扬哥中国科学技术大学2009-2018真题汇总.pdf

  • Uploaded by: Rishshdh
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 扬哥中国科学技术大学2009-2018真题汇总.pdf as PDF for free.

More details

  • Words: 7,726
  • Pages: 29
x ¥I‰ÆEâŒÆ 2009 − 2018 cýK®o

xMŠ: ¥‰Œ Œ,

‚5“ê†)ÛAÛýK, Œ±`´'

´l{cýKœ¹5w, zc

*¥‰Œ

ê©, XJ`‚“†)A

‰ŒÑØ

-½,

K.Ä

½, •

. •,¬k˜

K8•k˜½

W˜KŒU

-EÇ, ýK

Áòõ´“x©K”, @oê©ÁòKõ´“x·K”

…éõ•ÁSN•k˜½

£:(.¾Ñáu“©Û”

‰Æ......). ¥‰Œ

L

•¥‰Œ

‚ 50 ©=Œ. ïÆ



ÝÚOŽþ, $– •

¹

õc°

•â´ØwÐÁ

ÓÆ3ê©þ¡õs°å, kUå

K8Ñ

£=Š©ê

—Kþ

ë•dŠš~Œ. ‡

. J:3uzc

9

¢C¼ê¥

, Ïd

ÓƦþww¢C

‡ •Á

˜



£=Š˜„•I U‘

SN, ‰

k Ç. y3" 2017!2018 c¥‰Œp“ýK, •HÖöJø, ýKJøŒue‡: [email protected],

®o: o Ï®o: ŽŽ "Ø:

º

xؑa-.

ýK®o3 x‡&ú¯ÒÄu:

ŠO

Öö, XJ\U•ù

ýK®o, @Òr\k

EX ®o?ÈÑ5, •¤©•‰•ï k†, •žÖö1µ• .

, Óž

LAT

x•é\

ýKux‰ Áz

xe‡ [email protected], ·¬ÏL

La-! ,

duY²k•, ýK®o?ÈJ•

(é–ýK: 1. ýK, ¿Ø@o-‡, ‰

¡ESâ´›‘ƒ

. @@m©“ïÄ”ýK

¦

ES¡¡z! ¤¢

¡ES,

• ´‡ÀJ˜ ·ÜgC ë•Ö, wnoH! ƒÕnU‹~, üUè . 2. ýKwC›c Òv , , 3. vk‰Y <m%

ýK

•Ø˜½´€¯, Ï•ùŒ±½¦·‚•

ýK´-y·‚ØäÆS

¯

Äå! •ï´þ, vkŸo'ÏLgCãå

‡rN ´: ES‡±Ö•Ì,

!

4. ïýK‰Y´š~زœ

g•Ñ5˜‡JK•4

ýK•9. ØU " ˜!

ÀJ! Ï•rýKÑtÃ

•¬‰@oA‡K. XJš‡ïýK‰Y, 5. ؇•w˜‡Æ

¡/ES!

ÒvkES

xïƇ3›˜±

Äå

, ¤±@@ïýK‰Y

<

.

ýK, O Æ •ww. Ï•õ„K’½v€?!

xMŠ: †Ù

~~, ØXò

(

. û½

, §7,¬‰\£ , $–´\¿ŽØ 1. kOy´ÆSÄå

•ï, Ò‡&¦

, ‡›½˜‡·ÜgC

¢, Ò´`‡lÄ: ‘

3. j±

¢/j±

.. sA‡

;%‰˜‡¯

¯U!

Oy. Ž ? @Òk ¤²U Oy, ²U 2.

å, kOy

Oy(ØUõ•ØU

), ÃØ

ºe…, 7L‡

¤

U

!

m©Æ, =¦{ü, •‡@@ýýÃ

˜H! ƒÕúpÃ$.

.Ò´±ƒ±ð, P4: 1zpöŒÊ›!

2w: xêÆ©Û†p Œ‡êÆ©Û6†5

“ê•ï9

‘§Œ±×£ýKmþ

‘è'5

x‡&ú¯Ò, ?1

¶. 5u“

®ŒÆ‡p “ê6Àª‘Ñkí! 2018 c 4

2

16 F

8¹ 1 ¥I‰ÆEâŒÆ 2009 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ

4

2 ¥I‰ÆEâŒÆ 2010 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ

5

3 ¥I‰ÆEâŒÆ 2011 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ

7

4 ¥I‰ÆEâŒÆ 2012 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ

9

5 ¥I‰ÆEâŒÆ 2013 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ

11

6 ¥I‰ÆEâŒÆ 2014 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ

12

7 ¥I‰ÆEâŒÆ 2015 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ

13

8 ¥I‰ÆEâŒÆ 2016 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ

14

9 ¥I‰ÆEâŒÆ 2009 cïÄ)\Æ•ÁÁKêÆ©Û

15

10 ¥I‰ÆEâŒÆ 2010 cïÄ)\Æ•ÁÁKêÆ©Û

16

11 ¥I‰ÆEâŒÆ 2011 cïÄ)\Æ•ÁÁKêÆ©Û

17

12 ¥I‰ÆEâŒÆ 2012 cïÄ)\Æ•ÁÁKêÆ©Û

19

13 ¥I‰ÆEâŒÆ 2013 cïÄ)\Æ•ÁÁKêÆ©Û

21

14 ¥I‰ÆEâŒÆ 2014 cïÄ)\Æ•ÁÁKêÆ©Û

23

15 ¥I‰ÆEâŒÆ 2015 cïÄ)\Æ•ÁÁKêÆ©Û

25

16 ¥I‰ÆEâŒÆ 2016 cïÄ)\Æ•ÁÁKêÆ©Û

26

17 ¥I‰ÆEâŒÆ 2017 cïÄ)\Æ•ÁÁKêÆ©Û

27

18 ¥I‰ÆEâŒÆ 2018 cïÄ)\Æ•ÁÁKêÆ©Û

29

3

¥I‰ÆEâŒÆ 2009 cïÄ)\Æ•ÁÁK‚5“ê†)Û

1.

AÛ o ‡&ú¯Ò: sxkyliyang 

0  . . ˜. W˜: A =   . a2n

··· .. . ···

 a1 ..   .  , a2k = 0, a2k−1 = 1(k = 1, 2, · · · , n), ¦ A 0

Jordan IO..

. †‚ l1 , l2 : 1. y²: ü†‚É¡; 2. ¦ü†‚ úR‚. n. •þ α1 , α2 ‚5Ã', α3 , α4 ‚5Ã', … α1 o. A Ú B ´ü‡ØÓ Ê. α1 , · · · , αn ´ V 8. 3



A

(?, ?, ?), ¦Ý

u α3 , α4 , α2

u α3 , α4 , y²: ùo‡•þ‚5Ã'.

• , ÷v A3 = B 3 , AB 2 = B 2 A, ¯ A2 + B 2 ´ÄŒ_, `²nd. Ä, é?¿ c1 , · · · , cn , •3…•˜ •3•þ α, ¦

(α, αi ) = ci .

A Š©O• λ1 = λ2 = 9, λ3 = −9 Ú λ1 † λ2 ©OéA A A ±9¦ A é z

Ý

•þ• α1 = (1, 0, −1), α2 =

P.

