الهندسة الفضائية => الدرس(((( ...ا

  • Uploaded by: OUSSAMA
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View الهندسة الفضائية => الدرس(((( ...ا as PDF for free.

More details

  • Words: 1,873
  • Pages: 5
‫اﻟﺠﺪاء اﻟﺴﻠﻤﻲ و ﺗﻄﺒﻴﻘﺎﺗﻪ‬ ‫اﻟﺜﺎﻧﻴﺔ ﺳﻠﻚ ﺑﻜﺎﻟﻮرﻳﺎ ﻋﻠﻮم ﺗﺠﺮﻳﺒﻴﺔ‬ ‫‪-I‬اﻟﺠﺪاء اﻟﺴﻠﻤﻲ‬ ‫‪ -1‬ﺗﻌﺮﻳﻒ‬ ‫ﻟﺘﻜﻦ ‪ v‬و ‪ u‬ﻣﺘﺠﻬﺘﻴﻦ ﻣﻦ اﻟﻔﻀﺎء ‪ V3‬و ‪ A‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء ‪. E‬‬ ‫ﺗﻮﺟﺪ ﻧﻘﻄﺘﺎن ‪ B‬و‪ C‬ﻣﻦ اﻟﻔﻀﺎء ﺣﻴﺚ ‪ u = AB‬و ‪ v = AC‬اﻟﺠﺪاء اﻟﺴﻠﻤﻲ ﻟﻠﻤﺘﺠﻬﺘﻴﻦ ‪ v‬و ‪ u‬هﻮ اﻟﻌﺪد‬ ‫اﻟﺤﻘﻴﻘﻲ ‪ u ⋅v‬اﻟﻤﻌﺮف آﻤﺎ ﻳﻠﻲ‬ ‫' ‪ u ⋅v = AB ⋅ AC = AB × AC‬ﺣﻴﺚ'‪ C‬اﻟﻤﺴﻘﻂ اﻟﻌﻤﻮدي ﻟـ ‪ C‬ﻋﻠﻰ )‪(AB‬‬ ‫* إذا آﺎن ‪ v ≠ 0‬و‪ u ≠ 0‬ﻓﺎن‬ ‫‪ u = 0‬أو ‪v = 0‬‬

‫* إذا آﺎن‬

‫ﻓﺎن‬

‫‪u ⋅v = 0‬‬

‫‪ -2‬ﺻﻴﻐﺔ أﺧﺮى ﻟﻠﺠﺪاء اﻟﺴﻠﻤﻲ‬ ‫ﻟﺘﻜﻦ ‪ v‬و ‪ u‬ﻣﺘﺠﻬﺘﻴﻦ ﻏﻴﺮ ﻣﻨﻌﺪﻣﺘﻴﻦ ﻣﻦ اﻟﻔﻀﺎء ‪ V3‬و ‪ A‬و ‪ B‬و‪ C‬ﺛﻼث ﻧﻘﻂ ﻣﻦ اﻟﻔﻀﺎء ﺣﻴﺚ‬ ‫و ‪ v = AC‬و‪ θ‬ﻗﻴﺎس اﻟﺰاوﻳﺔ ‪ BAC ‬‬ ‫‪‬‬ ‫‪‬‬

‫‪u = AB‬‬

‫و'‪ C‬اﻟﻤﺴﻘﻂ اﻟﻌﻤﻮدي ﻟـ ‪ C‬ﻋﻠﻰ )‪(AB‬‬

‫' ‪u ⋅v = AB ⋅ AC = AB × AC‬‬

‫ﻟﺪﻳـــﻨﺎ‬

‫* إذا آﺎن ‪0≤ θ ≺ π‬‬ ‫‪2‬‬ ‫وﻣﻨﻪ ‪u ⋅v = AB × AC cos θ = AB × AC cos θ‬‬

‫ﻓﺎن ‪AC ' = AC cosθ‬‬

‫* إذا آﺎن ‪π ≺ θ ≤ π‬‬ ‫‪2‬‬

‫ﻓﺎن‬

‫‪AC ' = AC cos(π −θ ) = − AC cosθ‬‬ ‫وﻣﻨﻪ ‪u ⋅v = − AB × AC cos θ = AB × AC cos θ‬‬

