L9 мт101

  • Uploaded by: CliMax
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View L9 мт101 as PDF for free.

More details

  • Words: 1,180
  • Pages: 11
Lek 9 Differen ial toolol

• Ulamjlalyn • Zarim

todorxoïlolt

x¶lbar funk iïn ulamjlalyg olox

• Differen ialqlax • Dawxar • Urwuu

x¶lbar dürmüüd

funk iïn ulamjlal

funk iïn ulamjlal

• Parametrt

dürsäär ögögdsön funk iïn ulamjlal

1

Ulamjlalyn todorxoïlolt ∆S f (t + ∆t) − f (t) = lim v = lim v = lim ∆t→0 ∆t→0 ∆t ∆t→0 ∆t

∆f (x) lim = lim tgϕ = tgα ϕ→α ∆x→0 ∆x buµu

O

∆y tgα = lim ∆x→0 ∆x

y

  uu uu u 1  u uu uu   u u   uu uu   u uu   uuu  u u  u  uuuu u_ _ _ _ _ _ _ _ _ _ u uu    uu   u  u  u j   u\u u u  uu     u / uu  u  u uu  uu 

y = f (x)M

O

ϕ

M

N

α x

x x+∆x 2

X muj däär y = f (x) funk todorxoïlogdson baïg. X -ääs x äg awq x + ∆x ∈ X baïxaar ∆x öörqlölt Xäräw

x

äg däärx funk iïn öörqlöltiïg argumentiïn öörqlölt

∆x → 0

xar´ uulsan xar´ aanaas ug x¶zgaaryg

f ′(x)

ög´ë.

y = f (x)

funk iïn

∆x-d

üeiïn x¶zgaarx todorxoï or²in baïwal

x

äg däärx ulamjlal xämään närlääd

y′

buµu

gäj tämdäglänä.

∆y f (x + ∆x) − f (x) y = lim = lim . ∆x→0 ∆x ∆x→0 ∆x ′

Thr:

y = f (x)

funk n´

x

äg däär differen ialqlagdax zaïl²güï nöx öl n´

ug funk mönxüü äg däärää tasraltgüï baïxad or²ino.

3

Zarim x¶lbar funk iïn ulamjlalyg olox 1).

y = loga x. (a > 0, a 6= 1).



∆y = loga(x + ∆x) − loga x = loga 1 + ∆y loga 1 + = ∆x ∆x

=⇒



∆y ∆x = lim loga 1 + lim ∆x→0 ∆x ∆x→0 x Xärwää

a=e

bol

1  ∆x

∆x x





= loga 1 +

= loga lim

∆x→0

"

1 (ln x)′ = . x

baïna.

4

∆x x

∆x 1+ x

∆x x



1  ∆x 1 1 #x  ∆x x

1 = loga e = x ln a 1 x

2).

y = sin x

x ∈] − ∞, ∞[

=⇒

3).

=⇒

sin ∆x ∆y lim = lim ∆x2 ∆x→0 ∆x ∆x→0 2

y = ax ∀x ∈ R



∆x ∆x cos x + 2 2   ∆x · cos x + = 1 · cos x = cos x 2

∆y = sin(x + ∆x) − sin x = 2 sin =⇒



∆y = ax+∆x − ax = ax(a∆x − 1)

∆y ax(a∆x − 1) lim = lim = ax · ln a =⇒ ∆x→0 ∆x ∆x→0 ∆x

5

(ax)′ = ax · ln a.

Differen ialqlax x¶lbar dürmüüd 1. Togtmol funk iïn ulamjlal tägtäï tän üü baïna. 2. Tögsgölög toony differen ialqlagdax funk üüdiïn algebryn niïlbäriïn

ulamjlal n´ nämägdäxüün tus büriïn ulamjlalyn algebryn niïlbärtäï tän üü baïna 3.

u(x), v(x)

funk üüd n´

X

olonlog däär todorxoïlogdson differen ialqlag-

dax funk üüd bol

(uv)′ = u′v + uv ′ baïna. 4.

u(x), v(x)

X olonlog däär todorxoïlogdson differen ialqlagv(x) 6= 0 bol  u ′ u′v − uv ′ = v v2

funk üüd n´

dax funk üüd bögööd

6

Dawxar funk iïn ulamjlal X

muj däär todorxoïlogdson

y = f [ϕ(x)]

y = f (u), u = ϕ(x) funk üüd y = f [ϕ(x)] funk iïn ulamjlal n´ Xäräw

funk awq üz´e.

n´ differen ialqlagdax funk baïwal

y ′ = (f [ϕ(x)])′ = fϕ′ [ϕ(x)] · ϕ′(x) = yu′ u′x. baïna.

