الدوال اللوغاريتمية

  • Uploaded by: badi
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View الدوال اللوغاريتمية as PDF for free.

More details

  • Words: 1,808
  • Pages: 2
‫اﻟﺪوال اﻟﻠﻮﻏﺎرﻳﺘﻤﻴﺔ‬

‫اﻟﺜﺎﻧﻴﺔ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم‬ ‫ﺗﺠﺮﻳﺒﻴﺔ‬ ‫أﺣﺴﺐ اﻟﻨﻬﺎﻳﺎت اﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫اﻟﺘﻤﺮﻳﻦ ‪: 1‬‬ ‫‪(a‬‬ ‫‪(c‬‬ ‫‪(e‬‬ ‫‪(g‬‬ ‫‪(i‬‬

‫‪lim 3x − 5ln x‬‬

‫∞‪x →+‬‬

‫‪(q‬‬

‫;‬

‫‪lim x − ln (1 + x 2 ) (f‬‬

‫;‬

‫‪(h‬‬

‫) ‪lim+ x ( ln x‬‬

‫;‬

‫‪(j‬‬

‫;‬

‫‪(l‬‬

‫‪x →0‬‬

‫‪2‬‬

‫‪x →0‬‬

‫‪ln x‬‬ ‫‪x →+∞ x 2‬‬ ‫‪lim‬‬

‫‪2‬‬

‫‪(o‬‬

‫;‬

‫‪(d‬‬

‫‪ln x‬‬ ‫‪x →+∞ 1 + ln x‬‬

‫‪1 − ln x‬‬ ‫‪x →0‬‬ ‫‪ln x‬‬ ‫‪1‬‬ ‫‪lim+ + ln x‬‬ ‫‪x →0 x‬‬ ‫‪lim+ x 2 ln x‬‬ ‫‪lim+‬‬

‫‪(k‬‬ ‫‪(m‬‬

‫;‬

‫‪(b‬‬

‫‪lim ( ln x ) + ln x‬‬

‫) ‪( ln x‬‬

‫‪lim‬‬

‫∞‪x →+‬‬

‫‪x‬‬ ‫) ‪ln (1 + ln x‬‬ ‫‪; lim‬‬ ‫‪x →1‬‬ ‫‪x 2 −1‬‬ ‫) ‪ln ( ln x‬‬ ‫∞‪x →+‬‬ ‫‪x‬‬ ‫‪lim‬‬

‫اﻟﺘﻤﺮﻳﻦ ‪: 2‬‬

‫‪2‬‬

‫∞‪x →+‬‬

‫‪lim x 3 ln x‬‬

‫‪x → 0+‬‬

‫‪x →0‬‬

‫‪ln x‬‬ ‫‪x →+∞ x 3‬‬ ‫‪lim‬‬

‫;‬

‫‪(n‬‬

‫ﻡﻌﻠﻢ ﻡﺘﻌﺎﻡﺪ ﻡﻤﻨﻈﻢ ) ‪. (O, i, j‬‬ ‫أ ‪ -‬أدرس اﻟﻔﺮوع اﻟﻼﻥﻬﺎﺋﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ‬

‫‪lim‬‬

‫∞‪x →+‬‬

‫‪x‬‬ ‫) ‪ln (1 − sin x‬‬ ‫‪lim‬‬ ‫) ‪x →0 ln (1 + tan x‬‬

‫‪(p‬‬

‫‪ln x‬‬ ‫‪x‬‬

‫‪(r‬‬

‫ب‪ -‬أدرس اﻟﻮﺿﻊ اﻟﻨﺴﺒﻲ ﻟﻠﻤﻨﺤﻨﻰ‬

‫⎞ ‪⎛ x + 2x + 1‬‬ ‫⎜ ‪lim ln‬‬ ‫‪⎟ (a‬‬ ‫‪3‬‬ ‫∞‪x →+‬‬ ‫‪x‬‬ ‫‪5‬‬ ‫‪+‬‬ ‫⎝‬ ‫⎠‬ ‫) ‪lim x + ln ( x 2‬‬