‫* إذا آﺎن ‪ θ = π‬ﻓﺎن ‪AC ' = 0‬‬ ‫‪2‬‬ ‫إذن ‪u ⋅v = AB × AC cos θ‬‬

‫و ﻣﻨﻪ‬

‫‪u ⋅v = 0‬‬

‫ﺧﺎﺻﻴﺔ‬ ‫إذا آﺎﻧﺖ ‪ v‬و ‪ u‬ﻣﺘﺠﻬﺘﻴﻦ ﻏﻴﺮ ﻣﻨﻌﺪﻣﺘﻴﻦ ﻣﻦ اﻟﻔﻀﺎء ‪ V3‬و ‪ A‬و ‪ B‬و‪ C‬ﺛﻼث ﻧﻘﻂ ﻣﻦ اﻟﻔﻀﺎء ﺣﻴﺚ ‪u = AB‬‬ ‫و ‪ v = AC‬و‪ θ‬ﻗﻴﺎس اﻟﺰاوﻳﺔ ‪ BAC ‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻣﺜﺎل‬ ‫اﻟﻤﻜﻌﺐ ‪ ABCDEFGH‬اﻟﺬي ﻃﻮل ﺣﺮﻓﻪ ‪a‬‬

‫ﻓﺎن‬

‫‪u ⋅v = AB × AC cos θ‬‬

‫ﻟﺪﻳﻨـﺎ ‪AB ⋅ AC = AB ×AB = AB2 = a2‬‬ ‫‪2‬‬

‫‪) =a‬‬

‫و‬ ‫‪a 2‬‬ ‫‪2‬‬

‫‪AB ⋅ AH = AB × AA = 0‬‬

‫(‬

‫‪AC 2‬‬ ‫=‬ ‫‪2‬‬

‫= ‪AF ⋅ AC = AC × AI‬‬

‫‪Moustaouli Mohamed‬‬

‫‪http://arabmaths.site.voila.fr‬‬

‫‪ -3‬ﺧﺎﺻﻴﺎت‬ ‫أ‪ -‬ﺗﻌﺎﻣﺪ ﻣﺘﺠﻬﺘﻴﻦ ‪:‬‬ ‫ﺗﻌﺮﻳﻒ‬ ‫ﻟﺘﻜﻦ ‪ v‬و ‪ u‬ﻣﺘﺠﻬﺘﻴﻦ ﻣﻦ اﻟﻔﻀﺎء ‪.V3‬‬ ‫ﺗﻜﻮن ‪ v‬و ‪ u‬ﻣﺘﻌﺎﻣﺪﻳﻦ إذا وﻓﻘﻂ إذا آﺎن‬

‫‪u ⋅v = 0‬‬

‫ﻧﻜﺘﺐ‬

‫‪u ⊥v‬‬

‫ﻣﻼﺣﻈﺔ اﻟﻤﺘﺠﻬﺔ ‪ 0‬ﻋﻤﻮدﻳﺔ ﻋﻠﻰ أﻳﺔ ﻣﺘﺠﻬﺔ ﻣﻦ اﻟﻔﻀﺎء ‪V3‬‬ ‫ب‪ -‬ﻣﻨﻈﻢ ﻣﺘﺠﻬﺔ‬ ‫‪u = AB‬‬

‫ﻟﺘﻜﻦ ‪ u‬ﻣﺘﺠﻬﺔ ﻏﻴﺮ ﻣﻨﻌﺪﻣﺔ و‪ A‬و ‪ B‬ﻧﻘﻄﺘﻴﻦ ﻣﻦ اﻟﻔﻀﺎء ﺣﻴﺚ‬ ‫إذن ﻟﻜﻞ ﻣﺘﺠﻬﺔ ﻏﻴﺮ ﻣﻨﻌﺪﻣﺔ ‪u‬‬

‫‪0‬‬

‫وﻣﻨﻪ ‪u ⋅ u = AB2‬‬

‫‪u ⋅u‬‬

‫اﻟﻌﺪد اﻟﺤﻘﻴﻘﻲ ‪ u ⋅ u‬ﻳﺴﻤﻰ اﻟﻤﺮﺑﻊ اﻟﺴﻠﻤﻲ ﻟـ ‪ u‬و ﻳﻜﺘﺐ ‪u‬‬ ‫‪2‬‬

‫ﻳﺴﻤﻰ ﻣﻨﻈﻢ اﻟﻤﺘﺠﻬﺔ ‪ u‬وﻳﻜﺘﺐ ‪u‬‬

‫اﻟﻌﺪد ‪u 2‬‬

‫‪= u2‬‬

‫ﻣﻼﺣﻈﺔ *‬

‫‪2‬‬

‫‪u‬‬

‫* اذا آﺎﻧﺖ ‪ v‬و ‪ u‬ﻣﺘﺠﻬﺘﻴﻦ ﻏﻴﺮ ﻣﻨﻌﺪﻣﺘﻴﻦ وآﺎن ‪ θ‬ﻗﻴﺎس اﻟﺰاوﻳﺔ ‪  BAC ‬ﺣﻴﺚ ‪ u = AB‬و ‪v = AC‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻓﺎن ‪u ⋅v = u × v cos θ‬‬