Ô. A ´E• , ‚5C† T : X → AX + XA, y²: XJ A Œé z, @o T •Œ±é l. A ´E• , ½Â eA =

+∞ X Ak k=0

k!

, y²: det(eA ) = etr(A) .

4

z.

2.

¥I‰ÆEâŒÆ 2010 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang

˜. W˜K(z˜ 5 ©, 1.

60 ©)

g-‚ x2 − 4xy + y 2 + 10x − 10y + 21 = 0

a.´

, ÏL=¶





=

Ý´

(•I‡W ˜‡ Ý=Œ). 2. ±-‚  y = x 2 z = 2 •O‚,

:•º:

I¡•§•

.

3. ± xOy ²¡þ -‚ f (x, y) = 0 7 x ¶^=¤ 0, dd 4.

-¡a.´

•þ, K•þ| α1 + α2 , α2 + α3 , α3 + α4 , α4 + α1

.

5. 3 3 ‘¢•þ˜m R3 ¥,

α1 = (−1, 1, 1)T , α2 = (1, −1, 0)T , α3 = (1, 0, −1)T , β = (−4, 3, 4)T . K β

3Ä {α1 , α2 , α3 } e ‹I´ .  a1 + b1 a2 + b1   a1 + b2 a2 + b2  6. n > 2, K det  .. ..  . . 

n > 1, Ý

λ−1   3λ − 1  λ+1

λ2 + 2λ

9. ^ Gram-Schmidt Ä´ 10. ½Â¤k n

2

λ

an + b1



···

an + b2 .. .

     

0

λ2 − 1

λ

···

···

a1 + bn a2 + bn  0   −1 0   . A= −1 . .   ..  . 

 8. λ− Ý

. XJ-‚•§´ x2 −y 2 −1 =

.

α1 , α2 , α3 , α4 ´‚5˜m V ¥ 4 ‡‚5Ã' • u

7.

^=¡ •§´

−1 

u

an + bn  a0  a1   ..  .  , K A  an−2   an−1

 3λ2 − 1   λ2 + 1

.

A

Smith IO.´

z•{ò R3 (IOSÈ)

õ‘ª´

.

.

Ä {(1, 1, 1)T , (−1, 0, −1)T , (−1, 2, 3)T } z¤

IO

. ¢•

¤

.• Q(X) = f (X, X). K Q(X) . ( 10 ©) ¦Xe‚5•§|

é¡V‚5¼ê• f (X, Y ) = tr(X T Y ), X, Y ∈ V,

¢‚5˜m V þ

K.5•ê©O•

.

Ï):   x1 + x2 + x3 + x4 + x5 = 1      3x1 + 2x2 + x3 + x4 − 3x5 = −2   x2 + 2x3 + 2x4 + 6x5 = 5     5x + 4x + 3x + 3x − x = 0 1 2 3 4 5

5

g

x−1 y z ˜mþk†‚ l1 : = = Ú l2 : (x, y, z) = (3 + 2t, t, 3t − 3). 3 1 0 √ … π † l1 ål´ 91, ¦ 𠕧.

n. ( 15 ©)

A : U → V •ê• F þ

o. ( 10 ©)

‚5˜m U

²¡ 𠆆‚ l1 , l2 ²1,

V þ‚5N . y²:

dim KerA + dim ImA = dim U. 

2

 A=  2

Ê. ( 15 ©)

1

−1 2 A

Š

P, ¦

P −1 AP • A

Jordan IO/.

•• 1.

V ´ n ‘m, ( , ) •ÙSÈ, V ∗ •Ùéó˜m. y²:

Ô. ( 10 ©)

(1) éuz‡‰½

l. ( 20 ©)



 −1   , ¦• −1

2

8. ( 10 ©) y²: jÝ

(2) N

1

α ∈ V, N

fα : V → R, β 7→ (α, β) ´ V ∗ ¥ ˜‡ ƒ.

f : V → V ∗ , α 7→ fα ´ n ‘‚5˜m V

V∗

Ó N

.

ê• F þk•‘˜m V þ‚5C† A Ú B ÷v A B = aBA (a ∈ F, a 6= 1), … A ´Œ_‚5

C†, y²: (1) B •˜"Ý (=•3 (2) A Ú B k˜‡ú

ê n, B n = 0).

A •þ.

6

3.

¥I‰ÆEâŒÆ 2011 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang

˜. W˜K(z K 5 ©,

50 ©)

1. ü‡²¡ z = x + 2y Ú z = −2x − y 2. : (0, 2, 1)

²¡ 2x − 3y + 6z = 1 2

g-¡ xy + z = 1  −1 0 0 1    = 4.  0 1 1   1 1 1 3.

V ´ d A1 =

5.

dim V =

7. ®•¢•

1

−1

, A2 =

1

1

−2

! , A3 =

3

1

1

−3

! )¤

R2×2

f ˜ m, K

•þ α1 , α2 , α3 , α4 ‚5Ã', K•þ| {α1 + α2 , α2 + α3 , α3 + α4 , α4 + α1 }

2







0

0

a2

 A=  1

1

   0   †B = 0 1 0

1

 0   ƒq, K a = 0

0

0

.



 λ2   λ4

Ð Ïf|´

.

•þ α1 = (1, 0, 1, 0), α2 = (0, −1, 1, −1), α3 = (1, 1, 1, 1) Š Gram-Schmidt β1 , β2 , β3 , K β3 =

zÚü

. 2

g. Q(x, y, z) = ax + y 2 + z 2 + xy + yz + zx

100 ©, ž‰Ñ•[

11. ( 15 ©)

2

a

λ

9. é R ¥

. )‰K(

!

0

1

10. ®•¢

.

0

1

z,

.

.

1

1

λ

u

. 

4

.

.

• u

1   8.  1 1

u

ål

-¡a.´

1

6. ®•¢‚5˜m V ¥



Y

½, K¢ê a

Š‰Œ´

.

OŽÚy²L§)

: A(1, 1, −1), B(−1, 1, 1), C(1, 1, 1), ¦ 4ABC

•§.

12. ( 15 ©) ¦‚5•§|   x1 + x2 + x3 + x4 + x5 = 1      3x1 + 2x2 + x3 + x4 − 3x5 = −2   x2 + 2x3 + 2x4 + 6x5 = 5     5x + 4x + 3x + 3x − x = 0 1 2 3 4 5 Ï). 13. ( 15 ©) A

Š

n

E•

A

A

Š

N• λ1 , · · · , λn , f (x) ´?¿˜‡EXêõ‘ª. ¦y: f (A)

N• f (λ1 ), · · · , f (λn ). 

(α1 , α1 )

(α1 , α2 )

···

(α1 , αn )



  (α2 , α1 )  14. ( 15 ©) α1 , · · · , αn ´îª˜m V ¥?¿ n ‡•þ, n > 1, G =  ..  .  (αn , α1 ) Ù¥ (αi , αj ) ´ V SÈ.

(α2 , α2 ) .. .

···

(α2 , αn ) .. .