‫∞‪x →−‬‬

‫‪(e‬‬

‫⎞ ‪2 ⎛ 1 − 2x‬‬ ‫⎜ ‪ln‬‬ ‫⎟‬ ‫⎠ ‪x ⎝ 1 + 2x‬‬

‫‪(g‬‬

‫‪1‬‬ ‫‪+ 3ln x‬‬ ‫‪x‬‬

‫‪lim‬‬ ‫‪x →0‬‬

‫;‬

‫‪(b‬‬

‫;‬

‫‪(d‬‬

‫;‬

‫‪(f‬‬

‫‪1‬‬ ‫ﺟـ‪ -‬ﺏﻴﻦ أﻥﻪ ﻳﻮﺟﺪ ﻋﺪد ﺣﻘﻴﻘﻲ ‪ α‬ﺣﻴﺚ‪< α < 1 :‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫ ﺏﻴﻦ أﻥﻪ ﻳﻮﺟﺪ ﻋﺪد ﺣﻘﻴﻘﻲ ‪ β‬ﺣﻴﺚ‪ − < β < −1 :‬و ‪f ( β ) = 0‬‬‫‪2‬‬ ‫د‪ -‬أرﺱﻢ ) ‪. ( Cf‬‬

‫‪lim+‬‬

‫‪x →0‬‬

‫; ‪(h‬‬

‫‪lim‬‬

‫‪x →0+‬‬

‫) ﻥﺄﺧﺬ ‪ 0, 69 < ln(2) < 0, 70 :‬و ‪( 1, 09 < ln(3) < 1,10‬‬

‫اﻟﺘﻤﺮﻳﻦ ‪:5‬‬

‫⎞‪⎛ x +2‬‬ ‫⎜ ‪lim x ln‬‬ ‫⎟‬ ‫⎠ ‪⎝ x‬‬ ‫)‪ln(x − 2‬‬ ‫‪lim‬‬ ‫‪x →3‬‬ ‫‪x −3‬‬

‫ﻥﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ f‬ﻟﻤﺘﻐﻴﺮ ﺣﻘﻴﻘﻲ ‪ x‬ﺣﻴﺚ ‪:‬‬

‫∞‪x →+‬‬

‫‪2‬‬

‫‪Arc tan ( ln x ) +‬‬ ‫‪x‬‬

‫ﻟﻴﻜﻦ ) ‪( Cf‬‬

‫‪lim‬‬ ‫‪x →0‬‬ ‫‪x >0‬‬

‫) ‪ln ( cos x‬‬ ‫‪(i‬‬ ‫∞‪x →+‬‬ ‫‪x →0‬‬ ‫‪x2‬‬ ‫)‪ln ( x 2 − 2x + 2‬‬ ‫) ‪ln (1 − x 3‬‬ ‫‪lim‬‬ ‫; ‪(l‬‬ ‫‪lim‬‬ ‫‪(k‬‬ ‫∞‪x →+‬‬ ‫∞‪x →−‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫أﺣﺴﺐ اﻟﻨﻬﺎﻳﺎت اﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫اﻟﺘﻤﺮﻳﻦ ‪: 3‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪lim+ ln ( x − x − 2 ) − ln ( x + 5x − 14 ) (a‬‬ ‫;‬

