x ¥I‰ÆEâŒÆ 2009 − 2018 cýK®o
xMŠ: ¥‰Œ Œ,
‚5“ê†)ÛAÛýK, Œ±`´'
´l{cýKœ¹5w, zc
*¥‰Œ
ê©, XJ`‚“†)A
‰ŒÑØ
-½,
K.Ä
½, •
. •,¬k˜
K8•k˜½
W˜KŒU
-EÇ, ýK
Áòõ´“x©K”, @oê©ÁòKõ´“x·K”
…éõ•ÁSN•k˜½
£:(.¾Ñáu“©Û”
‰Æ......). ¥‰Œ
L
•¥‰Œ
‚ 50 ©=Œ. ïÆ
{ü
ÝÚOŽþ, $– •
¹
õc°
•â´ØwÐÁ
ÓÆ3ê©þ¡õs°å, kUå
K8Ñ
£=Š©ê
—Kþ
ë•dŠš~Œ. ‡
. J:3uzc
9
¢C¼ê¥
, Ïd
ÓƦþww¢C
‡ •Á
˜
•
£=Š˜„•I U‘
SN, ‰
k Ç. y3" 2017!2018 c¥‰Œp“ýK, •HÖöJø, ýKJøŒue‡:
[email protected],
®o: o Ï®o: ŽŽ "Ø:
º
xؑa-.
ýK®o3 x‡&ú¯ÒÄu:
ŠO
Öö, XJ\U•ù
ýK®o, @Òr\k
EX ®o?ÈÑ5, •¤©•‰•ï k†, •žÖö1µ• .
, Óž
LAT
x•é\
ýKux‰ Áz
xe‡
[email protected], ·¬ÏL
La-! ,
duY²k•, ýK®o?ÈJ•
(é–ýK: 1. ýK, ¿Ø@o-‡, ‰
¡ESâ´›‘ƒ
. @@m©“ïÄ”ýK
¦
ES¡¡z! ¤¢
¡ES,
• ´‡ÀJ˜ ·ÜgC ë•Ö, wnoH! ƒÕnU‹~, üUè . 2. ýKwC›c Òv , , 3. vk‰Y <m%
ýK
•Ø˜½´€¯, Ï•ùŒ±½¦·‚•
ýK´-y·‚ØäÆS
¯
Äå! •ï´þ, vkŸo'ÏLgCãå
‡rN ´: ES‡±Ö•Ì,
!
4. ïýK‰Y´š~زœ
g•Ñ5˜‡JK•4
ýK•9. ØU " ˜!
ÀJ! Ï•rýKÑtÃ
•¬‰@oA‡K. XJš‡ïýK‰Y, 5. ؇•w˜‡Æ
¡/ES!
ÒvkES
xïƇ3›˜±
Äå
, ¤±@@ïýK‰Y
<
.
ýK, O Æ •ww. Ï•õ„K’½v€?!
xMŠ: †Ù
~~, ØXò
(
. û½
, §7,¬‰\£ , $–´\¿ŽØ 1. kOy´ÆSÄå
•ï, Ò‡&¦
, ‡›½˜‡·ÜgC
¢, Ò´`‡lÄ: ‘
3. j±
¢/j±
.. sA‡
;%‰˜‡¯
¯U!
Oy. Ž ? @Òk ¤²U Oy, ²U 2.
å, kOy
Oy(ØUõ•ØU
), ÃØ
ºe…, 7L‡
¤
U
!
m©Æ, =¦{ü, •‡@@ýýÃ
˜H! ƒÕúpÃ$.
.Ò´±ƒ±ð, P4: 1zpöŒÊ›!
2w: xêÆ©Û†p Œ‡êÆ©Û6†5
“ê•ï9
‘§Œ±×£ýKmþ
‘è'5
x‡&ú¯Ò, ?1
¶. 5u“
®ŒÆ‡p “ê6Àª‘Ñkí! 2018 c 4
2
16 F
8¹ 1 ¥I‰ÆEâŒÆ 2009 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ
4
2 ¥I‰ÆEâŒÆ 2010 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ
5
3 ¥I‰ÆEâŒÆ 2011 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ
7
4 ¥I‰ÆEâŒÆ 2012 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ
9
5 ¥I‰ÆEâŒÆ 2013 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ
11
6 ¥I‰ÆEâŒÆ 2014 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ
12
7 ¥I‰ÆEâŒÆ 2015 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ
13
8 ¥I‰ÆEâŒÆ 2016 cïÄ)\Æ•ÁÁK‚5“ê†)ÛAÛ
14
9 ¥I‰ÆEâŒÆ 2009 cïÄ)\Æ•ÁÁKêÆ©Û
15
10 ¥I‰ÆEâŒÆ 2010 cïÄ)\Æ•ÁÁKêÆ©Û
16
11 ¥I‰ÆEâŒÆ 2011 cïÄ)\Æ•ÁÁKêÆ©Û
17
12 ¥I‰ÆEâŒÆ 2012 cïÄ)\Æ•ÁÁKêÆ©Û
19
13 ¥I‰ÆEâŒÆ 2013 cïÄ)\Æ•ÁÁKêÆ©Û
21
14 ¥I‰ÆEâŒÆ 2014 cïÄ)\Æ•ÁÁKêÆ©Û
23
15 ¥I‰ÆEâŒÆ 2015 cïÄ)\Æ•ÁÁKêÆ©Û
25
16 ¥I‰ÆEâŒÆ 2016 cïÄ)\Æ•ÁÁKêÆ©Û
26
17 ¥I‰ÆEâŒÆ 2017 cïÄ)\Æ•ÁÁKêÆ©Û
27
18 ¥I‰ÆEâŒÆ 2018 cïÄ)\Æ•ÁÁKêÆ©Û
29
3
¥I‰ÆEâŒÆ 2009 cïÄ)\Æ•ÁÁK‚5“ê†)Û
1.
AÛ o ‡&ú¯Ò: sxkyliyang
0 . . ˜. W˜: A = . a2n
··· .. . ···
a1 .. . , a2k = 0, a2k−1 = 1(k = 1, 2, · · · , n), ¦ A 0
Jordan IO..
. †‚ l1 , l2 : 1. y²: ü†‚É¡; 2. ¦ü†‚ úR‚. n. •þ α1 , α2 ‚5Ã', α3 , α4 ‚5Ã', … α1 o. A Ú B ´ü‡ØÓ Ê. α1 , · · · , αn ´ V 8. 3
•
A
(?, ?, ?), ¦Ý
u α3 , α4 , α2
u α3 , α4 , y²: ùo‡•þ‚5Ã'.
• , ÷v A3 = B 3 , AB 2 = B 2 A, ¯ A2 + B 2 ´ÄŒ_, `²nd. Ä, é?¿ c1 , · · · , cn , •3…•˜ •3•þ α, ¦
(α, αi ) = ci .
A Š©O• λ1 = λ2 = 9, λ3 = −9 Ú λ1 † λ2 ©OéA A A ±9¦ A é z
Ý
•þ• α1 = (1, 0, −1), α2 =
P.