(αn , α2 ) · · ·

   ,  

(αn , αn )

¦y: G

½ ¿©7‡^‡´ α1 , · · · , αn ‚5Ã'. 7

15. ( 20 ©)

A ´Ã•‘‚5˜m V

‚5C†, B ´ A 3 ImA þ •›C†. ¦y: V = ImA ⊕KerA

¿©7‡^‡´ B Œ_. 16. ( 20 ©) ®• R2 N

¤ý

‚5C† A r (1, 0) N

(0, 1), r (0, 1) N

E. ¦:

(1) E

•§;

(2) E

•¶¤3†‚

(3) E

¡È.

•§;

8

(2, 1), ¿…r

C : x2 + y 2 = 1

4.

¥I‰ÆEâŒÆ 2012 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang

˜. W˜K(z˜ 5 ©,

50 ©)

1. 3 R3 ¥, †‚ x = y = z †²¡ z = x − y 3

2. 3 R ¥, •§ xy − yz + zx = 1 ¤L« 3. 3 R4 ¥,

n: A, B, C

Y

{uŠ u

g-¡a.•

.

.

‹I©O• A(1, 0, 1, 0), B(0, 1, 0, 1), C(1, 1, 1, 1), K 4ABC

¡È

u

. 4. ÷v f (−1) = 0, f (1) = 4, f (2) = 3, f (3) = 16

gê•

˜

õ‘ª f (x) =

.

5. ¦‚5•§|    a2 x1 + x2 + x3 = 1   x1 + ax2 + x3 = a    x + x + x = a2 1

k) ¢ê a

6. ®•¢•

7. ®•E•

A

A

Š‰Œ´

Š‘Ý

A •

. 

2

3



2

1

1

1

  1 A∗ =   1  1

1

0

0

1

0

0

 0  , K A = 0   1

λI − A

.

Ð Ïf|•

{λ, λ + 1, λ2 , λ2 , (λ − 1)2 , (λ − 1)3 }, KA

• õ‘ª dA (λ) =

, rank(A) =

n > 2, K¢ g. Q(x1 , · · · , xn ) =

8.

n X

x2i −

i=1

. )‰K(

100 ©, I‰Ñ•[

, tr(A) = . !2 n X xi 5‰.•

.

i=1

OŽÚy²L§)

9. ( 15 ©) ¦ R3 ¥†‚ x − 1 = y − 2 = z − 3 † x = 2y = 3z 10. ( 15 ©) ®• W1 , W2 ´ê• F þ n ‘‚5˜m V

úR‚•§.

ü‡f˜m. ¦y:

dim(W1 ∩ W2 ) + dim(W1 + W2 ) = dim W1 + dim W2 . 11. ( 20 ©)

A ´ê• F þ n ‘‚5˜m V

‚5C†. ®• A

A õ‘ª ϕA (λ) = f (λ) · g(λ), Ù

¥ f (λ) † g(λ) ´ê• F þ ü‡pƒ õ‘ª. ¦y: (1) Imf (A ) = Kerg(A ); (2) V = Imf (A ) ⊕ Img(A ). 12. ( 15 ©)

Q(x) ´ n

¦y: V ´ Rn 13. ( 20 ©)

R

2×2

¢

g., V = {x ∈ Rn |Q(x) = 0}.

f˜m ⇔ Q(x) ´Œ ½½ŒK½ . þ ‚5C† A (X) = AX − XA, Ù¥ A =

(1) ¦y: f (X, Y ) = tr(X T AY ) ´ R2×2 þ SÈ; 9

1

1

1

2

! .

(2) ¦ ImA 3 f e ˜|IO 14. ( 15 ©)

n > 2, ¦Xe n

¢•

Ä. Jordan IO/.

A = (aij )n×n 

O

   A=   1 1

1 ..

.

..

.

..

1 .

    ,  

O

=  1, aij = 0,

10

i + j ∈ {n, n + 1}; i+j ∈ / {n, n + 1}.

5.

¥I‰ÆEâŒÆ 2013 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang

˜. W˜K(z˜ 6 ©,

60 ©. ‰YIz{)

1. ü†‚ 1 − x = 2y = 3z † x = y + 2 = 2z + 4 ¢ê a, b,  1   1 3. ¢•   0  0 2.

c ÷v 1

0

1

0

0

1

0

0

 1   1   1

Š‘• •

¢Xêõ‘ª f (x)

N3õ‘ª

Ä 1, x − 1, (x − 1) , (x − 1)

A : f (x) 7→ xf (x) 3 1,  1 1 1   1 1 λ 5. õ‘ªÝ   1 λ 1  λ 1 1 0

3

2

1, x, x , x

x − 1, (x − 1) , (x − 1) e Ý  λ  1   Ð Ïf|• . 1   1

6. ¢ g. Q(x1 , x2 , x3 , x4 ) = x1 x2 + x1 x3 + x1 x4 + x2 x3 . )‰K(

90 ©. I

Ñ•[



3

LÞÝ ,A

5‰.•

¤



¢ê•þ .V þ

• õ‘ª•

‚5

‚5C† .

.

)‰L§)

7. ( 15 ©) ¦ x ¶7†‚ x = y = z − 1 ^=¤ ^=-¡ 8. ( 15 ©)

.

\{Úê¦$Že 2

3

.

Ô¡.

, Jordan IO/•

2

˜m. l V

, ål•

2

ž, -¡ z = ax + bxy + cy ´ý 

0

V ´gê 6 3

4.

Y •

2

˜„•§.

A ´ê• F þ k•‘‚5˜m V þ ‚5C†, ¦y: dim(ImA ∩ KerA ) = rankA − rankA 2 .

9. ( 20 ©) y²: Cayley-Hamilton ½n: ê• F þ ?¿• 10. ( 20 ©)

A, B ´ n

A † B Ãú 11. ( 20 ©) Ú f2 (x)

E•

, Cn×n þ

A

A õ‘ªÑ´ A

"zõ‘ª.

‚5C† A : X 7→ AX − XB. ¦y: A Œ_

¿‡^‡´

A Š.

A ´ê• F þ

‚5˜m V þ

‚5C†, f1 (x) Ú f2 (x) ´ F þ

•ŒúϪ, h(x) ´ f1 (x) Ú f2 (x)

¿‡^‡´ g(A ) Œ_.

11

• ú

õ‘ª, g(x) ´ f1 (x)

ª. ¦y: Kerh(A ) = Kerf1 (A ) ⊕ Kerf2 (A )

6.

¥I‰ÆEâŒÆ 2014 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang

˜. W˜K(z˜ 6 ©,

60 ©. Iz{‰Y)

1.

: †‚ x + 1 = y + 2 = z + 3

2.

: P (1, 2, 3) † :'u²¡ π é¡, K π x2 + xy + y 2 = 1

3. ý

ål•

l%Ç•

. •§•

.

.

f (x) = x2 − 2ax + 2 Ø g(x) = x4 + 3x2 + ax + 2, K~ê a = .   0 1 0 1    −1 0 1 0  −1  A= , A Jordan IO/•  0 −1 0 1  , K A =   −1 0 −1 0

4.

5.

V ´¢ê•þ

6.

••

j 6 2014} •

7.

