲ ﺗﺠﺰﻳﻪ ﻧﻤﻮﺩ.
-۳-۳-٢ﻭﺟﻮﺩ MVﻫﺎﻱ ﻭﻟﺘﺎﮊ
ﺑﺎ ﺷﻤﺎﺭﺓ ﻣﺘﻐﻴﻴﺮﻫﺎﻱ ﺣﺎﻟﺖ ﻣﺮﺑﻮﻃﻪ ﻧﺰﺩﻳﮏ ﺑﺎﺷﺪ ،ﻣﺎﺗﺮﻳﺲ ﺑﻬـﺮﻩ
ﺑﺎ ﻓـﺮﺽ ﺍﻳﻨﮑـﻪ ﺩﺭ ﺳﻴـﺴﺘﻢﻫـﺎﻱ ﺗﻮﺯﻳـﻊ ﻧـﺴﺒﺖ r xﺑﺎﻻﺳـﺖ ﻣﻲ ﺗﻮﺍﻥ ﺍﺯ ﻋﻨﺎﺻﺮ ﻣﻮﺟﻮﺩ ﺩﺭ ﻗﻄﺮ ﻓﺮﻋﻲ ﺭﺍﺑﻄﻪ )(۱۸ﺻﺮﻑ ﻧﻈـﺮ
-١ﺷــﺒﮑﻪ ﺭﺍ ﺑــﻪ ﺻــﻮﺭﺕ ﻻﻳــﻪ ﺑﻨــﺪﻱ ﺩﺭ ﻧﻈــﺮ ﮔﺮﻓﺘــﻪ ﺳــﭙﺲ
ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﺭﺍ ﺑﻪ ﻗﺴﻤﺖﻫﺎﻱ ﺣﻘﻴﻘﻲ ﻭ ﻣﻮﻫﻮﻣﻲ ﺗﺠﺰﻳﻪ ﻧﻤـﻮﺩ
ﺑﻪ ﻓﺮﻡ ﻗﻄﺮﻱ ﻧﺰﺩﻳﮏ ﻣﻲﺷﻮﺩ.
ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺑﺤﺚ ﺑﺎﻻ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺯﻳﺮ ﭘﻴﺸﻨﻬﺎﺩ ﻣﻲﺷﻮﺩ:
ﺷﺎﺧﻪ ﻫﺎﻱ ﻣﻮﺟﻮﺩ ﺩﺭ ﻫﺮ ﻻﻳﻪ ﺑـﻪ ﺗﺮﺗﻴـﺐ ﺷـﻤﺎﺭﻩ ﮔـﺬﺍﺭﻱ ﻣـﻲ
ﻧﻤﺎﻳﻴﻢ .ﺳﭙﺲ ﺑﻪ ﻻﻳﻪ ﺑﻌﺪﻱ ﺭﻓﺘﻪ ﻭ ﺷﺎﺧﻪﻫﺎﻱ ﻻﻳﻪﻫﺎﻱ ﺑﻌـﺪﻱ ﺭﺍ ﺑﻪ ﻫﻤﻴﻦ ﺗﺮﺗﻴﺐ ﻧﺎﻣﮕﺬﺍﺭﻱ ﻣﻲﮐﻨﻴﻢ ﺗﺎ ﺑﻪ ﻻﻳﻪ ﺁﺧﺮ ﺑﺮﺳﻴﻢ.
-۲ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺭﺍ ﺑﻪ ﺩﻭ ﺩﺳﺘﻪ ﺗﻘﺴﻴﻢ ﻣﻲﮐﻨﻴﻢ
ﮐﺮﺩ .ﺩﺭ ﺁﻥ ﺻﻮﺭﺕ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻗﻄـﺮﻱ ﻣـﻲﺷـﻮﺩ ﻭ ﻣـﻲﺗـﻮﺍﻥ
ﻭ ﻣﺴﺄﻟﻪ ﺭﺍﻣﻲﺗﻮﺍﻥ ﻃﺒﻖ ﺭﻭﺍﺑﻂ ﺯﻳﺮ ﺣﻞ ﻧﻤﻮﺩ:
r )T W ∆I r − RT W ∆V r Gar ∆Bar = ( H aa aa va a pa a i T − XaaWva ∆Va i i i )T W ∆I i + XT W ∆V r Ga ∆Ba = ( H aa qa a aa va a T W ∆V i − Raa va a
)(20
ﺍﻟﻒ(ﻣﻘﺎﺩﻳﺮ ﺟﺮﻳﺎﻥ ﻭ ﺗﻮﺍﻥ ﺟﺎﺭﻱ ﺷﺎﺧﻪﻫﺎ ،ﺏ(ﺍﻃﻼﻋﺎﺕ ﺑﺎﺭ
-٣ﺍﮔﺮ MVﺟﺮﻳﺎﻥ ﻳﺎ ﺗﻮﺍﻥ ﺟﺎﺭﻱ ﺷﺎﺧﻪﻫﺎ ﺑﻮﺩ ،ﺷـﻤﺎﺭﺓ ﻣﻘـﺪﺍﺭ
ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺭﺍ ﺑﺮﺍﺑﺮ ﺑﺎ ﺷﻤﺎﺭﻩ ﺷﺎﺧﻪ ﻣﺮﺑﻮﻃﻪ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﺩ.