Ô. A ´E• , ‚5C† T : X → AX + XA, y²: XJ A Œé z, @o T •Œ±é l. A ´E• , ½Â eA =
+∞ X Ak k=0
k!
, y²: det(eA ) = etr(A) .
4
z.
2.
¥I‰ÆEâŒÆ 2010 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang
˜. W˜K(z˜ 5 ©, 1.
60 ©)
g-‚ x2 − 4xy + y 2 + 10x − 10y + 21 = 0
a.´
, ÏL=¶
KÙ
‘
=
Ý´
(•I‡W ˜‡ Ý=Œ). 2. ±-‚ y = x 2 z = 2 •O‚,
:•º:
I¡•§•
.
3. ± xOy ²¡þ -‚ f (x, y) = 0 7 x ¶^=¤ 0, dd 4.
-¡a.´
•þ, K•þ| α1 + α2 , α2 + α3 , α3 + α4 , α4 + α1
.
5. 3 3 ‘¢•þ˜m R3 ¥,
α1 = (−1, 1, 1)T , α2 = (1, −1, 0)T , α3 = (1, 0, −1)T , β = (−4, 3, 4)T . K β
3Ä {α1 , α2 , α3 } e ‹I´ . a1 + b1 a2 + b1 a1 + b2 a2 + b2 6. n > 2, K det .. .. . .
n > 1, Ý
λ−1 3λ − 1 λ+1
λ2 + 2λ
9. ^ Gram-Schmidt Ä´ 10. ½Â¤k n
2
λ
an + b1
···
an + b2 .. .
0
λ2 − 1
λ
···
···
a1 + bn a2 + bn 0 −1 0 . A= −1 . . .. .
8. λ− Ý
. XJ-‚•§´ x2 −y 2 −1 =
.
α1 , α2 , α3 , α4 ´‚5˜m V ¥ 4 ‡‚5Ã' • u
7.
^=¡ •§´
−1
u
an + bn a0 a1 .. . , K A an−2 an−1
3λ2 − 1 λ2 + 1
.
A
Smith IO.´
z•{ò R3 (IOSÈ)
õ‘ª´
.
.
Ä {(1, 1, 1)T , (−1, 0, −1)T , (−1, 2, 3)T } z¤
IO
. ¢•
¤
.• Q(X) = f (X, X). K Q(X) . ( 10 ©) ¦Xe‚5•§|
é¡V‚5¼ê• f (X, Y ) = tr(X T Y ), X, Y ∈ V,
¢‚5˜m V þ
K.5•ê©O•
.
Ï): x1 + x2 + x3 + x4 + x5 = 1 3x1 + 2x2 + x3 + x4 − 3x5 = −2 x2 + 2x3 + 2x4 + 6x5 = 5 5x + 4x + 3x + 3x − x = 0 1 2 3 4 5
5
g
x−1 y z ˜mþk†‚ l1 : = = Ú l2 : (x, y, z) = (3 + 2t, t, 3t − 3). 3 1 0 √ … π † l1 ål´ 91, ¦ 𠕧.
n. ( 15 ©)
A : U → V •ê• F þ
o. ( 10 ©)
‚5˜m U
²¡ 𠆆‚ l1 , l2 ²1,
V þ‚5N . y²:
dim KerA + dim ImA = dim U.
2
A= 2
Ê. ( 15 ©)
1
−1 2 A
Š
P, ¦
P −1 AP • A
Jordan IO/.
•• 1.
V ´ n ‘m, ( , ) •ÙSÈ, V ∗ •Ùéó˜m. y²:
Ô. ( 10 ©)
(1) éuz‡‰½
l. ( 20 ©)
−1 , ¦• −1
2
8. ( 10 ©) y²: jÝ
(2) N
1
α ∈ V, N
fα : V → R, β 7→ (α, β) ´ V ∗ ¥ ˜‡ ƒ.
f : V → V ∗ , α 7→ fα ´ n ‘‚5˜m V
V∗
Ó N
.
ê• F þk•‘˜m V þ‚5C† A Ú B ÷v A B = aBA (a ∈ F, a 6= 1), … A ´Œ_‚5
C†, y²: (1) B •˜"Ý (=•3 (2) A Ú B k˜‡ú
ê n, B n = 0).
A •þ.
6
3.
¥I‰ÆEâŒÆ 2011 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang
˜. W˜K(z K 5 ©,
50 ©)
1. ü‡²¡ z = x + 2y Ú z = −2x − y 2. : (0, 2, 1)
²¡ 2x − 3y + 6z = 1 2
g-¡ xy + z = 1 −1 0 0 1 = 4. 0 1 1 1 1 1 3.
V ´ d A1 =
5.
dim V =
7. ®•¢•
1
−1
, A2 =
1
1
−2
! , A3 =
3
1
1
−3
! )¤
R2×2
f ˜ m, K
•þ α1 , α2 , α3 , α4 ‚5Ã', K•þ| {α1 + α2 , α2 + α3 , α3 + α4 , α4 + α1 }
2
0
0
a2
A= 1
1
0 †B = 0 1 0
1
0 ƒq, K a = 0
0
0
.
λ2 λ4
Ð Ïf|´
.
•þ α1 = (1, 0, 1, 0), α2 = (0, −1, 1, −1), α3 = (1, 1, 1, 1) Š Gram-Schmidt β1 , β2 , β3 , K β3 =
zÚü
. 2
g. Q(x, y, z) = ax + y 2 + z 2 + xy + yz + zx
100 ©, ž‰Ñ•[
11. ( 15 ©)
2
a
λ
9. é R ¥
. )‰K(
!
0
1
10. ®•¢
.
0
1
z,
.
.
1
1
λ
u
.
4
.
.
• u
1 8. 1 1
u
ål
-¡a.´
1
6. ®•¢‚5˜m V ¥
Y
½, K¢ê a
Š‰Œ´
.
OŽÚy²L§)
: A(1, 1, −1), B(−1, 1, 1), C(1, 1, 1), ¦ 4ABC
•§.
12. ( 15 ©) ¦‚5•§| x1 + x2 + x3 + x4 + x5 = 1 3x1 + 2x2 + x3 + x4 − 3x5 = −2 x2 + 2x3 + 2x4 + 6x5 = 5 5x + 4x + 3x + 3x − x = 0 1 2 3 4 5 Ï). 13. ( 15 ©) A
Š
n
E•
A
A
Š
N• λ1 , · · · , λn , f (x) ´?¿˜‡EXêõ‘ª. ¦y: f (A)
N• f (λ1 ), · · · , f (λn ).
(α1 , α1 )
(α1 , α2 )
···
(α1 , αn )
(α2 , α1 ) 14. ( 15 ©) α1 , · · · , αn ´îª˜m V ¥?¿ n ‡•þ, n > 1, G = .. . (αn , α1 ) Ù¥ (αi , αj ) ´ V SÈ.
(α2 , α2 ) .. .
···
(α2 , αn ) .. .