¢

. )‰K(

•þ| {α1 , α2 , · · · , α2014 } ‚5Ã', K•þ| {αi + αj |1 6 i <

.

õ‘ª dA (x) = x3 (x + 1)3 , K B = A2 • õ‘ª dB (x) =  x − x2 0 0     Smith IO/´ . 0 x + x2 0   2 0 0 1−x • 

A

8. õ‘ªÝ

9.

‚5˜m, V ¥

g. Q(x, y, z) = ax2 + y 2 + z 2 + axy − xz 90 ©. I

1. ( 15 ©)

.

Ñ•[

Rn×n þ

½, K~ê a

.

Š‰Œ´

.

)‰L§)

‚5C† A (X) = AXAT , Ù¥ A ´ n

¢•

, rank(A) = r, ¦ ImA

‘ê

9Ù˜|Ä. A ´‚5˜m V þ

2. ( 15 ©)

‚5C†. ¦y: •3 V

f˜m W † ImA Ó

, ¿… V =

W ⊕ KerA . 3. ( 20 ©)

A ´ê• F þ

n



, •þ αi ÷v (λi I − A)n αi = 0, i = 1, 2. ¦y: e λ1 6= λ2 , K

F [A](α1 + α2 ) = F [A]α1 ⊕ F [A]α2 . (5: F [A]α = {f (A)α|f (x) ∈ F [x]}.) 4. ( 20 ©) ®•îª˜m V þ

š"‚5C† A

±•þ

Y

ØC. ¦y: •3

¢ê λ ¦

λA ´

C†.  5. ( 20 ©) é

E•

‚ ƒÑ´

0

1

i



   A=  i 0 1  , i ´Jêü 1 i 0 ¢ê.

12

. ¦j•

P ¦

P A ´þn



¿… P A

7.

¥I‰ÆEâŒÆ 2015 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang

˜. W˜K(z˜ 6 ©,

60 ©. Iz{‰Y)

1. : (1, 0, 1) 'u†‚ 2x − 1 = y − 1 = 2z − 1

é¡:• . y z x−1 2. †‚ l L: (3, 7, −8), ¿…††‚ l1 : x = = − ±9†‚ l2 : = y + 2 = z − 3 þk :. K 2 3 2 l † l1 :• , l † l2 :• .

g. x1 x2 − 3x2 x3 + x1 x3 .5•ê• . ! √ !9 −In 2In 3 1 √ , 1 ª det = 4. Ý = 3In 4In − 3 1 3.

, Ù¥ In L« n

5. 3‚5˜m M3 (R) ¥($Ž•Ý \{Úê¦), •Ä‚5f˜m      1 1 1 1 2        = V = A ∈ M3 (R) A   0 1 1   0 1    0 0 0 0 1 K‘ê dim V = A, B, C • n

Ý



1 1   1 −1 7. •ÄÝ A =   1 1  1 −1 {fª, • A •• . )‰K(

90 ©. I

1. ( 15 ©)

Ñ•[

A •1÷•

Im • m

ü

2. ( 15 ©)

, In L« n

1 −1 −1 1 .

ü Ý , KÝ



In

A

C

  0  0

In

 B   In

0

_Ý •

.



1

 1   , K A11 − 2A21 + 3A31 − 4A41 = −1   −1

, Ù¥ Aij L«ƒA

“ê

)‰L§) m×n Ý

, m < n. Áy²: •3 n

Ý , 0 • m × (n − m) "Ý

P3 •dgê؇L 3

Œ_•



A = (Im , 0)Q, Ù¥

.

EXêõ‘ª|¤ ‚5˜m. •ÄÙþ ‚5C† A=x

Á¦ A

       A , 1     1 2

. 

6.

ü Ý .

d : P3 → P3 . dx

4 õ‘ª.

3. ( 20 ©) •Ä1•þ˜m R4 ¥•þ| S = {a1 = (1, −1, 2, 4), a2 = (0, 3, 1, 2), a3 = (1, −1, 2, 0), a4 = (2, 1, 5, 10), a5 = (3, 0, 7, 14)}. Á¦•þ| S

¤k4Œ‚5Ã'|.   1 0 2 0    0 0 0 1    . Á¦ 4. ( 20 ©) •ÄÝ A =  • P ¦ P −1 AP •é  2 0 1 0   0 1 0 0 ! 9 7 1 , p0 , q0 • ¢ê, ÷v p0 +q0 = 1. éu n > 1, 5. ( 20 ©) A = 10 1 3 Áy²: ê

{pn }n>0

4••3, ¿¦Ñ4•Š.

13

.

pn qn

! = An

p0 q0

! .

8.

¥I‰ÆEâŒÆ 2016 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang

˜. W˜K(z˜ 6 ©,

60 ©, Iz{‰Y)

1. ²L†‚ x = y = 2 − z …†²¡ x + 2y + 3z = 5 R†

²¡•§´

.

2. ‰½˜m† ‹IX¥: A(1, 0, 1), B(0, 1, −1), C(2, 1, 2) Ú D(5, 4, 1). Ko¡N ABCD :D

²¡ ABC

ål•

g. (x1 − x2 )2 + (x2 − x3 )2 + (x3 − x4 )2 + (x4 − x5 )2 !15 ! 1 −1 0 2In 4. Ý = , 1 ª det = 1 1 3In 0

.5•ê•

.

, Ù¥ In L« n

6. d•þ (0, 1, 4, 14), (1, 2, 3, 4), (1, 1, 0, −5), (3, 2, 1, −4) ±9 (2, 1, 1, 1) )¤ R   0 λ2 − λ 0   2  . Smith IO.• 7. λ− Ý  0 0   λ +λ  8. e 1 ••

. ‰K(

0   1   0  0

0

BA

A

2. ( 15 ©)

4

Ý . .

f˜m‘ê•

.

λ3 − λ 

0

0

−1

0

0

1

0

0

1

 2   −3   a

90 ©, I Ñ•[

1. ( 15 ©)

ü

A = (β1 , β2 , β3 ) ±9 B = (2β3 , β2 , −β1 ). e detA = 2, K detB =

0

,

.

3.

5. •Ä ©¬•

NÈ•

A

Š, K a =

.

)‰L§)

A • m × n Ý , B • n × m Ý , a •š"Eê. Áy²: a • AB

A

Š

…=

a•

Š. e a = 0, T(Ø„¤áí? žØy½Þ~`². n



A Ú B ÷v detA = −detB. Áy²: det(A + B) = 0.

3. ( 20 ©) •Ä 2 × 2 ¢•

N M2 (R), éu?‰ ü‡ 2



A, B, ·‚½Â hA, Bi = tr(AB t ). ù

p tr L«,, t L«Ý =˜. (1) Áy²: h−, −i ´ M2 (R) þ ˜‡SÈ. ( ! 1 0 (2) 3TSÈe, ÁOŽ•þ| , 0 1 IO z.