-٤ﺍﮔﺮ ﻣﻘﺪﺍﺭ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺍﻃﻼﻋﺎﺕ ﺑﺎﺭ ﺑـﻮﺩ ،ﺑﺮﺭﺳـﻲ ﻣـﻲ ﺷﻮﺩ ﮐﻪ ﺑﺎﺭ ﺑﻪ ﭼﻪ ﺑﺎﺳﻲ ﻣﺘﺼﻞ ﺍﺳﺖ ﻭﭼﻪ ﺷﺎﺧﻪﻫـﺎﻳﻲ ﺑـﻪ ﺍﻳـﻦ
ﺑﺎﺱ ﻣﺘﺼﻞ ﻫﺴﺘﻨﺪ .ﺍﮔﺮ ﺗﻨﻬﺎ ﻳﮏ ﺷﺎﺧﻪ ﻣﺘﺼﻞ ﺑﻮﺩ ﺷـﻤﺎﺭﻩ MV
-۳-۴ﻭﺟﻮﺩ ﻣﺶﻫﺎﻱ ﺿﻌﻴﻒ][۲,۳,۹
ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺷﮑﻞ ۲ﻭ ﺭﺍﺑﻄﻪ KVLﻣﻲﺗﻮﺍﻥ ﻧﻮﺷﺖ: y1 y2
ﺭﺍ ﺑﺮﺍﺑﺮ ﺑﺎ ﺷﻤﺎﺭﻩ ﺍﻳﻦ ﺷﺎﺧﻪ ﺩﺭ ﻧﻈﺮ ﻣﻲﮔﻴﺮﻳﻢ .ﻭﮔﺮﻧﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ
y3
ﻣﺤﺪﻭﺩﻳﺖﻫﺎﻱ ﺯﻳﺮ ﺑﺮﺍﺑﺮ ﺑﺎ ﺷﻤﺎﺭﻩ ﻳﮑﻲ ﺍﺯ ﺷﺎﺧﻪﻫﺎﻱ ﻣﺘﺼﻞ ﺑـﻪ ﺑﺎﺱ ﻣﺮﺑﻮﻃﻪ ﻳﺎ ﻧﺰﺩﻳﮏ ﺑﻪ ﺁﻧﻬﺎ ﺩﺭ ﻧﻈﺮﻣﻲﮔﻴﺮﻳﻢ.
-١ﺍﻳﻦ ﺷﻤﺎﺭﻩ ﻗﺒﻼﹰ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﻧﮕﺮﻓﺘﻪ ﺑﺎﺷﺪ.
-٢ﺩﺭ ﻧﻬﺎﻳﺖ ﻧﺒﺎﻳﺪ ﺷﻤﺎﺭﻩﺍﻱ ﺑﺰﺭﮔﺘﺮ ﺍﺯ ﺗﻌﺪﺍﺩ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﻮﺩ.
ﻧﮑﺘﻪ ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﺻﻮﺭﺕ ﻭﺟـﻮﺩ ﻣـﺶ ﻳـﺎ MV
y4
y5
ﺷﮑﻞ ۲
yiφ Biφ = 0
)(21
nlﺗﻌﺪﺍﺩ ﺷﺎﺧﻪﻫﺎﻱ ﻣﻮﺟﻮﺩ ﺩﺭ ﺣﻠﻘﻪ ﻣﻲﺑﺎﺷﺪ nl
Birφ − xiφ Biiφ + j ∑ riφ Biiφ + xiφ Birφ = 0 i =1
ﻫﻢ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺎﻻ ﻣﻲﺗﻮﺍﻥ ﺷﺮﺍﻳﻂ ﺭﺍ ﺑﻬﺒﻮﺩ ﺑﺨﺸﻴﺪ.
ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺭﺍ ﺩﺭ ﻣﻮﺭﺩ ﻫﺮ ﻓﺎﺯ ﺟﺪﺍﮔﺎﻧﻪ ﺑﻪﮐﺎﺭ ﺑـﺮﺩ .ﻫﻤﭽﻨـﻴﻦ ﺗﺠﺰﻳﻪ ﻣﺴﺎﻟﻪ ﺑﻪ ﺩﻭ ﻗﺴﻤﺖ ﺣﻘﻴﻘﻲ ﻭ ﻣﻮﻫﻮﻣﻲ ﺑـﻪ ﮐـﺎﻫﺶ ﺍﺑﻌـﺎﺩ
i =1
nl
∑r
iφ
B − xiφ B = 0
iφ
B + xiφ B = 0
iφ
i iφ
r iφ
r iφ
i iφ
i =1 nl
)(22
ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺎ ﻣﺘﻌﺎﺩﻟﻲ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﻮﺯﻳﻊ ﻣﻨﺎﺳﺐ ﺍﺳﺖ ﮐﻪ ﻣﺴﺎﻟﻪ
∑
ﺭﺍﺑﻄﻪ)(۲۱ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﻧﻮﺷﺖ:
ﻭﻟﺘﺎﮊ ﺩﺭ ﺷﺒﮑﻪ ﺣﺎﻟﺖ ﻗﻄﺮﻱ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﺍﺯ ﺑﻴﻦ ﻣﻲﺭﻭﺩ ﺍﻣﺎ ﺑـﺎﺯ
-۳-۳ﺗﺠﺰﻳﻪ
مn
∑r i =1 nl
∑r i =1
ﺩﺭ ﺣﻘﻴﻘﺖ ﺭﻭﺍﺑﻂ) (۲۲ﻗﻴﺪﻫﺎﻱ ﻣﺴﺎﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﻣﻲﺑﺎﺷﻨﺪ.
ﺑﺮﺍﻱ ﺣﻞ ﻣﺴﺎﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺑﺎ ﻭﺟﻮﺩ ﻗﻴﺪ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺿﺮﺍﻳﺐ
ﻻﮔﺮﺍﻧﮋ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ .ﺑﻌﺪ ﺍﺯ ﺣﻞ ﻣﺴﺎﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺑﺎ ﺗﻮﺟﻪ
ﻗﻴﻮﺩ،ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺿﺮﺍﻳﺐ ﻻﮔﺮﺍﻧﮋ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﺑﻪ ﻓﺮﻡ ﺯﻳﺮ
ﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ]:[۹،۶
Ct 0
)(23
Gm C
r r raaT ∆Ba MIS r = r 0 λ C a
G aar raa
r ∆B i λ
G raa
)(27
i
MIS = i C a
i a
T aa
i aa
ﮐﻪ Gmﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻗﺴﻤﺖ ﺷﻌﺎﻋﻲ ﺷﺒﮑﻪ ﻭ Cxﻣﺎﺗﺮﻳﺲ
ﻧﮑﺘﻪ ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﺍﻳـﻨﺴﺘﮑﻪ ﺩﺭ ﺗﺸـﮑﻴﻞ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ،ﺷﺎﺧﻪ
ﺍﻣﭙﺪﺍﻧﺲﻫﺎﻱ ﻣﺘﻘﺎﺑﻞ ﺍﺯ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺣﺎﺻﻞ ﻣﻲﺷﻮﺩ:
ﺩﺭ ﺣﻘﻴﻘﺖ ﻭﺟﻮﺩ ﻣﺶ ،ﺳﺎﺧﺘﺎﺭ ﻣﺎﺗـﺮﻳﺲ ﮊﺍﮐـﻮﺑﻴﻦ ﺭﺍ ﺑﻪ
ﮊﺍﮐﻮﺑﻴﻦ ﻗﻴﻮﺩ ﻣﻲﺑﺎﺷﻨﺪ .ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻗﻴﻮﺩ ﺑﺎ ﺻﺮﻑ ﻧﻈﺮ ﺍﺯ