‫‪lim‬‬

‫) ‪lim Arc tan ( ln x‬‬

‫‪(j‬‬

‫‪x →2‬‬

‫‪lim ln (ex 2 − x − 2 ) − ln ( x 2 + x + 7 ) (b‬‬

‫∞‪x →+‬‬

‫‪2‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪(c‬‬ ‫‪x +2 4‬‬

‫‪lim ln(x + 2) − ln x −‬‬

‫∞‪x →+‬‬

‫⎞ ‪1 ⎛ 1− x 2‬‬ ‫⎜ ‪ln‬‬ ‫‪⎟ (d‬‬ ‫‪x →0 x 2‬‬ ‫⎠ ‪⎝ cos x‬‬

‫‪; lim‬‬

‫‪(f‬‬

‫‪lim x 3 − 2x − ln x‬‬

‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫∞‪x →+‬‬

‫‪(e‬‬ ‫;‬

‫‪(g‬‬

‫‪x −1‬‬ ‫‪x‬‬

‫‪ln‬‬

‫‪ ( Cf‬واﻟﻤﺴﺘﻘﻴﻢ ذي اﻟﻤﻌﺎدﻟﺔ ‪:‬‬

‫و ‪. f (α ) = 0‬‬

‫⎞ ‪⎛ 1‬‬ ‫⎟ ‪lim ln ⎜ 2‬‬ ‫∞‪x →+‬‬ ‫⎠ ‪⎝ x +1‬‬

‫‪π‬‬

‫)‬

‫)‬

‫‪. ( Cf‬‬

‫‪. y = −x‬‬

‫أﺣﺴﺐ اﻟﻨﻬﺎﻳﺎت اﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫‪3‬‬

‫‪(c‬‬

‫) ‪lim+ x ( ln x‬‬

‫) ‪( ln x‬‬

‫‪(i‬‬

‫)‬

‫(‬

‫‪lim ln x − x 2 − 3x + 2‬‬

‫∞‪x →+‬‬

‫اﻟﺘﻤﺮﻳﻦ ‪ : 4‬ﻥﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ f‬ﻟﻤﺘﻐﻴﺮ ﺣﻘﻴﻘﻲ ‪ x‬ﺣﻴﺚ ‪:‬‬ ‫⎞‪⎛ 1‬‬ ‫⎟ ‪f ( x) = − x + ln ⎜1 +‬‬ ‫⎠‪⎝ x‬‬ ‫‪ .1‬ﺣﺪد ‪ D‬ﺣﻴﺰ ﺕﻌﺮﻳﻒ اﻟﺪاﻟﺔ ‪. f‬‬ ‫‪ .2‬أﺣﺴﺐ ﻥﻬﺎﻳﺎت ‪ f‬ﻋﻨﺪ ﻡﺤﺪات ‪. D‬‬ ‫‪ .3‬أ‪ -‬أﺣﺴﺐ )‪ f ′( x‬ﻟﻜﻞ ‪ x‬ﻡﻦ ‪. D‬‬ ‫ب‪ -‬أﻋﻂ ﺟﺪول ﺕﻐﻴﺮات اﻟﺪاﻟﺔ ‪. f‬‬ ‫‪ .4‬ﻟﻴﻜﻦ ) ‪ ( Cf‬اﻟﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ ‪ f‬ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻤﻨﺴﻮب إﻟﻰ‬

‫‪lim‬‬

‫‪3‬‬

‫;‬

‫‪ln x‬‬ ‫‪+1‬‬ ‫‪1‬‬ ‫‪ln‬‬ ‫‪x‬‬ ‫‪−‬‬ ‫‪; lim‬‬ ‫‪(h‬‬ ‫‪x →0‬‬ ‫‪x‬‬ ‫‪x >0‬‬

‫‪x → 0+‬‬

‫‪3‬‬

‫اﻷﺳﺘﺎذ ‪ :‬اﻟﺤﻴﺎن‬

‫⎞ ‪⎛ x2 + 3‬‬ ‫⎜ ‪f ( x) = x + 2 ln‬‬ ‫⎟‬ ‫⎠ ‪⎝ 4x‬‬ ‫اﻟﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ ‪ f‬ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻤﻨﺴﻮب إﻟﻰ‬

‫ﻡﻌﻠﻢ ﻡﺘﻌﺎﻡﺪ ﻡﻤﻨﻈﻢ ) ‪. (O, i, j‬‬ ‫‪ .1‬ﺣﺪد ‪ D‬ﻡﺠﻤﻮﻋﺔ ﺕﻌﺮﻳﻒ اﻟﺪاﻟﺔ ‪. f‬‬ ‫‪ .2‬أﺣﺴﺐ ‪:‬‬ ‫و‬ ‫)‪lim f ( x‬‬ ‫∞‪x →+‬‬

‫‪x →0‬‬ ‫‪x >0‬‬

‫‪ .3‬أ‪ -‬ﺏﻴﻦ أﻥﻪ ﻟﻜﻞ ‪ x‬ﻡﻦ ‪ D‬؛ ﻟﺪﻳﻨﺎ ‪:‬‬ ‫)‪( x − 1)( x 2 + 3 x + 6‬‬ ‫‪′‬‬ ‫= )‪f ( x‬‬ ‫)‪x( x 2 + 3‬‬ ‫ب‪ -‬أﻋﻂ ﺟﺪول ﺕﻐﻴﺮات اﻟﺪاﻟﺔ ‪. f‬‬ ‫‪ .4‬أ‪ -‬ﺕﺤﻘﻖ ﻡﻦ أﻥﻪ ﻟﻜﻞ ‪ x‬ﻡﻦ ‪ D‬؛ ﻟﺪﻳﻨﺎ ‪:‬‬ ‫⎞‪3‬‬ ‫⎛‬ ‫)‪f ( x) = x + 2 ln( x) + 2 ln ⎜1 + 2 ⎟ − 4 ln(2‬‬ ‫⎠ ‪⎝ x‬‬ ‫ب‪ -‬أدرس اﻟﻔﺮوع اﻟﻼﻥﻬﺎﺋﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ ) ‪. ( Cf‬‬