(αn , α2 ) · · ·
,
(αn , αn )
¦y: G
½ ¿©7‡^‡´ α1 , · · · , αn ‚5Ã'. 7
15. ( 20 ©)
A ´Ã•‘‚5˜m V
‚5C†, B ´ A 3 ImA þ •›C†. ¦y: V = ImA ⊕KerA
¿©7‡^‡´ B Œ_. 16. ( 20 ©) ®• R2 N
¤ý
‚5C† A r (1, 0) N
(0, 1), r (0, 1) N
E. ¦:
(1) E
•§;
(2) E
•¶¤3†‚
(3) E
¡È.
•§;
8
(2, 1), ¿…r
C : x2 + y 2 = 1
4.
¥I‰ÆEâŒÆ 2012 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang
˜. W˜K(z˜ 5 ©,
50 ©)
1. 3 R3 ¥, †‚ x = y = z †²¡ z = x − y 3
2. 3 R ¥, •§ xy − yz + zx = 1 ¤L« 3. 3 R4 ¥,
n: A, B, C
Y
{uŠ u
g-¡a.•
.
.
‹I©O• A(1, 0, 1, 0), B(0, 1, 0, 1), C(1, 1, 1, 1), K 4ABC
¡È
u
. 4. ÷v f (−1) = 0, f (1) = 4, f (2) = 3, f (3) = 16
gê•
˜
õ‘ª f (x) =
.
5. ¦‚5•§| a2 x1 + x2 + x3 = 1 x1 + ax2 + x3 = a x + x + x = a2 1
k) ¢ê a
6. ®•¢•
7. ®•E•
A
A
Š‰Œ´
Š‘Ý
A •
.
2
3
2
1
1
1
1 A∗ = 1 1
1
0
0
1
0
0
0 , K A = 0 1
λI − A
.
Ð Ïf|•
{λ, λ + 1, λ2 , λ2 , (λ − 1)2 , (λ − 1)3 }, KA
• õ‘ª dA (λ) =
, rank(A) =
n > 2, K¢ g. Q(x1 , · · · , xn ) =
8.
n X
x2i −
i=1
. )‰K(
100 ©, I‰Ñ•[
, tr(A) = . !2 n X xi 5‰.•
.
i=1
OŽÚy²L§)
9. ( 15 ©) ¦ R3 ¥†‚ x − 1 = y − 2 = z − 3 † x = 2y = 3z 10. ( 15 ©) ®• W1 , W2 ´ê• F þ n ‘‚5˜m V
úR‚•§.
ü‡f˜m. ¦y:
dim(W1 ∩ W2 ) + dim(W1 + W2 ) = dim W1 + dim W2 . 11. ( 20 ©)
A ´ê• F þ n ‘‚5˜m V
‚5C†. ®• A
A õ‘ª ϕA (λ) = f (λ) · g(λ), Ù
¥ f (λ) † g(λ) ´ê• F þ ü‡pƒ õ‘ª. ¦y: (1) Imf (A ) = Kerg(A ); (2) V = Imf (A ) ⊕ Img(A ). 12. ( 15 ©)
Q(x) ´ n
¦y: V ´ Rn 13. ( 20 ©)
R
2×2
¢
g., V = {x ∈ Rn |Q(x) = 0}.
f˜m ⇔ Q(x) ´Œ ½½ŒK½ . þ ‚5C† A (X) = AX − XA, Ù¥ A =
(1) ¦y: f (X, Y ) = tr(X T AY ) ´ R2×2 þ SÈ; 9
1
1
1
2
! .
(2) ¦ ImA 3 f e ˜|IO 14. ( 15 ©)
n > 2, ¦Xe n
¢•
Ä. Jordan IO/.
A = (aij )n×n
O
A= 1 1
1 ..
.
..
.
..
1 .
,
O
= 1, aij = 0,
10
i + j ∈ {n, n + 1}; i+j ∈ / {n, n + 1}.
5.
¥I‰ÆEâŒÆ 2013 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang
˜. W˜K(z˜ 6 ©,
60 ©. ‰YIz{)
1. ü†‚ 1 − x = 2y = 3z † x = y + 2 = 2z + 4 ¢ê a, b, 1 1 3. ¢• 0 0 2.
c ÷v 1
0
1
0
0
1
0
0
1 1 1
Š‘• •
¢Xêõ‘ª f (x)
N3õ‘ª
Ä 1, x − 1, (x − 1) , (x − 1)
A : f (x) 7→ xf (x) 3 1, 1 1 1 1 1 λ 5. õ‘ªÝ 1 λ 1 λ 1 1 0
3
2
1, x, x , x
x − 1, (x − 1) , (x − 1) e Ý λ 1 Ð Ïf|• . 1 1
6. ¢ g. Q(x1 , x2 , x3 , x4 ) = x1 x2 + x1 x3 + x1 x4 + x2 x3 . )‰K(
90 ©. I
Ñ•[
•
3
LÞÝ ,A
5‰.•
¤
•
¢ê•þ .V þ
• õ‘ª•
‚5
‚5C† .
.
)‰L§)
7. ( 15 ©) ¦ x ¶7†‚ x = y = z − 1 ^=¤ ^=-¡ 8. ( 15 ©)
.
\{Úê¦$Že 2
3
.
Ô¡.
, Jordan IO/•
2
˜m. l V
, ål•
2
ž, -¡ z = ax + bxy + cy ´ý
0
V ´gê 6 3
4.
Y •
2
˜„•§.
A ´ê• F þ k•‘‚5˜m V þ ‚5C†, ¦y: dim(ImA ∩ KerA ) = rankA − rankA 2 .
9. ( 20 ©) y²: Cayley-Hamilton ½n: ê• F þ ?¿• 10. ( 20 ©)
A, B ´ n
A † B Ãú 11. ( 20 ©) Ú f2 (x)
E•
, Cn×n þ
A
A õ‘ªÑ´ A
"zõ‘ª.
‚5C† A : X 7→ AX − XB. ¦y: A Œ_
¿‡^‡´
A Š.
A ´ê• F þ
‚5˜m V þ
‚5C†, f1 (x) Ú f2 (x) ´ F þ
•ŒúϪ, h(x) ´ f1 (x) Ú f2 (x)
¿‡^‡´ g(A ) Œ_.
11
• ú
õ‘ª, g(x) ´ f1 (x)
ª. ¦y: Kerh(A ) = Kerf1 (A ) ⊕ Kerf2 (A )
6.
¥I‰ÆEâŒÆ 2014 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang
˜. W˜K(z˜ 6 ©,
60 ©. Iz{‰Y)
1.
: †‚ x + 1 = y + 2 = z + 3
2.
: P (1, 2, 3) † :'u²¡ π é¡, K π x2 + xy + y 2 = 1
3. ý
ål•
l%Ç•
. •§•
.
.
f (x) = x2 − 2ax + 2 Ø g(x) = x4 + 3x2 + ax + 2, K~ê a = . 0 1 0 1 −1 0 1 0 −1 A= , A Jordan IO/• 0 −1 0 1 , K A = −1 0 −1 0
4.
5.
V ´¢ê•þ
6.
••
j 6 2014} •
7.
¢
. )‰K(
•þ| {α1 , α2 , · · · , α2014 } ‚5Ã', K•þ| {αi + αj |1 6 i <
.