)(24
0 0 0 0 − x bb rbb
0
0
0
− x aa
0 0 0
0 − x bb rbb
0 rbb x bb
raa 0 0
raa x bb
0 0
0 0
0 0
raa x aa 0 HC = 0 0 0
rcc,rbb,raaﺑﻠﻮﮎﻫﺎﻱ ﻗﺴﻤﺖﻫﺎﻱ ﺣﻘﻴﻘﻲ ﺍﻣﭙﺪﺍﻧﺲﻫﺎﻱ ﺷﺎﺧﻪ
ﻫﺎﻱ ﺗﺸﮑﻴﻞ ﺩﻫﻨﺪﻩ ﻣﺶ ﻭ xcc,xbb,xaaﺑﻠﻮﮎﻫﺎﻱ ﻗﺴﻤﺖﻫﺎﻱ
ﻣﻮﻫﻮﻣﻲ ﺍﻣﭙﺪﺍﻧﺲﻫﺎﻱ ﺷﺎﺧﻪﻫﺎﻱ ﺗﺸﮑﻴﻞ ﺩﻫﻨﺪﻩ ﻣﺶ ﻣﻲﺑﺎﺷﻨﺪ. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻗﻄﺮﻱ ﺑﻮﺩﻥ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ،ﻣﺴﺎﻟﻪ ﻗﺎﺑﻞ ﺗﺠﺰﻳﻪ ﺑﻪ
ﻫﺮ ﻓﺎﺯ ﻣﻲﺑﺎﺷﺪ .ﭘﺲ ﻣﺴﺎﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺑﺮﺍﻱ ﻓﺎﺯ aﺭﺍ ﻣﻲﺗﻮﺍﻥ
ﺑﻪ ﻓﺮﻡ ﻣﺎﺗﺮﻳﺴﻲ ﺯﻳﺮ ﻧﻮﺷﺖ:
)(25
r T ∆Ba MIS r xaa i raaT ∆Ba MIS i == r 0 λ C ar 0 λi C ai
raaT
hr
T − xaa
i G aa − xaa
0
raa
0
G aar i h raa xaa
ﮐﻪ λi ,λrﺿﺮﺍﻳﺐ ﻻﮔﺮﺍﻧـﮋ ﻭﺳـﺎﻳﺮ ﭘﺎﺭﺍﻣﺘﺮﻫـﺎ ﺑـﻪ ﺻـﻮﺭﺕ ﺯﻳـﺮ
ﻣﻲﺑﺎﺷﻨﺪ:
ﻫﻢ ﻧﻤﻲﺯﻧﺪ.
-۴ﺍﺟﺮﺍﻱ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺮﺭﻭﻱ ﻳﮏ ﺷﺒﮑﻪ ﻧﻤﻮﻧﻪ
ﺷﺒﮑﻪ ﻧﻤﻮﻧﻪ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﻳﮏ ﺷﺒﮑﻪ ۲۵ﺷﻴﻨﻪ IEEE
۴/۱۶ﮐﻴﻠﻮ ﻭﻟﺖ ﻣﻲﺑﺎﺷﺪ ﮐﻪ ﺩﺍﺭﺍﻱ ۲ﻣﺶ ﻣﻲﺑﺎﺷﺪ .ﺩﺭ ﻗﺴﻤﺖ
ﺍﻭﻝ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﻭﻟﺘﺎﮊ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﻧﻤﻲﺷﻮﺩ ﻭﻟﻲ ﺩﺭ ﻗﺴﻤﺖ ﺑﻌﺪﻱ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﻭﻟﺘﺎﮊ ﻧﻴﺰ ﺑﻪ ﻋﻨﻮﺍﻥ ﻭﺭﻭﺩﻱ ﻣﺴﺎﻟﻪ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﺩ .ﺩﺭ ﺟﺪﻭﻝ ۱ﺗﻌﺪﺍﺩ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩ
ﮔﻴﺮﻱ ﺷﺪﻩ ﺁﻣﺪﻩ ﺍﺳﺖ .ﻣﻮﻗﻌﻴﺖ ﺍﻳﻦ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻳﻬﺎ ﻧﻴﺰ ﺩﺭ ﺷﮑﻞ ۳ﻣﺸﺨﺺ ﺷﺪﻩ ﺍﺳﺖ .ﺍﻳﻦ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻳﻬﺎ ﻧﺘﺎﻳﺞ ﺑﺨﺶ ﺑﺎﺭ ﺷﺒﮑﻪ ﻣﻮﺭﺩ ﻧﻈﺮ ﻫﺴﺘﻨﺪ ﮐﻪ ﺑﺎ ﺍﻓﺰﻭﺩﻥ ۱۰ﺩﺭﺻﺪ ﺧﻄﺎ ﺑﻪ ﻣﻘﺎﺩﻳﺮ ﺟﺮﻳﺎﻥ ﻭ ﻭﻟﺘﺎﮊ ﻭ ۳۰ﺩﺭﺻﺪ ﺧﻄﺎ ﺑﻪ ﻣﻘﺎﺩﻳﺮ ﺗﻮﺍﻥ ﺗﺰﺭﻳﻘﻲ ﺑﺪﺳﺖ ﺁﻣﺪﻩ