‫ﺟـ‪ -‬أدرس اﻟﻮﺿﻊ اﻟﻨﺴﺒﻲ ﻟﻠﻤﻨﺤﻨﻰ ) ‪( Cf‬‬

‫‪lim‬‬

‫)‪. lim f ( x‬‬

‫واﻟﻤﺴﺘﻘﻴﻢ ذي اﻟﻤﻌﺎدﻟﺔ ‪:‬‬

‫‪.y=x‬‬ ‫د‪ -‬أرﺱﻢ اﻟﻤﻨﺤﻨﻰ ) ‪. ( Cf‬‬

‫‪x →0‬‬ ‫‪x >0‬‬

‫‪lim sin x ln x‬‬

‫‪x → 0+‬‬

‫‪-1-‬‬

‫‪.2‬ب‪.‬ع‪.‬ت‬

‫‪2‬‬

‫اﻟﺘﻤﺮﻳﻦ ‪ : 6‬ﻟﺘﻜﻦ ‪ f‬اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ﻟﻤﺘﻐﻴﺮ ﺣﻘﻴﻘﻲ ‪ x‬اﻟﻤﻌﺮﻓﺔ ﺏﻤﺎﻳﻠﻲ‪:‬‬ ‫⎞ ‪⎛ x −1‬‬ ‫‪2‬‬ ‫⎜ ‪f ( x) = x + ln‬‬ ‫⎟‬ ‫) ‪− (1 + ln x‬‬ ‫⎠‪⎝ x +1‬‬ ‫‪:‬‬ ‫أن‬ ‫ﺏﻴﻦ‬ ‫‬‫أ‬ ‫‪.‬‬ ‫‪2‬‬ ‫= ) ‪∀x ∈ ]0, +∞[ : f ′( x‬‬ ‫‪2 2‬‬ ‫‪ .1‬ﺏﻴﻦ أن ﺣﻴﺰ ﺕﻌﺮﻳﻒ ‪ f‬هﻮ ‪. D = ]−∞, −1[ ∪ ]1, +∞[ :‬‬ ‫⎤ ) ‪x 2 ⎡1 + ( ln x‬‬ ‫⎣‬ ‫⎦‬ ‫‪ .2‬ﺏﻴﻦ أن ‪ f‬داﻟﺔ ﻓﺮدﻳﺔ ‪.‬‬ ‫⎞‪⎛1‬‬ ‫ب‪ -‬أﺣﺴﺐ ‪. f ′ ⎜ ⎟ :‬‬ ‫‪ .3‬أﺣﺴﺐ ‪ lim f ( x) :‬و )‪. lim f ( x‬‬ ‫‪x →1‬‬ ‫∞‪x →+‬‬ ‫⎠ ‪⎝e‬‬ ‫‪x >1‬‬ ‫ﺟـ‪ -‬أﻋﻂ ﺟﺪول ﺕﻐﻴﺮات اﻟﺪاﻟﺔ ‪. f‬‬ ‫‪ .4‬ﺕﺤﻘﻖ ﻡﻦ أن اﻟﻤﺴﺘﻘﻴﻢ اﻟﺬي ﻡﻌﺎدﻟﺘﻪ ‪ y = x‬ﻡﻘﺎرب ﻡﺎﺋﻞ ﻟﻠﻤﻨﺤﻨﻰ‬ ‫‪ .3‬أ‪ -‬ﺏﻴﻦ أن ‪:‬‬ ‫) ‪ ( Cf‬اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻤﻨﺴﻮب إﻟﻰ ﻡﻌﻠﻢ ﻡﺘﻌﺎﻡﺪ ﻡﻤﻨﻈﻢ‬ ‫‪2‬‬ ‫‪2 (1 + ln x ) ⎡2 + (1 + ln x ) ⎤ ln x‬‬ ‫⎣‬ ‫⎦‬ ‫= ) ‪∀x ∈ ]0, +∞[ : f ′′(x‬‬ ‫) ‪. (O, i, j‬‬ ‫‪2 3‬‬ ‫⎤ ) ‪x 3 ⎡1 + ( ln x‬‬ ‫‪2‬‬ ‫‪x +1‬‬ ‫⎣‬ ‫⎦‬ ‫‪ .5‬أ‪ -‬ﺏﻴﻦ أن ‪:‬‬ ‫‪. ∀x ∈ D : f ′(x ) = 2‬‬ ‫ب‪ -‬اﺱﺘﻨﺘﺞ أن اﻟﻤﻨﺤﻨﻰ ) ‪ ( Cf‬ﻳﻘﺒﻞ ﻥﻘﻄﺘﻲ اﻥﻌﻄﺎف‪ A‬و ‪ B‬ﻳﻨﺒﻐﻲ‬ ‫‪x −1‬‬ ‫ب‪ -‬ﺣﺪد ﺟﺪول ﺕﻐﻴﺮات اﻟﺪاﻟﺔ ‪ f‬ﻋﻠﻰ اﻟﻤﺠﺎل [∞‪. ]1, +‬‬ ‫ﺕﺤﺪﻳﺪ إﺣﺪاﺙﻴﺘﻴﻬﻤﺎ ‪.‬‬ ‫ﺟـ‪ -‬ﺣﺪد ﻡﻌﺎدﻟﺘﻲ اﻟﻤﻤﺎﺱﻴﻦ ﻟﻠﻤﻨﺤﻨﻰ ) ‪ ( Cf‬ﻓﻲ اﻟﻨﻘﻄﺘﻴﻦ‪ A‬و ‪. B‬‬ ‫‪ .6‬ﺏﻴﻦ أن اﻟﻤﻨﺤﻨﻰ ) ‪ ( Cf‬ﻳﻘﻄﻊ ﻡﺤﻮر اﻷﻓﺎﺻﻴﻞ ﻓﻲ ﻥﻘﻄﺔ أﻓﺼﻮﻟﻬﺎ‬ ‫ب‪ -‬أﺣﺴﺐ ) ‪lim f (x‬‬