õ‘ª dA (x) = x3 (x + 1)3 , K B = A2 • õ‘ª dB (x) = x − x2 0 0 Smith IO/´ . 0 x + x2 0 2 0 0 1−x •
A
8. õ‘ªÝ
9.
‚5˜m, V ¥
g. Q(x, y, z) = ax2 + y 2 + z 2 + axy − xz 90 ©. I
1. ( 15 ©)
.
Ñ•[
Rn×n þ
½, K~ê a
.
Š‰Œ´
.
)‰L§)
‚5C† A (X) = AXAT , Ù¥ A ´ n
¢•
, rank(A) = r, ¦ ImA
‘ê
9Ù˜|Ä. A ´‚5˜m V þ
2. ( 15 ©)
‚5C†. ¦y: •3 V
f˜m W † ImA Ó
, ¿… V =
W ⊕ KerA . 3. ( 20 ©)
A ´ê• F þ
n
•
, •þ αi ÷v (λi I − A)n αi = 0, i = 1, 2. ¦y: e λ1 6= λ2 , K
F [A](α1 + α2 ) = F [A]α1 ⊕ F [A]α2 . (5: F [A]α = {f (A)α|f (x) ∈ F [x]}.) 4. ( 20 ©) ®•îª˜m V þ
š"‚5C† A
±•þ
Y
ØC. ¦y: •3
¢ê λ ¦
λA ´
C†. 5. ( 20 ©) é
E•
‚ ƒÑ´
0
1
i
A= i 0 1 , i ´Jêü 1 i 0 ¢ê.
12
. ¦j•
P ¦
P A ´þn
•
¿… P A
7.
¥I‰ÆEâŒÆ 2015 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang
˜. W˜K(z˜ 6 ©,
60 ©. Iz{‰Y)
1. : (1, 0, 1) 'u†‚ 2x − 1 = y − 1 = 2z − 1
é¡:• . y z x−1 2. †‚ l L: (3, 7, −8), ¿…††‚ l1 : x = = − ±9†‚ l2 : = y + 2 = z − 3 þk :. K 2 3 2 l † l1 :• , l † l2 :• .
g. x1 x2 − 3x2 x3 + x1 x3 .5•ê• . ! √ !9 −In 2In 3 1 √ , 1 ª det = 4. Ý = 3In 4In − 3 1 3.
, Ù¥ In L« n
5. 3‚5˜m M3 (R) ¥($Ž•Ý \{Úê¦), •Ä‚5f˜m 1 1 1 1 2 = V = A ∈ M3 (R) A 0 1 1 0 1 0 0 0 0 1 K‘ê dim V = A, B, C • n
Ý
1 1 1 −1 7. •ÄÝ A = 1 1 1 −1 {fª, • A •• . )‰K(
90 ©. I
1. ( 15 ©)
Ñ•[
A •1÷•
Im • m
ü
2. ( 15 ©)
, In L« n
1 −1 −1 1 .
ü Ý , KÝ
In
A
C
0 0
In
B In
0
_Ý •
.
1
1 , K A11 − 2A21 + 3A31 − 4A41 = −1 −1
, Ù¥ Aij L«ƒA
“ê
)‰L§) m×n Ý
, m < n. Áy²: •3 n
Ý , 0 • m × (n − m) "Ý
P3 •dgê؇L 3
Œ_•
Q¦
A = (Im , 0)Q, Ù¥
.
EXêõ‘ª|¤ ‚5˜m. •ÄÙþ ‚5C† A=x
Á¦ A
A , 1 1 2
.
6.
ü Ý .
d : P3 → P3 . dx
4 õ‘ª.
3. ( 20 ©) •Ä1•þ˜m R4 ¥•þ| S = {a1 = (1, −1, 2, 4), a2 = (0, 3, 1, 2), a3 = (1, −1, 2, 0), a4 = (2, 1, 5, 10), a5 = (3, 0, 7, 14)}. Á¦•þ| S
¤k4Œ‚5Ã'|. 1 0 2 0 0 0 0 1 . Á¦ 4. ( 20 ©) •ÄÝ A = • P ¦ P −1 AP •é 2 0 1 0 0 1 0 0 ! 9 7 1 , p0 , q0 • ¢ê, ÷v p0 +q0 = 1. éu n > 1, 5. ( 20 ©) A = 10 1 3 Áy²: ê
{pn }n>0
4••3, ¿¦Ñ4•Š.
13
.
pn qn
! = An
p0 q0
! .
8.
¥I‰ÆEâŒÆ 2016 cïÄ)\Æ•ÁÁK‚5“ê†)Û AÛ o ‡&ú¯Ò: sxkyliyang
˜. W˜K(z˜ 6 ©,
60 ©, Iz{‰Y)
1. ²L†‚ x = y = 2 − z …†²¡ x + 2y + 3z = 5 R†
²¡•§´
.
2. ‰½˜m† ‹IX¥: A(1, 0, 1), B(0, 1, −1), C(2, 1, 2) Ú D(5, 4, 1). Ko¡N ABCD :D
²¡ ABC
ål•
g. (x1 − x2 )2 + (x2 − x3 )2 + (x3 − x4 )2 + (x4 − x5 )2 !15 ! 1 −1 0 2In 4. Ý = , 1 ª det = 1 1 3In 0
.5•ê•
.
, Ù¥ In L« n
6. d•þ (0, 1, 4, 14), (1, 2, 3, 4), (1, 1, 0, −5), (3, 2, 1, −4) ±9 (2, 1, 1, 1) )¤ R 0 λ2 − λ 0 2 . Smith IO.• 7. λ− Ý 0 0 λ +λ 8. e 1 ••
. ‰K(
0 1 0 0
0
BA
A
2. ( 15 ©)
4
Ý . .
f˜m‘ê•
.
λ3 − λ
0
0
−1
0
0
1
0
0
1
2 −3 a
90 ©, I Ñ•[
1. ( 15 ©)
ü
A = (β1 , β2 , β3 ) ±9 B = (2β3 , β2 , −β1 ). e detA = 2, K detB =
0
,
.
3.
5. •Ä ©¬•
NÈ•
A
Š, K a =
.
)‰L§)
A • m × n Ý , B • n × m Ý , a •š"Eê. Áy²: a • AB
A
Š
…=
a•
Š. e a = 0, T(Ø„¤áí? žØy½Þ~`². n
•
A Ú B ÷v detA = −detB. Áy²: det(A + B) = 0.
3. ( 20 ©) •Ä 2 × 2 ¢•
N M2 (R), éu?‰ ü‡ 2
•
A, B, ·‚½Â hA, Bi = tr(AB t ). ù
p tr L«,, t L«Ý =˜. (1) Áy²: h−, −i ´ M2 (R) þ ˜‡SÈ. ( ! 1 0 (2) 3TSÈe, ÁOŽ•þ| , 0 1 IO z.
1
1
0
0
! ,
0
0
1
1
! ,
1
0
0
−1
!) Gram-Schmidt
ëY¢¼ê|¤ ¢‚5˜m V, n > 1, W • {1, x, x2 , · · · , xn } )¤ d f˜m, •Ä‚5C† A = (x + 1) : W → W. Áy²: dim W = n, … A Œé z, ¿¦Ñ A ¤k dx A •þ. A2 A3 5. ( 20 ©) e •g,~ê. éu n E• A, ·‚½Â eA = In + A + + + · · · . Áy²µ 2! 3! (1) • eA ½ÂÜn; 4. ( 20 ©) •Ä [0, 1] «mþ
(2) det(eA ) = etr(A) .