1

1

0

0

! ,

0

0

1

1

! ,

1

0

0

−1

!) Gram-Schmidt

ëY¢¼ê|¤ ¢‚5˜m V, n > 1, W • {1, x, x2 , · · · , xn } )¤ d f˜m, •Ä‚5C† A = (x + 1) : W → W. Áy²: dim W = n, … A Œé z, ¿¦Ñ A ¤k dx A •þ. A2 A3 5. ( 20 ©) e •g,~ê. éu n E• A, ·‚½Â eA = In + A + + + · · · . Áy²µ 2! 3! (1) • eA ½ÂÜn; 4. ( 20 ©) •Ä [0, 1] «mþ

(2) det(eA ) = etr(A) .

14

9.

¥I‰ÆEâŒÆ 2009 cïÄ)\Æ•ÁÁKêÆ©Û o ‡&ú¯Ò: sxkyliyang

1.

ä. (1)

∞ X (1 + 2i)n ýéÂñ. 3n − 2n n=0

(2) F ˜—Âñ ¿‡^‡´ f r Cauchy

N¤ Cauchy

.

2. W˜. (1) f = 1 − x 3 x − 1 ?Ðm

?ê, ¯ÙÂñ:8´Ÿo.

(2) sin(x2 ) = x k ‡Š. 1 1 1 1 1 1 1 1 (3) 1 − − + − − + · · · + − − + ··· 2 4 3 6 8 2n − 1 4n − 2 4n

Ú´

.

3. f : [0, 1] → R, üN4O… f ([0, 1]) ´48, y²: f 3 [0, 1] þëY. Z 1 4. f 3 [0, 1] þëY, … f (x)xn dx = 0, n = 0, 1, 2, · · · , y²: f ≡ 0. 0

5. ´Ä•3

¼ê f, ¦

df ÷vXe ª: xdy − ydx . df = p x2 + y 2

6. f : N → N, … f −1 (N) ´k•8, lim xn •3, y²: lim xf (n) •3. n→∞

3

n→∞

2 3

7. S = {(x, y, z) ∈ R |xy z = 1} (1) y²: S 3 R3 (½˜ÜÛª -¡, ¿¦Ñ˜‡3: (1, 1, 1) NC ëꕧ. (2) S ´ÄëÏ, ´Ä;—? (3) : q ∈ S, |q| ´ q

: ål, : p ÷v |p| = inf |q|, ¦ p |¤ 8Ü. q∈S

8. y²ð ª: π

+∞ X

e2π|n| =

n=−∞

9.

Z Γ(s) = Z

1 . 2+1 n n=−∞

+∞

xs−1 e−x dx, S = {(x, y, z)|x2 + y 2 + z 2 = 1},

0

^ Γ(s) L«1˜.È©

+∞ X

(x2 + y 2 )a dσ, Ù¥ a > −1.

s

15

¥I‰ÆEâŒÆ 2010 cïÄ)\Æ•ÁÁKêÆ©Û

10.

o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©)

¼ê f (x) : [0, +∞) → [0, +∞) ´˜—ëY

, α ∈ (0, 1]. ¦y: ¼ê g(x) = f α (x) •3 [0, +∞)

þ˜—ëY. f (x, y) 3 R2 \{(0, 0)} þŒ‡, 3 (0, 0) ?ëY, …

2. ( 15 ©)

lim (x,y)→(0,0)

∂f (x, y) = 0, ∂x

lim (x,y)→(0,0)

∂f (x, y) = 0. ∂y

¦y: f (x, y) 3 (0, 0) ?Œ‡.   √ xn−1 3 3. ( 15 ©) x0 ∈ 1, , x1 = x20 , xn+1 = xn + , n = 1, 2, · · · . ¦y: ê 2 2 4. ( 15 ©)

f (x) 3 (−∞, +∞) þkëY Z

{xn } Âñ, ¿¦Ù4•.

¼ê, f (0) = 0, …-‚È© (ex + f (x))ydx + f (x)dy

C

†´»Ã'. ¦ (1,1)

Z

(ex + f (x))ydx + f (x)dy.

(0,0)

5. ( 15 ©)

½Â

α > 1. ¦y: ±e¹ëCþ x

áȩ Z +∞ arctan(tx) dt f (x) = tα 1

(0, +∞) þ ˜‡Œ‡¼ê, …÷v xf 0 (x) − (α − 1)f (x) + arctan x = 0.

6. ( 15 ©)

a, b, c Ñ´ ê. OŽ-¡È© ZZ x3 dydz + y 3 dzdx + z 3 dxdy, S 2

Ù¥ S ´þŒý¥¡ 7. ( 15 ©)

2

2

x y z + 2 + 2 = 1, z > 0, ••Šþ. a2 b c

f (x) ´½Â3¢¶þ± 2π •±Ï

Û¼ê, q f (x) këY

¼ê…÷v f 0 (x) = f

Á¦ f (x). ∞ X

8. ( 15 ©)

an ´˜‡Âñ

‘?ê. ¦y:

n=1

9. ( 15 ©)

¼ê f (x) 3 [0, +∞) þ

∞ X

1 1− n

an

•Âñ.

n=1

Œ

, f (0) > 0, f 0 (0) > 0, …÷v f (x) 6 f 00 (x). ¦y: f (x) > f (0) + f 0 (0)x.

10. ( 15 ©)

{an } Ú {bn } Ñ´ ê

bn , ÷v lim =09 n→∞ n   an lim bn − 1 = λ > 0. n→∞ an+1

¦y: (1)

lim an = 0;

n→∞

(2) ?ê

∞ X

an Âñ.

n=1

16

π 2

 −x .

¥I‰ÆEâŒÆ 2011 cïÄ)\Æ•ÁÁKêÆ©Û

11.

o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©) OŽ.  (1)

lim x

1+

x→+∞

Z (2)

π 2

1 x

x

 −e ;

sin7x dx.

0

2. ( 15 ©) £‰e ¯K, Þ~`²½öy²\ (Ø. (1) ´Ä•3 R þ??ØëY ¼ê, § ýéŠ%´??ëY ¼ê? f, g ´ R þ

(2)

ëY¼ê, XJ f (x) = g(x) é¤kknê x ¤á, ´ÄŒ±äó f (x) = g(x) 3 R þ

¤á? (3) á«mþ ëY¼ê´ÄU^õ‘ª˜—%C? 3. ( 15 ©)

a, b, c, d ´ 4 ‡Ø u 1

ê, ÷v abcd = 1, ¯:

a2010 + b2010 + c2010 + d2010 Ú a2011 + b2011 + c2011 + d2011 =‡êŒ? •Ÿo? 4. ( 15 ©)

f : [a, b] → [a, b].

(1) XJ f ´ [a, b] þ ëY¼ê, y²: •3 ξ ∈ [a, b] ¦

f (ξ) = ξ;

(2) XJ f ´ [a, b] þ

f (ξ) = ξ.

4O¼ê, y²: •3 ξ ∈ [a, b] ¦

5. ( 20 ©) (1) r±Ï• 2π

¼ê f (x) = x2 − π 2 , x ∈ [−π, π]

Ðm• Fourier ?ê. (2) |^þ¡ ?ê, OŽe ?ê Ú ∞ ∞ ∞ X X 1 X 1 n−1 1 , (−1) , . 2 2 4 n n n n=1 n=1 n=1

(3) ¦?ê

∞ X

(−1)n

n=1

cos nx n2

Ú.