‫ج‪ -‬ﺧﺎﺻﻴﺎت‬ ‫∈ ‪∀α‬‬

‫‪3‬‬ ‫‪3‬‬

‫‪∀ (u ,v ,w ) ∈V‬‬

‫ﻣﺘﻄﺎﺑﻘﺎت هﺎﻣﺔ‬

‫‪(u + v ) = u + v + 2u ⋅v‬‬ ‫‪2‬‬ ‫‪(u − v ) = u 2 + v 2 − 2u ⋅v‬‬ ‫‪(u + v )(u − v ) = u 2 − v 2‬‬ ‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫‪u ⋅v = v ⋅ u‬‬ ‫*‬ ‫* ‪(v + w ) ⋅ u = v ⋅ u + w ⋅ u * u ⋅ (v + w ) = u ⋅v + u ⋅w‬‬ ‫* ) ‪u ⋅ αv = αu ⋅v = α × (u ⋅v‬‬ ‫‪ -II‬ﺻﻴــــــﻎ ﺗﺤﻠﻴﻠﻴـــــــــﺔ‬ ‫‪ -1‬اﻷﺳﺎس و اﻟﻤﻌﻠﻢ اﻟﻤﺘﻌﺎﻣﺪان اﻟﻤﻤﻨﻈﻤﺎن‬ ‫ﺗﻌﺮﻳﻒ‬ ‫ﻟﺘﻜﻦ ‪ i‬و ‪ j‬و ‪ k‬ﺛﻼث ﻣﺘﺠﻬﺎت ﻏﻴﺮ ﻣﺴﺘﻮاﺋـــــﻴﺔ ﻣﻦ اﻟﻔﻀﺎء ‪ V3‬و ‪ O‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء‪.‬‬

‫) ‪ (i ; j ;k‬أﺳﺎ س ﻟﻠﻔﻀﺎء ‪V3‬‬

‫ﻳﻜﻮن اﻷﺳﺎس ) ‪ (i ; j ;k‬ﻣﺘﻌﺎﻣﺪ )أو اﻟﻤﻌﻠﻢ ) ‪ (O ; i ; j ; k‬ﻣﺘﻌﺎﻣﺪ( إذا وﻓﻘﻂ إذا آﺎﻧﺖ اﻟﻤﺘﺠﻬﺎت ‪ i‬و ‪ j‬و ‪k‬‬ ‫ﻣﺘﻌﺎﻣﺪة ﻣﺜﻨﻰ ﻣﺜﻨﻰ‪.‬‬ ‫ﻳﻜﻮن اﻷﺳﺎس ) ‪ (i ; j ;k‬ﻣﺘﻌﺎﻣﺪ و ﻣﻤﻨﻈﻢ )أو اﻟﻤﻌﻠﻢ ) ‪ (O ; i ; j ; k‬ﺗﻌﺎﻣﺪ وﻣﻤﻨﻈﻢ( إذا وﻓﻘﻂ إذا آﺎﻧﺖ اﻟﻤﺘﺠﻬﺎت‬

‫‪ i‬و ‪ j‬و ‪ k‬ﻣﺘﻌﺎﻣﺪة ﻣﺜﻨﻰ ﻣﺜﻨﻰ و ‪i = j = k = 1‬‬ ‫‪ -2‬اﻟﺼﻴﻐﺔ اﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻠﺠﺪاء اﻟﺴﻠﻤﻲ‬ ‫أ‪ -‬ﺧﺎﺻﻴﺔ‬ ‫اﻟﻔﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ‪.‬م‪.‬م ) ‪(O ; i ; j ; k‬‬ ‫إذا آﺎﻧﺖ ) ‪ u( x; y; z‬و )'‪ v( x'; y'; z‬ﻓﺎن‬

‫' ‪u ⋅v = xx '+ yy '+ zz‬‬

‫ﻣﻼﺣﻈﺔ إذا آﺎﻧﺖ ) ‪ u( x; y; z‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻌﻠﻢ‪.‬م‪.‬م ) ‪ (O ; i ; j ; k‬ﻓﺎن‬

‫‪u ⋅k = z‬‬

‫;‬

‫‪u⋅j =y‬‬

‫ب‪ -‬اﻟﺼﻴﻐﺔ اﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻤﻨﻈﻢ ﻣﺘﺠﻬﺔ و ﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ ﻧﻘﻄﺘﻴﻦ‬ ‫*‪ -‬إذا آﺎﻧﺖ ) ‪ u( x; y; z‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻌﻠﻢ‪.‬م‪.‬م ) ‪ (o;i ; j ;k‬ﻓﺎن ‪u = x 2 + y 2 + z 2‬‬