ﺍﺳﺖ .ﻣﺘﻮﺳﻂ ﻧﺴﺒﺖ rﺍﻣﭙﺪﺍﻧﺲ ﺷﺎﺧﻪ ﻫﺎ ﺑﺮﺍﺑﺮ ۱/۲ﻣﻲ x ﺑﺎﺷﺪ .ﻧﺘﺎﻳﺞ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺩﺭ ﺷﮑﻞ ۴ﻭ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ MVﻫﺎﻱ ﻭﻟﺘﺎﮊ ﻭMVﻫﺎﻱ ﺟﺮﻳﺎﻥ ﻭ ﻣﻌﺎﺩﻝ ﺟﺮﻳﺎﻥ ﺩﺭ ﺷﮑﻞ
۵ﻭ ۶ﺁﻣﺪﻩ ﺍﺳﺖ .ﻫﻤﺎﻧﻄﻮﺭ ﮐﻪ ﻣﺸﺎﻫﺪﻩ ﻣﻲﺷﻮﺩ ﺑﺎ ﺍﺣﺘﺴﺎﺏ
nl
C ar = −∑ ri ∆Bir − xi ∆Bii i =1 nl
C a = −∑ ri ∆Bii + xi ∆Bir i
i =1
h = − RaaT Wva X aa + X aaT Wva Raa r
h i = − X aaT Wva Raa + RaaT Wva X aa MIS r = ( H aar ) T Wpa ∆I ar − RaaT Wva ∆Var − xaaT Wva ∆Vai MIS i = (H aai ) Wqa ∆I ai + xaaT Wxa ∆Var − RaaT Wva ∆Vai T
ﮐﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﭘﺎﺭﺍﻣﺘﺮﻫﺎﻱ ﻓﻮﻕ ،ﺭﺍﺑﻄﻪ) (۲۵ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﻓﺮﻡ ﺯﻳﺮ ﻧﻮﺷﺖ:
)(26
ﻫﺎﻳﻲ ﮐﻪ ﺑﺎﻋﺚ ﺍﻳﺠﺎﺩ ﻣﺶ ﺷﺪﻩﺍﻧﺪ ﺩﺭ ﻧﻈﺮ ﮔـﺮﻓﺘﻪ ﻧﻤﻲ ﺷﻮﻧﺪ.
T ∆B r MIS r xaa a r r 0 λ C a = raaT ∆Bai MIS i 0 λi C br
hr − xaa
raaT 0
G aai
T − xaa
raa
0
G aar raa hi xaa
ﻣﻘﺎﺩﻳﺮ xaa , h r , h iﻧﺴﺒﺖ ﺑﻪ ﻣﻘﺎﺩﻳﺮ ﻣﻮﺟﻮﺩ ﺩﺭ ﻗﻄﺮ ﺍﺻﻠﻲ ﺑﺴﻴﺎﺭ
ﮐﻮﭼﮑﺘﺮ ﻫﺴﺘﻨﺪ .ﺑﺎ ﺻﺮﻓﻨﻈﺮ ﺍﺯ ﺁﻧﻬﺎ ﻣﺴﺎﻟﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ،ﺑﻪ ﺩﻭ ﻗﺴﻤﺖ ﻭ ﺣﻘﻴﻘﻲ ﻭ ﻣﻮﻫﻮﻣﻲ ﺗﺠﺰﻳﻪ ﻣﻲﺷﻮﺩ.
ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﻭﻟﺘﺎﮊ ﺩﻗﺖ ﻣﺴﺎﻟﻪ ﺍﻓﺰﺍﻳﺶ ﭘﻴﺪﺍ ﻣﻲﮐﻨﺪ ﺍﻣﺎ
ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻧﻴﺰ ﺍﺯ ﺣﺎﻟﺖ ﻗﻄﺮﻱ ﺧﺎﺭﺝ ﻣﻲﺷﻮﺩ .ﺩﺭ ﻗﺴﻤﺖ ﺍﻭﻝ ﻣﺴﺎﻟﻪ ﺑﺎ ۲ﺗﮑﺮﺍﺭ ﻭ ﺩﺭ ﻗﺴﻤﺖ ﺩﻭﻡ ﻣﺴﺎﻟﻪ ﺑﺎ ۴ﺗﮑﺮﺍﺭ ﺑﻪ
ﻫﻤﮕﺮﺍﻳﻲ ﻣﻲﺭﺳﺪ .ﺩﺭ ﻗﺴﻤﺖ ﺍﻭﻝ ،ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻓﻘﻂ ﺍﺯ ﻋﻨﺎﺻﺮ ۱ﻭ -۱ﺗﺸﮑﻴﻞ ﺷﺪﻩ ﻭﻟﻲ ﺩﺭ ﻗﺴﻤﺖ ﺩﻭﻡ ،ﻣﻘﺎﺩﻳﺮ ﺍﻣﭙﺪﺍﻧﺲ
ﺷﺎﺧﻪ ﻫﺎ ﻧﻴﺰ ﺩﺭ ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﻇﺎﻫﺮ ﺷﺪﻩ ﺍﻧﺪ ﺍﻣﺎ ﺩﺭ ﻫﺮ ﺩﻭ
ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ ﺩﺍﺭﺍﻱ ﻣﻘﺎﺩﻳﺮ ﺛﺎﺑﺖ ﻣﻲﺑﺎﺷﺪ .ﺑﻪ ﻋﻠﺖ ﺗﻘﺮﻳﺒﻬﺎﻱ
ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺩﺭ ﻗﺴﻤﺖ ۲ﺗﻌﺪﺍﺩ ﺗﮑﺮﺍﺭﻫﺎ ﻧﻴﺰ ﺍﻓﺰﺍﻳﺶ ﻳﺎﻓﺘﻪ
ﺍﺳﺖ.