6. ( 15 ©) y²: ¹ëCþÈ© Z

+∞

F (u) = 0

3 (0, +∞) þؘ—ëY, 7. ( 15 ©)

sin(ux2 ) dx x

3 (0, +∞) þëY.

{xn } ´˜‡šK ê

, ÷v xn+1 6 xn +

1 , n = 1, 2, · · · , n2

y²: {xn } Âñ.

17

8. ( 15 ©) e

∞ X

an = A, y²:

n=1

9. ( 15 ©)

f ´l«m [0, 1] N

∞ X a1 + 2a2 + · · · + nan = A. n(n + 1) n=1

[0, 1]

¼ê, Ùã” {(x, f (x)) : x ∈ [0, 1]} ´ü

4f8. y²: f ´ëY¼ê. 10. ( 10 ©)

D ´µ41w-‚ L Œ¤ «•, f (x, y) 3 D þk a

∂2f ∂2f + b = 0, ∂x2 ∂y 2

Ù¥ a, b > 0. e f 3 L þ u~ê C, y²: f 3 D þð u C.

18

ëY

ê, …

•/ [0, 1] × [0, 1]

12.

¥I‰ÆEâŒÆ 2012 cïÄ)\Æ•ÁÁKêÆ©Û o ‡&ú¯Ò: sxkyliyang

1. ( 15 ©) 3e¡n‡¯K¥, XJ‰Y´’½ , žÞуA (1) ´Ä•3ü‡uÑ

ê , §‚ Ú´˜‡Âñê ?

(2) ´Ä•3 [a, b] þØð (3) ´Ä•3ù

ê

u0

ëY¼ê, §3 [a, b] ¥ kn:?Ñ

lim

ê

an =0 n

´ lim

n→∞

max{a1 , · · · , an } 6= 0? n

{an } ÷v lim a2n−1 = a, lim a2n = b.

n→∞

y²: lim

n→∞

n→∞

a1 + · · · + an a+b = . n 2

3. ( 15 ©) ¼ê Z

x2

f (x) = x

1 ln t



t−1 32

 dt, x ∈ (1, +∞)

3Û? • Š? 4. ( 15 ©)

¼ê f 3 (0, +∞) þŒ‡, … f 0 (x) = O(x), x → +∞. y²: f (x) = O(x2 ), x → +∞.

5. ( 15 ©) (1) r±Ï• 2π

¼ê  f (x) =

π−x 2

2 , (0 6 x 6 2π)

Ðm• Fourier ?ê. (2) |^þ¡ ?ê, OŽe



Ú: ∞ ∞ ∞ X X 1 X 1 n−1 1 , (−1) , . 2 2 4 n n n n=1 n=1 n=1

(3) ¦?ê

∞ X cos nx n2 n=1

Ú.

6. ( 15 ©) (1) OŽ˜?ê

∞ X

0 Š?

{an }, §÷v

n→∞

2. ( 15 ©)

~f; XJ‰Y´Ä½ , ž‰Ñy².

(n2 + 1)3n xn

Ú.

n=0

(2) y²: ?ê ∞ X n=1

α > 2 ž3 (0, +∞) ¥˜—Âñ.

19

xα e−nx

2

z = f (x, y) 3 R2 þkëY

7. ( 15 ©)

ê, …÷v•§ 6

Á(½ a

∂2z ∂2z ∂2z + − 2 = 0. 2 ∂x ∂x∂y ∂y

(1)

Š, ¦ 3C† ξ = x − 2y, η = x + ay (a 6= −2)

e•§ (1)

{z• ∂2z = 0, ∂ξ∂η

¿dd¦

‡©•§ (1)

).

D ´ R3 ¥ k.4«•, f 3 D þëY…k

8. ( 15 ©)

ê. XJ3 D þk

∂f ∂f ∂f + + = f, f |∂D = 0 (∂D PD ∂x ∂y ∂z y²: f 3 D þð

>.).

u 0.

9. ( 15 ©) (1) OŽ ZZZ p a2 − x2 − y 2 − z 2 dxdydz, V 3

Ù¥ V ´ R ¥± :•¥%, a •Œ» ¥. S ´ R3 ¥ØÏL

(2)

:3 S ¤•Œ«•

:

1wµ4-¡, S þ: P ?

ü

ܽSÜü«œ/OŽ-¡È© ZZ x cos α + y cos β + z cos γ 3

S

(ax2 + by 2 + cz 2 ) 2

Ù¥ a, b, c Ñ´ ê. 10. ( 15 ©)

f : (0, +∞) → (0, +∞) ´˜‡üNO\ ¼ê. XJ f (2t) = 1, x→+∞ f (t) lim

y²: é?¿ m > 0 Ñk

{•þ ~n = (cos α, cos β, cos γ). ÁÒ

f (mt) = 1. t→+∞ f (t) lim

20

dσ,

¥I‰ÆEâŒÆ 2013 cïÄ)\Æ•ÁÁKêÆ©Û

13.

o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©) £‰e ¯K, ¿`²’½½Ä½ nd. (1) XJ

∞ X

un (x) 3 (a, b)

?˜4f˜m [α, β] ⊂ (a, b) ¥˜—Âñ, UÄ佧3 (a, b) ¥??Âñ?

n=1

UÄ佧3 (a, b) ¥˜—Âñ? (2) :8 E = {(x, y) ∈ R2 : xy > 0} ´Ø´ R2 ¥«•? ´Ø´ R2 ¥m8? 2. ( 15 ©)

lim an = a.

n→∞

(1) Á^ ε − N Šóy²: lim

n→∞

(2) y²: lim

a1 +

n→∞

a2 2

+ ··· + ln n

a1 + · · · + an = a. n an n

= a.

3. ( 15 ©) OŽÈ© Z +∞ x − sin x (1) dx. x3 Z0Z (2) (3xy 2 − x2 )dxdy. x2 +y 2 61

4. ( 15 ©) y²: Ø

ª 1 2 tan x + sin x > x 3 3

é¤k

 π x ∈ 0, ¤á. 2

5. ( 15 ©)  2   xy , f (x, y) = x2 + y 2  0,

(x, y) 6= (0, 0) (x, y) = (0, 0)

y²: (1) f 3 (0, 0) ?ëY; (2) f 3 (0, 0) ?÷?¿••

••

êÑ•3;

(3) f 3 (0, 0) ?ØŒ‡. 6. ( 15 ©) y²: ¼ê f (x) = 7. ( 15 ©) r±Ï• 2π

sin x 3 (0, +∞) ¥˜—ëY. x

¼ê f (x) = x2 , x ∈ [−π, π]

Ðm• Fourier ?ê, ¿OŽe ?ê Ú ∞ ∞ ∞ X 1 X 1 X cos nx , , (−1)n . 2 4 n n n2 n=1 n=1 n=1

8. ( 15 ©)

f ´ [a, b] þ

ŠŒÈ¼ê. y²: •3 c ∈ (a, b) ¦ Z

c

Z f (x)dx =

a

c

b

1 f (x)dx = 2

21

Z

b

f (x)dx. a

9. ( 15 ©)

f ∈ C 1 (R3 ), a, b, c ´š"¢ê. y²: 3 R3 þ¤á 1 ∂f 1 ∂f 1 ∂f = = a ∂x b ∂y c ∂z

¿©7‡^‡´•3 g ∈ C 1 (R) ¦ f (x, y, z) = g(ax + by + cz). 10. ( 15 ©)

a > 0, ac − b2 > 0, α > Z

+∞

−∞

1 . y²: 2 1

(ac − b2 ) 2 −α Γ(α − 12 ) √ dx = π. 2 α (ax + 2bx + c) a1−α Γ(α)

Ù¥ Γ ´ Gamma ¼ê.