‫و ) ‪. lim f (x‬‬

‫‪x →0‬‬ ‫‪x >0‬‬

‫‪3‬‬ ‫ﻡﺤﺼﻮر ﺏﻴﻦ‬ ‫‪2‬‬ ‫‪ .7‬أﻥﺸﺊ اﻟﻤﻨﺤﻨﻰ ) ‪ ) . ( Cf‬ﻥﺄﺧﺬ‪ ln(3) ≈ 1,1 :‬و ‪( ln(5) ≈ 1, 6‬‬ ‫و ‪.2‬‬

‫اﻟﺘﻤﺮﻳﻦ ‪ : 7‬ﻟﺘﻜﻦ ‪ f‬اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ﻟﻤﺘﻐﻴﺮ ﺣﻘﻴﻘﻲ ‪ x‬اﻟﻤﻌﺮﻓﺔ ﺏﻤﺎﻳﻠﻲ‪:‬‬ ‫⎞ ‪⎛ x2 − 2x + 2‬‬ ‫⎜ ‪f ( x) = 2 x − 2 + ln‬‬ ‫⎟‬ ‫‪x2‬‬ ‫⎝‬ ‫⎠‬ ‫*‬ ‫‪.‬‬ ‫‪ .1‬ﺏﻴﻦ أن ﻡﺠﻤﻮﻋﺔ ﺕﻌﺮﻳﻒ اﻟﺪاﻟﺔ ‪ f‬هﻲ ‪:‬‬ ‫‪ .2‬أﺣﺴﺐ ﻥﻬﺎﻳﺎت ‪ f‬ﻋﻨﺪ ﻡﺤﺪات * ‪.‬‬ ‫)‪2( x − 1)( x 2 − x + 2‬‬ ‫‪ .3‬أ‪ -‬ﺏﻴﻦ أﻥﻪ ﻟﻜﻞ ‪ x‬ﻡﻦ * ؛ ﻟﺪﻳﻨﺎ ‪:‬‬ ‫‪2‬‬ ‫)‪x( x − 2 x + 2‬‬ ‫ب‪ -‬أﻋﻂ ﺟﺪول ﺕﻐﻴﺮات اﻟﺪاﻟﺔ ‪. f‬‬ ‫‪ .4‬ﻟﻴﻜﻦ ) ‪ ( Cf‬اﻟﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ ‪ f‬ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻤﻨﺴﻮب إﻟﻰ ﻡﻌﻠﻢ‬ ‫= )‪f ′( x‬‬