ﺟﺪﻭﻝ:۱ﺗﻌﺪﺍﺩ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻳﻬﺎ
ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﮐﺎﺫﺏ ۲۳
ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﺟﺮﻳﺎﻥ ۳
ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﻭﻟﺘﺎﮊ ۵
١ ٣ ٧ ١٤ ٢٠
٦
٥ ١٠
١١
١٢
١٣ ٢۶
٢
٢۵
١٨
١٩
٩
١٧
٤ ٨ ١٦
١۵
٢١
٢٢ ٢۴
ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮ ﺟﺮﻳﺎﻥ
ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮ ﺗﻮﺍﻥ)ﺍﻃﻼﻋﺎﺕ ﮐﺎﺫﺏ(
٢٣
ﺷﮑﻞ :٣ﺷﺒﮑﻪ ﻧﻤﻮﻧﻪ
ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮ ﻭﻟﺘﺎﮊ
ﻓﺎﮐﺘﻮﺭﻳﺰﻩ ﺷﻮﺩ .ﻫﻤﭽﻨﻴﻦ ﺍﻟﮕﻮﺭﻳﺘﻤﻲ ﺑﺮﺍﻱ ﻧﺎﻣﮕﺬﺍﺭﻱ ﺷﺎﺧﻪﻫﺎ ﻭ
ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺍﺭﺍﺋﻪ ﺷﺪ ﺗﺎ ﺑﺎ ﮐﻤﮏ ﺁﻥ ﺑﺘﻮﺍﻥ ﺑﻪ ﻳﮏ
ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻗﻄﺮﻱ ﺩﺳﺖ ﻳﺎﻓﺖ .ﺩﺭ ﺍﻳﻦ ﺻﻮﺭﺕ ﺣﺠﻢ ﻣﺤﺎﺳﺒﺎﺕ ﻧﻴﺰ ﺑﻪ ﺧﺎﻃﺮ ﻗﻄﺮﻱ ﺷﺪﻥ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﮐﺎﻫﺶ
ﻣﻲﻳﺎﺑﺪ .ﻫﻤﭽﻨﻴﻦ ﺭﻭﺵ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺷﺒﮑﻪﻫﺎﻱ ﺩﺍﺭﺍﻱ ﻣﺶ ﺿﻌﻴﻒ ﻧﻴﺰ ﺭﺍ ﺗﺤﺖ ﭘﻮﺷﺶ ﻗﺮﺍﺭ ﻣﻲﺩﻫﺪ .ﺑﺎ ﮐﻤﮏ ﺿﺮﺍﻳﺐ ﻻﮔﺮﺍﻧﮋ
ﻣﻲﺗﻮﺍﻥ ﻗﻴﻮﺩ ﺍﻳﺠﺎﺩ ﺷﺪﻩ ﺗﻮﺳﻂ KVLﺭﺍ ﻟﺤﺎﻅ ﻧﻤﻮﺩ .ﺍﺯ ﺩﻳﮕﺮ
ﻣﺰﺍﻳﺎﻱ ﺭﻭﺵ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﻣﻲﺗﻮﺍﻥ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ
ﺷﺪﻩ ﻭﻟﺘﺎﮊ ﺩﺭ ﻣﻮﺭﺩ ﺷﺒﮑﻪ ﺩﺍﺭﺍﻱ ﻣﺶ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﺩﺍﺩ .ﺩﺭ
ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩ ﺷﺪﻩ ﻓﺎﺯﻫﺎﻱ ﺳﻪﮔﺎﻧﻪ ﺟﺪﺍﮔﺎﻧﻪ ﺗﺨﻤﻴﻦ ﺯﺩﻩ
ﻣﻲﺷﻮﻧﺪ ﮐﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺎﻣﺘﻌﺎﺩﻝ ﺑﻮﺩﻥ ﺳﻴﺴﺘﻢﻫﺎﻱ ﺗﻮﺯﻳﻊ ﺑﺴﻴﺎﺭ
ﻣﻄﻠﻮﺏ ﻣﻲﺑﺎﺷﺪ .ﺣﺘﻲ ﻗﺴﻤﺘﻬﺎﻱ ﺣﻘﻴﻘﻲ ﻭ ﻣﻮﻫﻮﻣﻲ ﻣﺴﺎﻟﻪ ﻧﻴﺰ
ﺷﮑﻞ :۴ﻧﺘﺎﻳﺞ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺷﺒﮑﻪ ﻧﻤﻮﻧﻪ ۲۵ﺷﻴﻨﻪ
0 0 0 0 0
0 0 0 0 0 0 0 Z 23 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0 0 0 Z19
0 0 0 0 0 Z17 0 Z17 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0 0 0 Z12
0 0 0 0 0 Z10 0 Z10 0 0
0 Z8 0 0 0