Ji²ää

y = sin x2

y = f (u) = sin u,

funk iïn ulamjlalyg ol.

u = ϕ(x) = x2 ′

yu = cos u, Ändääs









u = 2x

yx = yuux = cos u2x = 2x cos x2 7

Urwuu funk iïn ulamjlal Xaril an nägän utgataï buulgaltyn xuw´d tüüniï urwuu or²in baïdag. ’uud ba urwuu funk üüdiïn xuw´d ulamjlalyn xoorond daraax xolboo or²dog.

y = f (x) n´ X däär differen ialqlagdax x = g(y) gäsän urwuu funk or²in baïwal

Xäräw gadna

x′y

1 = ′ yx

baïna. nöx öliïg xangana.

Ji²ää

y = arctgx

funk iïn ulamjlalyg ol.

Ögögdsön funk iïn urwuu n´

x = tgy

Iïmd ′

xy =

bolno.

1 cos2 y

tul urwuu funk iïn ulamjlal olox dürmäär 8

bögööd

f ′(x) 6= 0

baïxaas



yx =

Ji²ää

:

1 1 1 1 2 = cos y = = = 1 + tg2y tg2(arctgx) 1 + x2 x′y

y = ax

funk iïn ulamjlalyg ol.

y = ax . x′y ⇒

Ji²ää

⇐⇒ x = loga y

1 1 = · loga e = y y ln a

yx′ = (ax)′ =

1 y x = a = ln a ′ xy loga e

y = uv . funk iïn ulamjlalyg ol. u = u(x), v = v(x) n´ differen ialqlagdax funk üüd baïg.   ′ u y ′ = (uv )′x = uv · v ′ · ln u + · v . u Xäräw u = v = x bol y ′ = (xx)′ = xx · (1 + ln x)

9

Parametrt dürsäär ögögdsön funk iïn ulamjlal x = ϕ(t) y = ψ(t)



t0 ≤ t ≤ T.

,

ϕ(t), ψ(t) n´ differen ialqlagdax, t = F (x) gäsän urwuu funk täï baïg. yx′

x′ = ϕ′(t) 6= 0

nöx öliïg xangadag, mön

Tägwäl

ψ ′(t) = ′ . ϕ (t)

xälbärtäï oldlono.

Ji²ää

x = a cos t y = b sin t yx′



0≤t≤π

bol

yx′ =?

ψ ′(t) (b sin t)′ b cos t) b = ′ = = = − ctgt. ϕ (t) (a cos t)′ a(− sin t) a

10

I. Zärgiïn funk . 1. y = xα y ′ = α · xα−1 2. y = x y ′ = 1 √ 1 ′ 3. y = x y = √ 2 x 1 1 4. y = y′ = − 2 x x III. Trigonometriïn funk . 1. y = sin x

y ′ = cos x

2. y = cos x

y ′ = − sin x

3. y = tgx 4. y = ctgx

1 cos2 x 1 ′ y =− 2 sin x

y′ =

II. Iltgägq, logarifm funk . 1. y = ax y ′ = ax · ln a 2. y = ex y ′ = ex 1 ′ 3. y = loga x y = x ln a 1 4. y = ln x y ′ = x IV. Trigonometriïn urwuu funk . 1 ′ 1. y = arcsin x y = √ 1 − x2 1 ′ √ 2. y = arccos x y = − 1 − x2 1 3. y = arctgx y ′ = 1 + x2 1 ′ 4. y = arcctgx y = − 1 + x2

11

Related Documents

Motorola L9
November 2019 12
L9-bm.pdf
May 2020 2
L9.pdf
May 2020 14
Lav-l9
June 2020 13
101
November 2019 57
101
August 2019 81

More Documents from "Anha Riana"

April 2020 7
April 2020 4
April 2020 5
Gazarzaui 1-2
April 2020 7
April 2020 7
Lec4-5
May 2020 7