‫ﻡﺘﻌﺎﻡﺪ ﻡﻤﻨﻈﻢ ) ‪. (O, i, j‬‬ ‫أ‪ -‬أدرس اﻟﻔﺮوع اﻟﻼﻥﻬﺎﺋﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ ) ‪. ( Cf‬‬

‫ب‪ -‬أدرس اﻟﻮﺿﻊ اﻟﻨﺴﺒﻲ ﻟﻠﻤﻨﺤﻨﻰ ) ‪( Cf‬‬

‫واﻟﻤﺴﺘﻘﻴﻢ ذي اﻟﻤﻌﺎدﻟﺔ ‪:‬‬

‫ﻣﺤﻤﺪ اﻟﺤﻴﺎن‬

‫ﺕﻐﻴﺮات اﻟﺪاﻟﺔ ‪. g‬‬ ‫ب‪ -‬اﺱﺘﻨﺘﺞ أن ‪. ∀x ∈ ]0, +∞[ : g (x ) ≥ 0 :‬‬ ‫‪ .2‬أ‪ -‬ﺏﻴﻦ أن ‪:‬‬ ‫‪∀x ∈ ]0, +∞[ : h (x ) = 1 + g ( x ) + ( x − 1) ln x‬‬ ‫ب‪ -‬ﺏﻴﻦ أن ‪:‬‬

‫‪∀x ∈ ]0, +∞[ : (x − 1) ln x > 0‬‬

‫‪ .3‬اﺱﺘﻨﺘﺞ أن ‪:‬‬

‫‪∀x ∈ ]0, +∞[ : h (x ) > 0‬‬

‫‪ .II‬ﻥﻌﺘﺒﺮ اﻟﺪاﻟﺔ ‪ f‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ [∞‪ ]0, +‬ﺏﻤﺎ ﻳﻠﻲ ‪:‬‬ ‫) ‪f (x ) = 1 + x ln x − ( ln x‬‬

‫ب‪ -‬أﺣﺴﺐ ) ‪lim f (x‬‬

‫∞‪x →+‬‬

‫ﺙﻢ ﺣﺪد اﻟﻔﺮع اﻟﻼﻥﻬﺎﺋﻲ ﻟﻠﻤﻨﺤﻨﻰ ) ‪( C‬‬

‫ﺏﺠﻮار ∞‪. +‬‬ ‫) ‪h (x‬‬ ‫= ) ‪. ∀x ∈ ]0, +∞[ : f ′(x‬‬ ‫‪ .2‬أ‪ -‬ﺏﻴﻦ أن ‪:‬‬ ‫‪x‬‬ ‫ب‪ -‬اﺱﺘﻨﺘﺞ أن اﻟﺪاﻟﺔ ‪ f‬ﺕﺰاﻳﺪﻳﺔ ﻗﻄﻌﺎ ﻋﻠﻰ اﻟﻤﺠﺎل [∞‪. ]0, +‬‬

‫‪ .3‬أ‪ -‬ﺣﺪد ﻡﻌﺎدﻟﺔ دﻳﻜﺎرﺕﻴﺔ ﻟﻠﻤﻤﺎس ) ∆ ( ل ) ‪ ( C‬ﻓﻲ اﻟﻨﻘﻄﺔ )‪A (1,1‬‬ ‫ب‪ -‬ﺕﺤﻘﻖ ﻡﻦ أن ‪:‬‬ ‫) ‪∀x ∈ ]0, +∞[ : f (x ) − x = (ln x − 1) g ( x‬‬ ‫ﺟـ‪ -‬ﺣﺪد اﻟﻮﺿﻊ اﻟﻨﺴﺒﻲ ﻟﻠﻤﻨﺤﻨﻰ ) ‪ ( C‬واﻟﻤﺴﺘﻘﻴﻢ ) ∆ ( ‪.‬‬

‫(‬

‫ﻡﺘﻌﺎﻡﺪ ﻡﻤﻨﻈﻢ ‪i = 2cm . O , i , j‬‬ ‫‪x →0‬‬ ‫‪x >0‬‬

‫‪ g (x ) = x − 1 − ln x‬و ‪. h (x ) = x + (x − 2) ln x‬‬ ‫‪ .1‬أ‪ -‬أﺣﺴﺐ ) ‪ g ′(x‬ﻟﻜﻞ ‪ x‬ﻡﻦ اﻟﻤﺠﺎل [∞‪ ]0, +‬ﺙﻢ أدرس ﻡﻨﺤﻰ‬