Z7 0 0 0 0
0 0 0 0 Z6
0 0 0 Z5 0 Z5 0 Z5 0 0
Z3 0 0 0 Z3
0 Z2 Z2 Z2 0
Z1 Z 1 H V = Z1 Z1 Z1
ﺷﮑﻞ :۵ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ MVﻫﺎﻱ ﻭﻟﺘﺎﮊ
-۵ﻧﺘﻴﺠﻪ ﮔﻴﺮﻱ
ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻳﻦﮐﻪ ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺑﺎﻳﺪ ﺑﻪ ﺻﻮﺭﺕ ﺯﻣﺎﻥ ﺣﻘﻴﻘﻲ
ﻋﻤﻞ ﻧﻤﺎﻳﺪ .ﺑﺎﻳﺪ ﻣﻨﺎﺳﺒﺘﺮﻳﻦ ﻭ ﺩﻗﻴﻘﺘﺮﻳﻦ ﺟﻮﺍﺏ ﺭﺍﺩﺭ ﮐﻤﺘﺮﻳﻦ
ﺯﻣﺎﻥ ﻣﻤﮑﻦ ﺍﺭﺍﺋﻪ ﺩﻫﺪ .ﺗﻤﺎﻣﻲ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ ﺑﻪ ﻧﻮﻋﻲ ﺩﺭ ﺑﻬﺒﻮﺩ
ﻫﺪﻑ ﺑﺎﻻ ﺍﺭﺍﺋﻪ ﻣﻲﺷﻮﻧﺪ .ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﻳﮏ ﺭﻭﺵ ﻓﻮﻕ ﺍﻟﻌﺎﺩﻩ ﺧﻄﻲ ﺑﺮ ﺍﺳﺎﺱ ﺟﺮﻳﺎﻥ ﺷﺎﺧﻪ ﻫﺎ ﺍﺭﺍﺋﻪ ﺷﺪ .ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻳﻦ ﺧﺼﻮﺻﻴﺖ ﺩﻳﮕﺮ ﺍﺣﺘﻴﺎﺝ ﻧﻴﺴﺖ ﮐﻪ ﺩﺭ ﻫﺮ ﺗﮑﺮﺍﺭ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ
ﺗﺠﺰﻳﻪ ﻣﻲﺷﻮﻧﺪ ﮐﻪ ﻧﺘﻴﺠﻪ ﺁﻥ ﮐﺎﻫﺶ ﺍﺑﻌﺎﺩ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﻭ ﺑﻪ ﺗﺒﻊ
ﺁﻥ ﮐﺎﻫﺶ ﺣﺠﻢ ﻣﺤﺎﺳﺒﺎﺕ ﻣﻲﺷﻮﺩ .ﺩﺭ ﺭﻭﺵ ﭘﻴﺸﻨﻬﺎﺩ ﺷﺪﻩ
ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺗﻤﺎﻣﻲ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩﮔﻴﺮﻱ ﺷﺪﻩ ﺩﺭ ﺟﻬﺖ ﺑﻬﺒﻮﺩ ﭘﺎﺳﺦ
ﻣﺴﺎﻟﻪ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ .ﺍﻣﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﺷﺪﻩ ﻭﻟﺘﺎﮊ ﺑﺎﻋﺚ ﺍﻓﺰﺍﻳﺶ ﺯﻣﺎﻥ ﻣﺤﺎﺳﺒﺎﺕ ﻣﻲﺷﻮﺩ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﺘﺎﻳﺞ
ﻋﻤﻠﻲ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻣﻘﺎﺩﻳﺮ ﺍﻧﺪﺍﺯﻩ ﮔﻴﺮﻱ ﺷﺪﻩ ﻭﻟﺘﺎﮊ ﺩﺭ ﺗﻤﺎﻣﻲ ﺑﺎﺳﻬﺎ
ﻫﻢ ﺑﻪ ﺩﻻﻳﻞ ﺍﻗﺘﺼﺎﺩﻱ ﻭ ﻫﻢ ﺑﻪ ﺩﻻﻳﻞ ﺑﺎﻻ ﺑﻪ ﺻﺮﻓﻪ ﻧﻴﺴﺖ. ﻭﺟﻮﺩ ﻣﺶ ﺩﺭ ﺷﺒﮑﻪﻫﺎ ﺑﺎﻋﺚ ﻣﻲﺷﻮﺩ ﮐﻪ ﻣﺎﺗﺮﻳﺲ ﺑﻬﺮﻩ ﺑﺎ ﺗﻮﺟﻪ
ﺑﻪ ﺿﺮﺍﻳﺐ ﻻﮔﺮﺍﻧﮋ ﺍﺯ ﻓﺮﻡ ﻗﻄﺮﻱ ﺧﺎﺭﺝ ﺷﻮﺩ .ﺗﺨﻤﻴﻦ ﺣﺎﻟﺖ ﺷﺒﮑﻪ ﺩﺍﺭﺍﻱ ﻣﺶ ﺑﺪﻭﻥ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺿﺮﺍﻳﺐ ﻻﮔﺮﺍﻧﮋ ﺍﺯ ﺍﻫﺪﺍﻑ
ﺗﺤﻘﻴﻘﺎﺕ ﺁﻳﻨﺪﻩ ﻣﻲﺑﺎﺷﺪ.
1 −1 −1
1
−1 −1
1 1
−1 −1 −1
1
−1 −1
1
−1 −1
1
−1 −1
1 1 1 1 1 HI =
−1
1
−1
1 1 1
−1
1
−1
1 1
1 −1
1
1 1 1 −1
1 1
−1 −1
ﻫﺎﻱ ﺟﺮﻳﺎﻥ ﻭ ﻣﻌﺎﺩﻝ ﺟﺮﻳﺎﻥMV ﻣﺎﺗﺮﻳﺲ ﮊﺍﮐﻮﺑﻴﻦ: ۶ﺷﮑﻞ