22

¥I‰ÆEâŒÆ 2014 cïÄ)\Æ•ÁÁKêÆ©Û

14.

o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©) £‰e ¯K, Þ~`²½y²\ (Ø. Z +∞ (1) XJ f (x)dx Âñ, UÄäó lim f (x) = 0? x→+∞

0

(2) XJ

∞ X

∞ X

a2n < +∞, UÄäó

n=1

an Ú

n=1

∞ X

(−1)n−1 an – k˜‡Âñ?

n=1

2. ( 15 ©) OŽe 4• Š.    1 2 . (1) lim x − x ln 1 + x→+∞ x cos x − e− (2) lim x→0 sin4 x

x2 2

.

3. ( 15 ©) OŽe È©.  Z 1 Z 1 (1) max(x, y)dy dx. 0

Z

0 1

(2) 0

ln x dx, α < 1. xα {an }∞ n=1 ´˜‡šKê

4. ( 15 ©)

, ÷v an+1 6 an +

1 , n = 1, 2, · · · . n2

y²: {an } Âñ. 5. ( 15 ©)

f 3 (0, +∞) þkn

ê, XJ lim f (x) Ú lim f 000 (x) Ñ•3…k•, y²: x→+∞

x→+∞

lim f 0 (x) = lim f 00 (x) = lim f 000 (x) = 0.

x→+∞

6. ( 15 ©)

x→+∞

x→+∞

f, g Ñ´ [a, b] ¥ ëY¼ê, y²: •3 ξ ∈ [a, b], ¦ Z g(ξ)

ξ

Z

a

7. ( 15 ©)

b

f (x)dx = f (ξ)

g(x)dx. ξ

lim an = a ∈ R, y²:

n→∞

(1) ˜?ê

∞ X

an xn

ÂñŒ» R > 1.

n=0

(2)

f (x) =

∞ X

an xn , @o lim (1 − x)f (x) = a. x→1−

n=0

Z (3)

lim (1 − x)

x→1−

8. ( 15 ©)

0

x

f (t) dt = a. 1−t

z = z(x, y) 3 R2 þkëY

ê, …÷v•§ 14

Á(½ λ

∂2z ∂2z ∂2z +5 − 2 = 0. 2 ∂x ∂x∂y ∂y

Š, ¦ 3C† ξ = x + λy, η = x − 2y, (λ 6= 2) 23

(1)

e, •§ z{• ∂2z = 0. ∂ξ∂η ¿dd¦Ñ ‡©•§ (1)

).

9. ( 15 ©) → − F =



1 y x bx cxy a − + , + 2,− 2 y z z y z



Ù¥ a, b, c ´n‡~ê. → − (1) ¯ a, b, c ÛŠž, F •k³|. → − (2) F •k³|ž, ¦Ñ§ ³¼ê. 10. ( 15 ©)

u(x, y) 3 R2 þkëY

ê, …ð u

Š. y²: u ÷v•§

∂2u ∂u ∂u = ∂x∂y ∂x ∂y

¿©7‡^‡• u(x, y) = f (x)g(y).

24

¥I‰ÆEâŒÆ 2015 cïÄ)\Æ•ÁÁKêÆ©Û

15.

o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©) ¦4•  lim

x→+∞

2. ( 15 ©) ¦ 3. ( 15 ©)

¼ê F (x, y) = √ a, b ´

1 sin x

x

Z

| sin t|dt. 0

x y 34«• x > 0, y > 0, x + y 6 1 þ •ŒŠ. +p 2 1+x 1 + y2

ê. OŽ -È© ZZ

(x2 + y 2 )dxdy, D

Ù¥ D ´ý 4. ( 15 ©)

y2 x2 + 6 1. a2 b2

R > 0. OŽ-¡È© ZZ  S

 1 3 xy + x dydz + yz 2 dzdx + R3 dxdy, 3 2

Ù¥ S ´þŒ¥¡ x2 + y 2 + z 2 = R2 ( z > 0) ••Šþ. 5. ( 15 ©) OŽ2ÂÈ© Z 0

6. ( 15 ©)

n > 0. ¦yØ

+∞

1 dx ( n > 1). 1 + xn

ª 1 < 2n + 2

7. ( 15 ©)

Z

π 4

tann xdx <

0

1 . 2n

α α ∈ (0, 1), {an } ´ î‚4Oê , … {an+1 − an } k.. ¦4• lim (aα n+1 − an ). n→∞

8. ( 15 ©) ?Ø?ê

∞ X √ √ ( n + 1 − n)α cos n

^‡Âñ5ÚýéÂñ5.

n=1

9. ( 15 ©)

f (x) ´«m [0, 1] þ

ëY¼ê¿÷v 0 6 f (x) 6 x. ¦y: Z

1

Z

2

x f (x)dx > 0

¿¦¦þª¤• 10. ( 15 ©)

2

1

f (x)dx

.

0

ª ¤këY¼ê f (x).

f (x) 3 [a, +∞) þkëY

¼ê, …

lim sup |f (x) + f 0 (x)| 6 M < +∞.

x→+∞

¦y: lim sup |f (x)| 6 M. x→+∞

25

16.

¥I‰ÆEâŒÆ 2016 cïÄ)\Æ•ÁÁKêÆ©Û o ‡&ú¯Ò: sxkyliyang

1. ( 15 ©) ¦4• 1 lim x→+∞ x4 + | sin x| 2. ( 15 ©) ê

Z

x2

0

t3 dt. 1 + t2

{an } ÷v 1 , n > 1. 1 + an

a1 = 3, an+1 = y²: ê

{an } Âñ, ¿¦Ù4•. Z +∞ sin x −xu 3. ( 15 ©) y²: e dx 3 [0, +∞) ˜—Âñ. x 0 4. ( 15 ©) OŽÈ© ZZ

z(x2 + y 2 )3

p 1 − (x2 + y 2 )dS,

S

Ù¥ S ´þŒ¥¡ x2 + y 2 + z 2 = 1, z > 0. 5. ( 15 ©)

¼ê f (x) ± 2π •±Ï, f (x) = 1 − x, x ∈ [−π, π).

¦ f (x)

Fourier ?ê, `²Ù Fourier ?ê´Ä˜—Âñ.

6. ( 15 ©) y²: e¼ê f (x) 7. ( 15 ©)

ê f 0 (x) 3«m (0, 1) Sk., K¼ê f (x) 3«m (0, 1) Sk..

f (x) 3«m [0, 3] þëY, 3 (0, 3) SŒ , …÷v f (0) + f (1) + f (2) = 3, f (3) = 1.

y²: 3«m (0, 3) S•3˜: ξ, ¦ x2 y2 + =1 a2 b2

f 0 (ξ) = 0.