14
9.
¥I‰ÆEâŒÆ 2009 cïÄ)\Æ•ÁÁKêÆ©Û o ‡&ú¯Ò: sxkyliyang
1.
ä. (1)
∞ X (1 + 2i)n ýéÂñ. 3n − 2n n=0
(2) F ˜—Âñ ¿‡^‡´ f r Cauchy
N¤ Cauchy
.
2. W˜. (1) f = 1 − x 3 x − 1 ?Ðm
?ê, ¯ÙÂñ:8´Ÿo.
(2) sin(x2 ) = x k ‡Š. 1 1 1 1 1 1 1 1 (3) 1 − − + − − + · · · + − − + ··· 2 4 3 6 8 2n − 1 4n − 2 4n
Ú´
.
3. f : [0, 1] → R, üN4O… f ([0, 1]) ´48, y²: f 3 [0, 1] þëY. Z 1 4. f 3 [0, 1] þëY, … f (x)xn dx = 0, n = 0, 1, 2, · · · , y²: f ≡ 0. 0
5. ´Ä•3
¼ê f, ¦
df ÷vXe ª: xdy − ydx . df = p x2 + y 2
6. f : N → N, … f −1 (N) ´k•8, lim xn •3, y²: lim xf (n) •3. n→∞
3
n→∞
2 3
7. S = {(x, y, z) ∈ R |xy z = 1} (1) y²: S 3 R3 (½˜ÜÛª -¡, ¿¦Ñ˜‡3: (1, 1, 1) NC ëꕧ. (2) S ´ÄëÏ, ´Ä;—? (3) : q ∈ S, |q| ´ q
: ål, : p ÷v |p| = inf |q|, ¦ p |¤ 8Ü. q∈S
8. y²ð ª: π
+∞ X
e2π|n| =
n=−∞
9.
Z Γ(s) = Z
1 . 2+1 n n=−∞
+∞
xs−1 e−x dx, S = {(x, y, z)|x2 + y 2 + z 2 = 1},
0
^ Γ(s) L«1˜.È©
+∞ X
(x2 + y 2 )a dσ, Ù¥ a > −1.
s
15
¥I‰ÆEâŒÆ 2010 cïÄ)\Æ•ÁÁKêÆ©Û
10.
o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©)
¼ê f (x) : [0, +∞) → [0, +∞) ´˜—ëY
, α ∈ (0, 1]. ¦y: ¼ê g(x) = f α (x) •3 [0, +∞)
þ˜—ëY. f (x, y) 3 R2 \{(0, 0)} þŒ‡, 3 (0, 0) ?ëY, …
2. ( 15 ©)
lim (x,y)→(0,0)
∂f (x, y) = 0, ∂x
lim (x,y)→(0,0)
∂f (x, y) = 0. ∂y
¦y: f (x, y) 3 (0, 0) ?Œ‡. √ xn−1 3 3. ( 15 ©) x0 ∈ 1, , x1 = x20 , xn+1 = xn + , n = 1, 2, · · · . ¦y: ê 2 2 4. ( 15 ©)
f (x) 3 (−∞, +∞) þkëY Z
{xn } Âñ, ¿¦Ù4•.
¼ê, f (0) = 0, …-‚È© (ex + f (x))ydx + f (x)dy
C
†´»Ã'. ¦ (1,1)
Z
(ex + f (x))ydx + f (x)dy.
(0,0)
5. ( 15 ©)
½Â
α > 1. ¦y: ±e¹ëCþ x
áȩ Z +∞ arctan(tx) dt f (x) = tα 1
(0, +∞) þ ˜‡Œ‡¼ê, …÷v xf 0 (x) − (α − 1)f (x) + arctan x = 0.
6. ( 15 ©)
a, b, c Ñ´ ê. OŽ-¡È© ZZ x3 dydz + y 3 dzdx + z 3 dxdy, S 2
Ù¥ S ´þŒý¥¡ 7. ( 15 ©)
2
2
x y z + 2 + 2 = 1, z > 0, ••Šþ. a2 b c
f (x) ´½Â3¢¶þ± 2π •±Ï
Û¼ê, q f (x) këY
¼ê…÷v f 0 (x) = f
Á¦ f (x). ∞ X
8. ( 15 ©)
an ´˜‡Âñ
‘?ê. ¦y:
n=1
9. ( 15 ©)
¼ê f (x) 3 [0, +∞) þ
∞ X
1 1− n
an
•Âñ.
n=1
Œ
, f (0) > 0, f 0 (0) > 0, …÷v f (x) 6 f 00 (x). ¦y: f (x) > f (0) + f 0 (0)x.
10. ( 15 ©)
{an } Ú {bn } Ñ´ ê
bn , ÷v lim =09 n→∞ n an lim bn − 1 = λ > 0. n→∞ an+1
¦y: (1)
lim an = 0;
n→∞
(2) ?ê
∞ X
an Âñ.
n=1
16
π 2
−x .
¥I‰ÆEâŒÆ 2011 cïÄ)\Æ•ÁÁKêÆ©Û
11.
o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©) OŽ. (1)
lim x
1+
x→+∞
Z (2)
π 2
1 x
x
−e ;
sin7x dx.
0
2. ( 15 ©) £‰e ¯K, Þ~`²½öy²\ (Ø. (1) ´Ä•3 R þ??ØëY ¼ê, § ýéŠ%´??ëY ¼ê? f, g ´ R þ
(2)
ëY¼ê, XJ f (x) = g(x) é¤kknê x ¤á, ´ÄŒ±äó f (x) = g(x) 3 R þ
¤á? (3) á«mþ ëY¼ê´ÄU^õ‘ª˜—%C? 3. ( 15 ©)
a, b, c, d ´ 4 ‡Ø u 1
ê, ÷v abcd = 1, ¯:
a2010 + b2010 + c2010 + d2010 Ú a2011 + b2011 + c2011 + d2011 =‡êŒ? •Ÿo? 4. ( 15 ©)
f : [a, b] → [a, b].
(1) XJ f ´ [a, b] þ ëY¼ê, y²: •3 ξ ∈ [a, b] ¦
f (ξ) = ξ;
(2) XJ f ´ [a, b] þ
f (ξ) = ξ.
4O¼ê, y²: •3 ξ ∈ [a, b] ¦
5. ( 20 ©) (1) r±Ï• 2π
¼ê f (x) = x2 − π 2 , x ∈ [−π, π]
Ðm• Fourier ?ê. (2) |^þ¡ ?ê, OŽe ?ê Ú ∞ ∞ ∞ X X 1 X 1 n−1 1 , (−1) , . 2 2 4 n n n n=1 n=1 n=1
(3) ¦?ê
∞ X
(−1)n
n=1
cos nx n2
Ú.