‫*‪ -‬اذا آﺎﻧﺖ ) ‪ A ( x A ; y A ; z A‬و‬ ‫ﻓﺎن‬

‫‪2‬‬

‫)‬

‫‪ B ( x B ; y B ; z B‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻌﻠﻢ‪.‬م‪.‬م ) ‪(o;i ; j ;k‬‬

‫) ‪− x A ) + ( y B − y A ) + (z B − z A‬‬ ‫‪2‬‬

‫‪Moustaouli Mohamed‬‬

‫‪2‬‬

‫‪(x B‬‬

‫= ‪AB‬‬

‫‪http://arabmaths.site.voila.fr‬‬

‫;‬

‫‪u ⋅i = x‬‬

‫ﺗﻤﺮﻳﻦ‬

‫‪ -1‬ﺣﺪد ﻣﺘﺠﻬﺔ ‪ w‬واﺣﺪﻳﺔ وﻋﻤﻮدﻳﺔ ﻋﻠﻰ )‪ u(−1;1;1‬و ) ‪v(1;−2;0‬‬

‫‪ - 2‬ﺣﺪد ﻣﺘﺠﻬﺔ ‪ w‬ﻋﻤﻮدﻳﺔ ﻋﻠﻰ ) ‪ u(1;1;0‬و )‪ v(0;2;1‬و ‪3‬‬

‫=‬

‫‪w‬‬

‫ﺗﻤﺮﻳﻦ‬ ‫ﻧﻌﺘﺒﺮ‬

‫)‬

‫(‬

‫)‬

‫‪ A 1;1; 2‬و ‪2; − 2;0‬‬

‫(‬

‫‪B‬‬

‫(‬

‫)‬

‫و ‪C −1; −1; − 2‬‬

‫ﺑﻴﻦ أن ‪ ABC‬ﻣﺜﻠﺚ ﻣﺘﺴﺎوي اﻟﺴﺎﻗﻴﻦ وﻗﺎﺋﻢ اﻟﺰاوﻳﺔ‬ ‫‪ -III‬ﺗﻄﺒﻴﻘﺎت اﻟﺠﺪاء اﻟﺴﻠﻤﻲ ﻓﻲ ‪V3‬‬ ‫‪ -1‬ﺗﻌﺎﻣﺪ اﻟﻤﺴﺘﻘﻴﻤﺎت و اﻟﻤﺴﺘﻮﻳﺎت ﻓﻲ اﻟﻔﻀﺎء‬ ‫أ‪ -‬ﺗﻌﺎﻣﺪ ﻣﺴﺘﻘﻴﻤﻴﻦ‬ ‫ﻟﻴﻜﻦ )‪ (D1‬و )‪ (D2‬ﻣﺴﺘﻘﻴﻤــﻴﻦ ﻣﻦ اﻟﻔﻀﺎء ﻣﻮﺟﻬﻴﻦ ﺑﺎﻟﻤﺘﺠﻬﺘﻴﻦ ‪ u 1‬و ‪ u 2‬ﻋﻠﻰ اﻟﺘﻮاﻟﻲ‬ ‫‪( D1 ) ⊥ ( D 2 ) ⇔ u 1 ⋅ u 2 = 0‬‬ ‫ب‪ -‬ﺗﻌﺎﻣﺪ ﻣﺴﺘﻘﻴﻢ و ﻣﺴﺘﻮى‬ ‫ﺧﺎﺻﻴﺔ‬ ‫ﻟﻴﻜﻦ )‪ (P‬ﻣﺴﺘﻮى ﻣﻮﺟﻪ ﺑﺎﻟﻤﺘﺠﻬﺘﻴﻦ ‪ u 1‬و ‪ u 2‬و )‪ (D‬ﻣﺴﺘﻘﻴﻢ ﻣﻮﺟﻪ ﺑﺎﻟﻤﺘﺠﻬﺔ ‪u 3‬‬ ‫‪ u2 ⊥ u3‬و‬