8. ( 15 ©)

S ´dý

ƒ‚† 2 ‡‹I¶Œ¤ «• ¡È, ¦ S

• Š.

9. ( 15 ©)

¼ê f (x) 3«m (0, 1) þ•à¼ê, =?‰ (0, 1) ¥ ü: x1 , x2 , ±9?¿ t ∈ (0, 1) k f ((1 − t)x1 + tx2 ) 6 (1 − t)f (x1 ) + tf (x2 ),

y²: ¼ê f (x) 3«m (0, 1) þëY. 10. ( 15 ©) 00 F (x, y) ∈ C ∞ (R2 ), F (0, 0) = 0, Fx0 (0, 0) = 0, Fy0 (0, 0)Fxx (0, 0) > 0.

y²: d F (x, y) = 0 (½

Û¼ê y = f (x) 3 x = 0 NC÷v f (x) 6 f (0) −

26

00 1 Fxx (0, 0) 2 x . 4 Fy0 (0, 0)

¥I‰ÆEâŒÆ 2017 cïÄ)\Æ•ÁÁKêÆ©Û

17.

o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©) ¦4• R x2 0

lim

x→0

2. ( 15 ©) ¦1

sin tdt . tan x4

.-¡È© ZZ

x3 dydz + y 3 dzdx + (z 3 + 1)dxdy, S

Ù¥, S ´þŒ¥¡ x2 + y 2 + z 2 = 1, ••÷¥¡ {•þ• . 3. ( 15 ©) y²: 2 π

Z

+∞

0

 1 − x, sin2 u cos(2ux)du = 0, u2

x ∈ [0, 1] x>1

. 4. ( 15 ©)

α > 0, {an } ´4Oªu á Z ak+1 ak+1 − ak 1 (1) 6 dx. α+1 α+1 x ak+1 ak

(2)

∞ X ak+1 − ak k=1

ak+1 aα k

ê

. ¦y:

Âñ.

f (x, y) ∈ C 1 (R2 ).

5. ( 15 ©)

(1) y²: éu?¿

a, b, c, d ∈ R, Ñ•3 (ξ, η) ∈ R2 , ¦ f (a, b) − f (c, d) = (a − c)

(2) e

∂f ∂f = , … f (x, 0) > 0 é?¿ ∂x ∂y

∂f ∂f (ξ, η) + (b − d) (ξ, η). ∂x ∂y

x ∈ R Ѥá, y²: éu?¿

(x, y) ∈ R2 , Ñk

f (x, y) > 0. 6. ( 15 ©) y²: Z

+∞

sin(x2 )dx

0

^‡Âñ. 7. ( 15 ©)

D ´1wµ4-‚ L ¤Œ «•, ¼ê f (x, y) 3 D þk

ëY

ê, …÷v

∂2f ∂2f + = 0. ∂x2 ∂y 2

(1) ¦y: I −f (x, y) L

∂f ∂f dx + f (x, y) dy > 0. ∂y ∂x

(2) e f 3 L þð•~ê c, ¦y: f 3 D þ•ð•~ê c. 8. ( 15 ©)

f : [0, +∞) → [0, +∞) ´˜—ëY , α ∈ (0, 1]. ¦y: ¼ê g(x) = f α (x) •3 [0, +∞) þ˜—ë

Y. 9. ( 15 ©)

 z z x − ,y − = 0. y²: y x   ∂z ∂z (xFu + yFv ) xy + z − x −y = 0. ∂x ∂y

F (u, v) ∈ C 1 (R)2 , … F



27

10. ( 15 ©)

«m I = [0, 1], fn (x) † f (x) þ´ I þ ëY¼ê, n, 1, 2, · · · . … fn (x) > fn+1 (x), ∀x ∈ [0, 1].

lim fn (x) = f (x).

n→∞

¦y: (1) éu?¿

ε > 0, I=

∞ [

{x|x ∈ I, fn (x) − f (x) < ε}.

n=1

(2) fn (x) ˜—Âñu f (x).

28

18.

¥I‰ÆEâŒÆ 2018 cïÄ)\Æ•ÁÁKêÆ©Û o ‡&ú¯Ò: sxkyliyang

1. (1) ¦4• π

lim |x|arctan x+ 2 ;

x→−∞

(2) ®• ak • êê

∞ X sin(a x) k , … 6 | tan x|. x ∈ (−1, 1). y²: k2 k=1

ak = o(k 2 ), k → +∞. 2.

Φ(x) •±Ï• 1 (1) ¦ Φ(x)

iù¼ê.

ëY:Úmä:

a.;

(2) OŽÈ© Z

1

Φ(x)dx. 0

− − 3. ®• Ω • R3 ¥ k.•, → n •ü •þ. ¦y: •3± → n •{•þ 4. ®• f (x) •±Ï u 2π 5.

Û¼ê,

²¡²© Ω

x ∈ (0, π) ž, f (x) = −1. Á|^ f

NÈ.

Fourier ?êOŽ

∞ X

1 . (2n − 1)2 n=1

ϕ(x) •k³| F (x, y, z) = (x2 − y, y 2 − x, −z 2 ) e ³¼ê, ¦n-È© ZZZ ϕ(x, y, z)dxdydz, Ω

Ù¥ Ω • x2 + y 2 + z 2 6 1. 6. ®• f ∈ C 2 [0, 1], f (0) = f (1) = 0, … f (x) 3 x0 ? (1) ¦ f (x) 3 x = x0 ?

Lagrange {‘

• Š -1,

Taylor Ðmª;

f 00 (ξ) = 8.

(2) y²: •3 ξ ∈ (0, 1) ¦

7. ®• Dt = {(x, y) ∈ R2 |(x − t)2 + (y − t)2 6 1, y > t}, f (t) =

ZZ

p x2 + y 2 dxdy, OŽ f 0 (0).

Dt 2

00

8. ®• u(x) ∈ C[0, 1], u(x) ∈ C (0, 1), u (x) > 0, - v(x) = u(x) + εx2 , ε > 0. (1) y²: v(x) • (0, 1) þ î‚à¼ê; (2) y²: u(x)

•ŒŠuà:?

.

9. ®• Br = {(x, y) ∈ R2 |x2 + y 2 6 r2 }, B = B1 , u(x, y) ∈ C(B) ∩ C 2 (B), 4u =

∂2u ∂2u + 2 ∂x2 ∂y

4u > 0, ∀(x, y) ∈ B, y²: u(x, y) 3 B þ •ŒŠu>. ∂B þˆ ;   Z d 1 (2) 4u = 0, ∀(x, y) ∈ B, y²: u(x, y)dS = 0, ∀r ∈ (0, 1). dr 2πr ∂Br Z 1 (3) y²: u(0) = u(x, y)dS. 2πr ∂Br Z 2−t  10. ®• u(x, t) äk ëY , …÷v utt (x, t) = uxx (x, t), P F (t) = u2t (x, t) + u2x (x, t) dx, y (1)

t

dF (t) ²: 6 0. dt

29

More Documents from "Rishshdh"

April 2020 0
Fourier.pdf
April 2020 0
April 2020 0
April 2020 0