6. ( 15 ©) y²: ¹ëCþÈ© Z
+∞
F (u) = 0
3 (0, +∞) þؘ—ëY, 7. ( 15 ©)
sin(ux2 ) dx x
3 (0, +∞) þëY.
{xn } ´˜‡šK ê
, ÷v xn+1 6 xn +
1 , n = 1, 2, · · · , n2
y²: {xn } Âñ.
17
8. ( 15 ©) e
∞ X
an = A, y²:
n=1
9. ( 15 ©)
f ´l«m [0, 1] N
∞ X a1 + 2a2 + · · · + nan = A. n(n + 1) n=1
[0, 1]
¼ê, Ùã” {(x, f (x)) : x ∈ [0, 1]} ´ü
4f8. y²: f ´ëY¼ê. 10. ( 10 ©)
D ´µ41w-‚ L Œ¤ «•, f (x, y) 3 D þk a
∂2f ∂2f + b = 0, ∂x2 ∂y 2
Ù¥ a, b > 0. e f 3 L þ u~ê C, y²: f 3 D þð u C.
18
ëY
ê, …
•/ [0, 1] × [0, 1]
12.
¥I‰ÆEâŒÆ 2012 cïÄ)\Æ•ÁÁKêÆ©Û o ‡&ú¯Ò: sxkyliyang
1. ( 15 ©) 3e¡n‡¯K¥, XJ‰Y´’½ , žÞуA (1) ´Ä•3ü‡uÑ
ê , §‚ Ú´˜‡Âñê ?
(2) ´Ä•3 [a, b] þØð (3) ´Ä•3ù
ê
u0
ëY¼ê, §3 [a, b] ¥ kn:?Ñ
lim
ê
an =0 n
´ lim
n→∞
max{a1 , · · · , an } 6= 0? n
{an } ÷v lim a2n−1 = a, lim a2n = b.
n→∞
y²: lim
n→∞
n→∞
a1 + · · · + an a+b = . n 2
3. ( 15 ©) ¼ê Z
x2
f (x) = x
1 ln t
t−1 32
dt, x ∈ (1, +∞)
3Û? • Š? 4. ( 15 ©)
¼ê f 3 (0, +∞) þŒ‡, … f 0 (x) = O(x), x → +∞. y²: f (x) = O(x2 ), x → +∞.
5. ( 15 ©) (1) r±Ï• 2π
¼ê f (x) =
π−x 2
2 , (0 6 x 6 2π)
Ðm• Fourier ?ê. (2) |^þ¡ ?ê, OŽe
?ê
Ú: ∞ ∞ ∞ X X 1 X 1 n−1 1 , (−1) , . 2 2 4 n n n n=1 n=1 n=1
(3) ¦?ê
∞ X cos nx n2 n=1
Ú.
6. ( 15 ©) (1) OŽ˜?ê
∞ X
0 Š?
{an }, §÷v
n→∞
2. ( 15 ©)
~f; XJ‰Y´Ä½ , ž‰Ñy².
(n2 + 1)3n xn
Ú.
n=0
(2) y²: ?ê ∞ X n=1
α > 2 ž3 (0, +∞) ¥˜—Âñ.
19
xα e−nx
2
z = f (x, y) 3 R2 þkëY
7. ( 15 ©)
ê, …÷v•§ 6
Á(½ a
∂2z ∂2z ∂2z + − 2 = 0. 2 ∂x ∂x∂y ∂y
(1)
Š, ¦ 3C† ξ = x − 2y, η = x + ay (a 6= −2)
e•§ (1)
{z• ∂2z = 0, ∂ξ∂η
¿dd¦
‡©•§ (1)
).
D ´ R3 ¥ k.4«•, f 3 D þëY…k
8. ( 15 ©)
ê. XJ3 D þk
∂f ∂f ∂f + + = f, f |∂D = 0 (∂D PD ∂x ∂y ∂z y²: f 3 D þð
>.).
u 0.
9. ( 15 ©) (1) OŽ ZZZ p a2 − x2 − y 2 − z 2 dxdydz, V 3
Ù¥ V ´ R ¥± :•¥%, a •Œ» ¥. S ´ R3 ¥ØÏL
(2)
:3 S ¤•Œ«•
:
1wµ4-¡, S þ: P ?
ü
ܽSÜü«œ/OŽ-¡È© ZZ x cos α + y cos β + z cos γ 3
S
(ax2 + by 2 + cz 2 ) 2
Ù¥ a, b, c Ñ´ ê. 10. ( 15 ©)
f : (0, +∞) → (0, +∞) ´˜‡üNO\ ¼ê. XJ f (2t) = 1, x→+∞ f (t) lim
y²: é?¿ m > 0 Ñk
{•þ ~n = (cos α, cos β, cos γ). ÁÒ
f (mt) = 1. t→+∞ f (t) lim
20
dσ,
¥I‰ÆEâŒÆ 2013 cïÄ)\Æ•ÁÁKêÆ©Û
13.
o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©) £‰e ¯K, ¿`²’½½Ä½ nd. (1) XJ
∞ X
un (x) 3 (a, b)
?˜4f˜m [α, β] ⊂ (a, b) ¥˜—Âñ, UÄ佧3 (a, b) ¥??Âñ?
n=1
UÄ佧3 (a, b) ¥˜—Âñ? (2) :8 E = {(x, y) ∈ R2 : xy > 0} ´Ø´ R2 ¥«•? ´Ø´ R2 ¥m8? 2. ( 15 ©)
lim an = a.
n→∞
(1) Á^ ε − N Šóy²: lim
n→∞
(2) y²: lim
a1 +
n→∞
a2 2
+ ··· + ln n
a1 + · · · + an = a. n an n
= a.
3. ( 15 ©) OŽÈ© Z +∞ x − sin x (1) dx. x3 Z0Z (2) (3xy 2 − x2 )dxdy. x2 +y 2 61
4. ( 15 ©) y²: Ø
ª 1 2 tan x + sin x > x 3 3
é¤k
π x ∈ 0, ¤á. 2
5. ( 15 ©) 2 xy , f (x, y) = x2 + y 2 0,
(x, y) 6= (0, 0) (x, y) = (0, 0)
y²: (1) f 3 (0, 0) ?ëY; (2) f 3 (0, 0) ?÷?¿••
••
êÑ•3;
(3) f 3 (0, 0) ?ØŒ‡. 6. ( 15 ©) y²: ¼ê f (x) = 7. ( 15 ©) r±Ï• 2π
sin x 3 (0, +∞) ¥˜—ëY. x
¼ê f (x) = x2 , x ∈ [−π, π]
Ðm• Fourier ?ê, ¿OŽe ?ê Ú ∞ ∞ ∞ X 1 X 1 X cos nx , , (−1)n . 2 4 n n n2 n=1 n=1 n=1
8. ( 15 ©)
f ´ [a, b] þ
ŠŒÈ¼ê. y²: •3 c ∈ (a, b) ¦ Z
c
Z f (x)dx =
a
c
b
1 f (x)dx = 2
21
Z
b
f (x)dx. a
9. ( 15 ©)
f ∈ C 1 (R3 ), a, b, c ´š"¢ê. y²: 3 R3 þ¤á 1 ∂f 1 ∂f 1 ∂f = = a ∂x b ∂y c ∂z
¿©7‡^‡´•3 g ∈ C 1 (R) ¦ f (x, y, z) = g(ax + by + cz). 10. ( 15 ©)
a > 0, ac − b2 > 0, α > Z
+∞
−∞
1 . y²: 2 1
(ac − b2 ) 2 −α Γ(α − 12 ) √ dx = π. 2 α (ax + 2bx + c) a1−α Γ(α)
Ù¥ Γ ´ Gamma ¼ê.