‫‪x →0‬‬ ‫‪x >0‬‬

‫‪2‬‬ ‫⎤ ) ‪x ⎡1 + ( ln x‬‬ ‫⎣‬ ‫⎦‬ ‫وﻟﻴﻜﻦ ) ‪ ( Cf‬اﻟﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ ‪ f‬ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻤﻨﺴﻮب إﻟﻰ ﻡﻌﻠﻢ‬

‫‪2‬‬

‫‪ .I‬ﻥﻌﺘﺒﺮ اﻟﺪاﻟﺘﻴﻦ اﻟﻤﻌﺮﻓﺘﻴﻦ ﻋﻠﻰ اﻟﻤﺠﺎل [∞‪ ]0, +‬ﺏﻤﺎ ﻳﻠﻲ ‪:‬‬

‫‪ .1‬أ‪ -‬أﺣﺴﺐ ) ‪ lim f (x‬ﺙﻢ أول اﻟﻨﺘﻴﺠﺔ ﻡﺒﻴﺎﻥﻴﺎ ‪.‬‬

‫= ) ‪f (x‬‬

‫‪ .1‬أ‪ -‬ﺏﻴﻦ أن ‪lim x ( ln x ) = 0 :‬‬

‫اﻟﺘﻤﺮﻳﻦ ‪: 9‬‬

‫وﻟﻴﻜﻦ ) ‪ ( C‬اﻟﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ ‪ f‬ﻓﻲ ﻡﻌﻠﻢ ﻡﺘﻌﺎﻡﺪ ﻡﻤﻨﻈﻢ ‪.‬‬

‫اﻟﺘﻤﺮﻳﻦ ‪ : 8‬ﻥﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ f‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ [∞‪ ]0, +‬ﺏﻤﺎﻳﻠﻲ ‪:‬‬

‫)‬

‫‪ .4‬أﻥﺸﺊ اﻟﻤﻨﺤﻨﻰ ) ‪. ( Cf‬‬

‫‪2‬‬

‫‪. y = 2x − 2‬‬ ‫ﺟـ‪ -‬ﺏﻴﻦ أﻥﻪ ﻳﻮﺟﺪ ﻋﺪد ﺣﻘﻴﻘﻲ وﺣﻴﺪ ‪ α‬ﺣﻴﺚ ‪ f (α ) = 0 :‬و‬ ‫‪8‬‬ ‫⎡‪⎤ 1 1‬‬ ‫⎢ ‪ α ∈ ⎥ − , −‬؛ ﻋﻠﻤﺎ أن ‪ ln(13) < 3 :‬و > )‪. ln(25‬‬ ‫‪3‬‬ ‫⎣‪⎦ 2 3‬‬ ‫د‪ -‬أرﺱﻢ اﻟﻤﻨﺤﻨﻰ ) ‪ ) . ( Cf‬ﺕﺤﺪﻳﺪ ﻥﻘﻄﺔ اﻹﻥﻌﻄﺎف ﻏﻴﺮ ﻡﻄﻠﻮب (‬ ‫‪1‬‬

‫∞‪x →+‬‬

‫‪ .4‬أﻥﺸﺊ اﻟﻤﻨﺤﻨﻰ ) ‪ ( C‬واﻟﻤﺴﺘﻘﻴﻢ ) ∆ ( ﻓﻲ ﻥﻔﺲ اﻟﻤﻌﻠﻢ‪ ) .‬ﻥﻘﺒﻞ أن‬

‫) ﻳﻤﻜﻦ وﺿﻊ ‪. ( x = t 2‬‬

‫اﻟﻤﻨﺤﻨﻰ ) ‪ ( C‬ﻳﻘﺒﻞ ﻥﻘﻄﺔ اﻥﻌﻄﺎف أﻓﺼﻮﻟﻬﺎ ﻡﺤﺼﻮر ﺏﻴﻦ ‪ 1‬و ‪(1,5‬‬

‫‪-2-‬‬

‫‪.2‬ب‪.‬ع‪.‬ت‬

‫‪2‬‬

More Documents from "badi"

December 2019 3