Exercícios De Dinâmica 01.docx

  • Uploaded by: Jorge Dantas Junior
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Exercícios De Dinâmica 01.docx as PDF for free.

More details

  • Words: 1,108
  • Pages: 2
Exercícios de Física Dinâmica: Aplicação Leis de Newton – 01 Profº Jorge Dantas Jr. 1)

Na figura ao lado, os blocos A e B têm massas mA = 6,0 kg e mB = 2,0 kg e, estando apenas encostados entre si, repousam sobre um plano horizontal perfeitamente liso. A partir de um dado instante, exerce-se em A uma força horizontal F, de intensidade igual a 16 N. Desprezando a influência do ar, calcule: a) o módulo da aceleração do conjunto; b) a intensidade das forças que A e B trocam entre si na região de contato.

2)

A figura seguinte representa dois blocos, A (massa 3,0 kg) e B (massa 6,0 kg), interligados por um fio ideal e apoiados em uma mesa horizontal sem atrito: Aplica-se em A uma força paralela à mesa, de intensidade F= 27 N e que acelera o conjunto. Desprezando a influência do ar, calcule: a) o módulo da aceleração do sistema; b) a intensidade da força que traciona o fio.

3)

Os dois blocos indicados na figura encontram-se em contato, apoiados em um plano horizontal sem atrito. Com os blocos em repouso, aplica-se em A uma força constante, paralela ao plano de apoio e de intensidade F. Sabe-se que as massas de A e B valem, respectivamente, 2M e M. Não considerando a influência do ar, determine: a) o módulo da aceleração adquirida pelo sistema; b) a intensidade da força de contato trocada pelos blocos.

4)

No arranjo experimental esquematizado a seguir, os blocos A e B têm massas respectivamente iguais a 4,0 kg e 1,0 kg (desprezam-se os atritos, a influência do ar e a inércia da polia). Considerando o fio que interliga os blocos leve e inextensível e adotando nos cálculos | g | = 10 m/s2, determine: a) o módulo da aceleração dos blocos; b) a intensidade da força de tração estabelecida no fio.

5)

O dispositivo esquematizado na figura é uma Máquina de Atwood. No caso, não há atritos, o fio é inextensível e desprezam-se sua massa e a da polia. Supondo que os blocos A e B tenham massas respectivamente iguais a 3,0 kg e 2,0 kg e que| g | = 10 m/s2, determine: a) o módulo da aceleração dos blocos; b) a intensidade da força de tração estabelecida no fio; c) a intensidade da força de tração estabelecida na haste de sustentação da polia.

6)

Um homem de massa 60 kg acha-se de pé sobre uma balança graduada em newtons. Ele e a balança situam-se dentro da cabine de um elevador que tem, em relação à Terra, uma aceleração vertical de módulo 1,0 m/s2. Adotando | g | = 10 m/s2, calcule: a) a indicação da balança no caso de o elevador estar acelerado para cima; b) a indicação da balança no caso de o elevador estar acelerado para baixo.

7)

No plano inclinado representado ao lado, o bloco encontra-se impedido de se movimentar devido ao calço no qual está apoiado. Os atritos são desprezíveis, a massa do bloco vale 5,0 kg e g = 10 m/s2. a) Copie a figura esquematizando todas as forças que agem no bloco. b) Calcule as intensidades das forças com as quais o bloco comprime o calço e o plano de apoio.

8)

Em determinado parque de diversões, o elevador que despenca verticalmente em queda livre é a grande atração. Rafael, um garoto de massa igual a 70 kg, encara o desafio e, sem se intimidar com os comentários de seus colegas, embarca no brinquedo, que começa a subir a partir do repouso. Durante a ascensão vertical do elevador, são verificadas três etapas: I. movimento uniformemente acelerado com aceleração de módulo 1,0 m/s2; II. movimento uniforme; III. movimento uniformemente retardado com aceleração de módulo 1,0 m/s2. Depois de alguns segundos estacionado no ponto mais alto da torre, de onde Rafael acena triunfante para o grupo de amigos, o elevador é destravado, passando a cair com aceleração praticamente igual à da gravidade (10 m/s2). Pede-se calcular o peso aparente de Rafael: a) nas etapas I, II e III; b) durante a queda livre.

9)

Um garoto de massa igual a 40,0 kg parte do repouso do ponto A do escorregador esquematizado ao lado e desce sem sofrer a ação de atritos ou da resistência do ar. Sabendo-se que no local a aceleração da gravidade tem intensidade 10,0 m/s2, responda: a) Qual o módulo da aceleração adquirida pelo garoto? O valor calculado depende de sua massa? b) Qual o intervalo de tempo gasto pelo garoto no percurso de A até B? c) Com que velocidade ele atinge o ponto B?

10) Na situação esquematizada na figura, desprezam-se os atritos e a influência do ar. As massas de A e B valem, respectivamente, 3,0 kg e 2,0 kg. Sabendo-se que as forças F1 e F2 são paralelas ao plano horizontal de apoio e que |F1| = 40 N e |F2| = 10 N, pode-se afirmar que a intensidade da força que B aplica em A vale: a) 10 N; b) 12 N; c) 18 N; d) 22 N; e) 26 N. 11) (FEI-SP) O bloco da figura, de massa m = 4,0 kg, desloca-se sob a ação de uma força horizontal constante de intensidade F. A mola ideal, ligada ao bloco, tem comprimento natural (isto é, sem deformação) Lo = 14,0 cm e constante elástica K = 160 N/m.

Desprezando-se as forças de atrito e sabendo-se que as velocidades escalares do bloco em A e B são, respectivamente, iguais a 4,0 m/s e 6,0 m/s, qual é, em centímetros, o comprimento da mola durante o movimento? 12) Na montagem experimental abaixo, os blocos A, B e C têm massas mA = 5,0 kg, mB = 3,0 kg e mC = 2,0 kg. Desprezam-se os atritos e a resistência do ar. Os fios e as polias são ideais e adota-se | g | = 10 m/s2. No fio que liga A com B, está intercalada uma mola leve, de constante elástica 3,5 · 103 N/m. Com o sistema em movimento, calcule, em centímetros, a deformação da mola. Gabarito 01) a) 2,0 m/s2; b) 4,0 N 02) a) 3,0 m/s2; b) 18,0 N

03) a) 𝑎 =

𝐹 3𝑀

; b) 𝐹𝐴𝐵 = 𝐹𝐵𝐴 =

04) a) 2,0 m/s2; b) 8,0 N 05) a) 2,0 m/s2; b) 24 N; c) 48 N 06) a) 660 N; b) 540 N 07) b) 30 N e 40 N

𝐹 3

08) a) 770 N, 700 N e 630 N; b) Peso aparente nulo 09) a) 5,0 m/s2 e a aceleração independe da massa; b) 1,0 s; c) 5,0 m/s 10) d 11) 16,5 cm 12) 1,0 cm

Related Documents

De
November 2019 92
De
November 2019 101
De
May 2020 87
De
June 2020 79
De
June 2020 68
De
July 2020 56

More Documents from "Patrick Johnston"

November 2019 0
Mes01.pdf
November 2019 0
November 2019 0
November 2019 0
Requisicao Dta Tg Dsc
June 2020 0
Cobitbsc
April 2020 0