22
¥I‰ÆEâŒÆ 2014 cïÄ)\Æ•ÁÁKêÆ©Û
14.
o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©) £‰e ¯K, Þ~`²½y²\ (Ø. Z +∞ (1) XJ f (x)dx Âñ, UÄäó lim f (x) = 0? x→+∞
0
(2) XJ
∞ X
∞ X
a2n < +∞, UÄäó
n=1
an Ú
n=1
∞ X
(−1)n−1 an – k˜‡Âñ?
n=1
2. ( 15 ©) OŽe 4• Š. 1 2 . (1) lim x − x ln 1 + x→+∞ x cos x − e− (2) lim x→0 sin4 x
x2 2
.
3. ( 15 ©) OŽe È©. Z 1 Z 1 (1) max(x, y)dy dx. 0
Z
0 1
(2) 0
ln x dx, α < 1. xα {an }∞ n=1 ´˜‡šKê
4. ( 15 ©)
, ÷v an+1 6 an +
1 , n = 1, 2, · · · . n2
y²: {an } Âñ. 5. ( 15 ©)
f 3 (0, +∞) þkn
ê, XJ lim f (x) Ú lim f 000 (x) Ñ•3…k•, y²: x→+∞
x→+∞
lim f 0 (x) = lim f 00 (x) = lim f 000 (x) = 0.
x→+∞
6. ( 15 ©)
x→+∞
x→+∞
f, g Ñ´ [a, b] ¥ ëY¼ê, y²: •3 ξ ∈ [a, b], ¦ Z g(ξ)
ξ
Z
a
7. ( 15 ©)
b
f (x)dx = f (ξ)
g(x)dx. ξ
lim an = a ∈ R, y²:
n→∞
(1) ˜?ê
∞ X
an xn
ÂñŒ» R > 1.
n=0
(2)
f (x) =
∞ X
an xn , @o lim (1 − x)f (x) = a. x→1−
n=0
Z (3)
lim (1 − x)
x→1−
8. ( 15 ©)
0
x
f (t) dt = a. 1−t
z = z(x, y) 3 R2 þkëY
ê, …÷v•§ 14
Á(½ λ
∂2z ∂2z ∂2z +5 − 2 = 0. 2 ∂x ∂x∂y ∂y
Š, ¦ 3C† ξ = x + λy, η = x − 2y, (λ 6= 2) 23
(1)
e, •§ z{• ∂2z = 0. ∂ξ∂η ¿dd¦Ñ ‡©•§ (1)
).
9. ( 15 ©) → − F =
1 y x bx cxy a − + , + 2,− 2 y z z y z
Ù¥ a, b, c ´n‡~ê. → − (1) ¯ a, b, c ÛŠž, F •k³|. → − (2) F •k³|ž, ¦Ñ§ ³¼ê. 10. ( 15 ©)
u(x, y) 3 R2 þkëY
ê, …ð u
Š. y²: u ÷v•§
∂2u ∂u ∂u = ∂x∂y ∂x ∂y
¿©7‡^‡• u(x, y) = f (x)g(y).
24
¥I‰ÆEâŒÆ 2015 cïÄ)\Æ•ÁÁKêÆ©Û
15.
o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©) ¦4• lim
x→+∞
2. ( 15 ©) ¦ 3. ( 15 ©)
¼ê F (x, y) = √ a, b ´
1 sin x
x
Z
| sin t|dt. 0
x y 34«• x > 0, y > 0, x + y 6 1 þ •ŒŠ. +p 2 1+x 1 + y2
ê. OŽ -È© ZZ
(x2 + y 2 )dxdy, D
Ù¥ D ´ý 4. ( 15 ©)
y2 x2 + 6 1. a2 b2
R > 0. OŽ-¡È© ZZ S
1 3 xy + x dydz + yz 2 dzdx + R3 dxdy, 3 2
Ù¥ S ´þŒ¥¡ x2 + y 2 + z 2 = R2 ( z > 0) ••Šþ. 5. ( 15 ©) OŽ2ÂÈ© Z 0
6. ( 15 ©)
n > 0. ¦yØ
+∞
1 dx ( n > 1). 1 + xn
ª 1 < 2n + 2
7. ( 15 ©)
Z
π 4
tann xdx <
0
1 . 2n
α α ∈ (0, 1), {an } ´ î‚4Oê , … {an+1 − an } k.. ¦4• lim (aα n+1 − an ). n→∞
8. ( 15 ©) ?Ø?ê
∞ X √ √ ( n + 1 − n)α cos n
^‡Âñ5ÚýéÂñ5.
n=1
9. ( 15 ©)
f (x) ´«m [0, 1] þ
ëY¼ê¿÷v 0 6 f (x) 6 x. ¦y: Z
1
Z
2
x f (x)dx > 0
¿¦¦þª¤• 10. ( 15 ©)
2
1
f (x)dx
.
0
ª ¤këY¼ê f (x).
f (x) 3 [a, +∞) þkëY
¼ê, …
lim sup |f (x) + f 0 (x)| 6 M < +∞.
x→+∞
¦y: lim sup |f (x)| 6 M. x→+∞
25
16.
¥I‰ÆEâŒÆ 2016 cïÄ)\Æ•ÁÁKêÆ©Û o ‡&ú¯Ò: sxkyliyang
1. ( 15 ©) ¦4• 1 lim x→+∞ x4 + | sin x| 2. ( 15 ©) ê
Z
x2
0
t3 dt. 1 + t2
{an } ÷v 1 , n > 1. 1 + an
a1 = 3, an+1 = y²: ê
{an } Âñ, ¿¦Ù4•. Z +∞ sin x −xu 3. ( 15 ©) y²: e dx 3 [0, +∞) ˜—Âñ. x 0 4. ( 15 ©) OŽÈ© ZZ
z(x2 + y 2 )3
p 1 − (x2 + y 2 )dS,
S
Ù¥ S ´þŒ¥¡ x2 + y 2 + z 2 = 1, z > 0. 5. ( 15 ©)
¼ê f (x) ± 2π •±Ï, f (x) = 1 − x, x ∈ [−π, π).
¦ f (x)
Fourier ?ê, `²Ù Fourier ?ê´Ä˜—Âñ.
6. ( 15 ©) y²: e¼ê f (x) 7. ( 15 ©)
ê f 0 (x) 3«m (0, 1) Sk., K¼ê f (x) 3«m (0, 1) Sk..
f (x) 3«m [0, 3] þëY, 3 (0, 3) SŒ , …÷v f (0) + f (1) + f (2) = 3, f (3) = 1.
y²: 3«m (0, 3) S•3˜: ξ, ¦ x2 y2 + =1 a2 b2
f 0 (ξ) = 0.