ﻣﺮﺍﺟﻊ [1] M. E. Baran and A. W. Kelly,"A Branch-CurrentBased State Estimation for Distribution Systems", IEEE Trans. on Power Systems, vol. 10, no.1, pp. 483-491, Feb. 1995 [2] Whei-Min Lin,Jen-Hao,and Shi-Jaw Chen,"A Highly Efficient Algorithm in Treating-CurrentBased Distribution StateEstimation", IEEE Trans on Power Delivery, vol. 16, no. 3, July 2001 [3] J-H. Teng,"Using Voltage Measurements to Improve the Results of Branch-Current-Based State Estimators for Distribution Systems", IEE proc Trns. Distrib, vol. 149, No. 6, November 2002 [4] Youman Deng, Ying He, and Boming Zhang"A Branch-Estimation-Based State Estimation Method for Radial Distribution Systems", IEEE Transactions on Power Delivery, vol. No.4, October 2002 [5] C. L. Lawson and R. J. Hanson, Solving Least Square Problems: Prentice-Hall, 1974. [6] G.H.Golub,"Numerical Methods for Solving Linear Least Square Problems", Numersche Mathematik, vol, 7, 1965 [7] Lin, W. M, and Teng, J. H "Distribution FastDecoupled State Estimation by Measurement Pairing ", IEEE proc, Gener. Transm. Distrib,1996, 143, pp. 43-48 [8] F. F. Wu, W.H.E.Liu,and S.-M.Lun,"Observability Analysis and Bad Data Processing for State Estimation With Equality Constraints", IEEE Trans. on Power Systems, vol. 3, no. 2, pp. 541548, May 1988 [9] W. M. Lin and J. H. Teng, "Stat Estimation for Distribution Ststems With Zero-Injection Constraint", IEEE Trans. on Power Systems, vol. 11, no. 1, pp. 518-524, Feb. 1996. [10] M.E.Baran,"State Estimation for Real-Time Monitoring of Distribution Systems", IEEE Trans on. Power Systems, vol. 9, no.3, pp.1601-1609, Aug [11] L. Holten, A. Gjelsvik, S. Aam, F.F. Wu,and W.-H. E. Liu, "Comparison of Different Methods for State Estimation", IEEE Trans. on PAS, vol. 3, no. 4, pp. 1798-1806, Nov. 1988