8. ( 15 ©)
S ´dý
ƒ‚† 2 ‡‹I¶Œ¤ «• ¡È, ¦ S
• Š.
9. ( 15 ©)
¼ê f (x) 3«m (0, 1) þ•à¼ê, =?‰ (0, 1) ¥ ü: x1 , x2 , ±9?¿ t ∈ (0, 1) k f ((1 − t)x1 + tx2 ) 6 (1 − t)f (x1 ) + tf (x2 ),
y²: ¼ê f (x) 3«m (0, 1) þëY. 10. ( 15 ©) 00 F (x, y) ∈ C ∞ (R2 ), F (0, 0) = 0, Fx0 (0, 0) = 0, Fy0 (0, 0)Fxx (0, 0) > 0.
y²: d F (x, y) = 0 (½
Û¼ê y = f (x) 3 x = 0 NC÷v f (x) 6 f (0) −
26
00 1 Fxx (0, 0) 2 x . 4 Fy0 (0, 0)
¥I‰ÆEâŒÆ 2017 cïÄ)\Æ•ÁÁKêÆ©Û
17.
o ‡&ú¯Ò: sxkyliyang 1. ( 15 ©) ¦4• R x2 0
lim
x→0
2. ( 15 ©) ¦1
sin tdt . tan x4
.-¡È© ZZ
x3 dydz + y 3 dzdx + (z 3 + 1)dxdy, S
Ù¥, S ´þŒ¥¡ x2 + y 2 + z 2 = 1, ••÷¥¡ {•þ• . 3. ( 15 ©) y²: 2 π
Z
+∞
0
1 − x, sin2 u cos(2ux)du = 0, u2
x ∈ [0, 1] x>1
. 4. ( 15 ©)
α > 0, {an } ´4Oªu á Z ak+1 ak+1 − ak 1 (1) 6 dx. α+1 α+1 x ak+1 ak
(2)
∞ X ak+1 − ak k=1
ak+1 aα k
ê
. ¦y:
Âñ.
f (x, y) ∈ C 1 (R2 ).
5. ( 15 ©)
(1) y²: éu?¿
a, b, c, d ∈ R, Ñ•3 (ξ, η) ∈ R2 , ¦ f (a, b) − f (c, d) = (a − c)
(2) e
∂f ∂f = , … f (x, 0) > 0 é?¿ ∂x ∂y
∂f ∂f (ξ, η) + (b − d) (ξ, η). ∂x ∂y
x ∈ R Ѥá, y²: éu?¿
(x, y) ∈ R2 , Ñk
f (x, y) > 0. 6. ( 15 ©) y²: Z
+∞
sin(x2 )dx
0
^‡Âñ. 7. ( 15 ©)
D ´1wµ4-‚ L ¤Œ «•, ¼ê f (x, y) 3 D þk
ëY
ê, …÷v
∂2f ∂2f + = 0. ∂x2 ∂y 2
(1) ¦y: I −f (x, y) L
∂f ∂f dx + f (x, y) dy > 0. ∂y ∂x
(2) e f 3 L þð•~ê c, ¦y: f 3 D þ•ð•~ê c. 8. ( 15 ©)
f : [0, +∞) → [0, +∞) ´˜—ëY , α ∈ (0, 1]. ¦y: ¼ê g(x) = f α (x) •3 [0, +∞) þ˜—ë
Y. 9. ( 15 ©)
z z x − ,y − = 0. y²: y x ∂z ∂z (xFu + yFv ) xy + z − x −y = 0. ∂x ∂y
F (u, v) ∈ C 1 (R)2 , … F
27
10. ( 15 ©)
«m I = [0, 1], fn (x) † f (x) þ´ I þ ëY¼ê, n, 1, 2, · · · . … fn (x) > fn+1 (x), ∀x ∈ [0, 1].
lim fn (x) = f (x).
n→∞
¦y: (1) éu?¿
ε > 0, I=
∞ [
{x|x ∈ I, fn (x) − f (x) < ε}.
n=1
(2) fn (x) ˜—Âñu f (x).
28
18.
¥I‰ÆEâŒÆ 2018 cïÄ)\Æ•ÁÁKêÆ©Û o ‡&ú¯Ò: sxkyliyang
1. (1) ¦4• π
lim |x|arctan x+ 2 ;
x→−∞
(2) ®• ak • êê
∞ X sin(a x) k , … 6 | tan x|. x ∈ (−1, 1). y²: k2 k=1
ak = o(k 2 ), k → +∞. 2.
Φ(x) •±Ï• 1 (1) ¦ Φ(x)
iù¼ê.
ëY:Úmä:
a.;
(2) OŽÈ© Z
1
Φ(x)dx. 0
− − 3. ®• Ω • R3 ¥ k.•, → n •ü •þ. ¦y: •3± → n •{•þ 4. ®• f (x) •±Ï u 2π 5.
Û¼ê,
²¡²© Ω
x ∈ (0, π) ž, f (x) = −1. Á|^ f
NÈ.
Fourier ?êOŽ
∞ X
1 . (2n − 1)2 n=1
ϕ(x) •k³| F (x, y, z) = (x2 − y, y 2 − x, −z 2 ) e ³¼ê, ¦n-È© ZZZ ϕ(x, y, z)dxdydz, Ω
Ù¥ Ω • x2 + y 2 + z 2 6 1. 6. ®• f ∈ C 2 [0, 1], f (0) = f (1) = 0, … f (x) 3 x0 ? (1) ¦ f (x) 3 x = x0 ?
Lagrange {‘
• Š -1,
Taylor Ðmª;
f 00 (ξ) = 8.
(2) y²: •3 ξ ∈ (0, 1) ¦
7. ®• Dt = {(x, y) ∈ R2 |(x − t)2 + (y − t)2 6 1, y > t}, f (t) =
ZZ
p x2 + y 2 dxdy, OŽ f 0 (0).
Dt 2
00
8. ®• u(x) ∈ C[0, 1], u(x) ∈ C (0, 1), u (x) > 0, - v(x) = u(x) + εx2 , ε > 0. (1) y²: v(x) • (0, 1) þ î‚à¼ê; (2) y²: u(x)
•ŒŠuà:?
.
9. ®• Br = {(x, y) ∈ R2 |x2 + y 2 6 r2 }, B = B1 , u(x, y) ∈ C(B) ∩ C 2 (B), 4u =
∂2u ∂2u + 2 ∂x2 ∂y
4u > 0, ∀(x, y) ∈ B, y²: u(x, y) 3 B þ •ŒŠu>. ∂B þˆ ; Z d 1 (2) 4u = 0, ∀(x, y) ∈ B, y²: u(x, y)dS = 0, ∀r ∈ (0, 1). dr 2πr ∂Br Z 1 (3) y²: u(0) = u(x, y)dS. 2πr ∂Br Z 2−t 10. ®• u(x, t) äk ëY , …÷v utt (x, t) = uxx (x, t), P F (t) = u2t (x, t) + u2x (x, t) dx, y (1)
t
dF (t) ²: 6 0. dt
29