‫‪( D ) ⊥ ( P ) ⇔ u1 ⊥ u 3‬‬

‫ج‪ -‬ﻣﻼﺣﻈﺎت واﺻﻄﻼﺣﺎت‬ ‫* اﻟﻤﺘﺠﻬﺔ ‪ u‬اﻟﻤﻮﺟﻬﺔ ﻟﻤﺴﺘﻘﻴﻢ )‪ (D‬اﻟﻌﻤﻮدي ﻋﻠﻰ ﻣﺴﺘﻮى )‪ (P‬ﺗﺴﻤﻰ ﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻟﻠﻤﺴﺘﻮى )‪.( P‬‬ ‫* اذا آﺎﻧﺖ ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻟﻤﺴﺘﻮى )‪ (P‬ﻓﺎن آﻞ ﻣﺘﺠﻬﺔ ‪ v‬ﻣﺴﺘﻘﻴﻤﻴﺔ ﻣﻊ ‪ u‬ﺗﻜﻮن ﻣﻨﻈﻤﻴﺔ ﻟﻠﻤﺴﺘﻮى )‪(P‬‬ ‫* اذا آﺎﻧﺖ ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻟﻤﺴﺘﻮى )‪ (P‬و ‪ v‬ﻣﻨﻈﻤﻴﺔ ﻟﻤﺴــﺘﻮى )'‪ (P‬وآﺎﻧﺘﺎ ‪ u‬و ‪ v‬ﻣﺴﺘﻘﻴﻤﻴﺘﻴﻦ ﻓﺎن )‪ (P‬و)'‪( P‬‬ ‫ﻣﺘﻮازﻳﺎن‬ ‫‪2‬‬ ‫* إذا آﺎن ) ‪ ( A ; B ) ∈ ( P‬و ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻟﻤﺴﺘﻮى )‪ (P‬ﻓﺎن ‪u ⊥ AB‬‬

‫ﺗﻤﺮﻳﻦ ﻓﻲ اﻟﻔﻀﺎء اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ‪.‬م‪(O ; i ; j ; k ) .‬‬ ‫ﺣﺪد ﺗﻤﺜﻴﻞ ﺑﺎراﻣﺘﺮي ﻟﻠﻤﺴﺘﻘﻴﻢ )‪ (D‬اﻟﻤﺎر ﻣﻦ)‪ A(-1; 2 0‬و اﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻮى )‪ (P‬اﻟﻤﻮﺟﻪ ﺑـﺎﻟﻤﺘﺠﻬﺘﻴﻦ‬ ‫)‪ u(1;−1;1‬و )‪v(2;1;1‬‬ ‫ﺗﻤﺮﻳﻦ‬ ‫ﻓﻲ اﻟﻔﻀﺎء اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ‪.‬م‪ (O ; i ; j ; k ) .‬ﻧﻌﺘﺒﺮ اﻟﻤﺴﺘﻮى‬ ‫)‪ (P‬اﻟﺬي ﻣﻌﺎدﻟﺘﻪ ‪ ax-2y+z-2=0‬و اﻟﻤﺴﺘﻘﻴﻢ )‪ (D‬ﺗﻤﺜﻴﻠﻪ ﺑﺎراﻣﺘﺮي‬

‫‪t ∈ IR‬‬

‫‪ x= 2t‬‬ ‫‪‬‬ ‫‪ y =1+ 3 t‬‬ ‫‪ z = − 2 + bt‬‬

‫‪ -1‬ﺣﺪد ﻣﺘﺠﻬﺘﻴﻦ ﻣﻮﺟﻬﺘﻴﻦ ﻟﻠﻤﺴﺘﻮى )‪(P‬‬ ‫‪ -2‬ﺣﺪد‪ a‬و‪ b‬ﻟﻜﻲ ﻳﻜﻮن ) ‪(D )⊥(P‬‬ ‫د‪ -‬ﺗﻌﺎﻣﺪ ﻣﺴﺘﻮﻳﻴﻦ‬ ‫ﺗﺬآﻴﺮ ﻳﻜﻮن ﻣﺴﺘﻮﻳﺎن ﻣﺘﻌﺎﻣﺪﻳﻦ اذا و ﻓﻘﻂ اذا اﺷﺘﻤﻞ أﺣﺪهﻤﺎ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ ﻋﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻮى اﻵﺧﺮ‪.‬‬ ‫ﺧﺎﺻﻴﺔ‬ ‫ﻟﻴﻜﻦ )‪ (P‬و )'‪ (P‬ﻣﺴﺘﻮﻳﻴﻦ ﻣﻦ اﻟﻔﻀﺎء و ‪ u‬و ‪ v‬ﻣﺘﺠﻬﺘــــــــــﻴﻦ ﻣﻨﻈﻤﻴﺘﻴﻦ ﻟﻬﻤﺎ ﻋﻠﻰ اﻟﺘﻮاﻟﻲ‬ ‫) ‪ (P')⊥(P‬اذا وﻓﻘﻂ اذا آﺎن ‪u ⊥v‬‬

‫‪Moustaouli Mohamed‬‬

‫‪http://arabmaths.site.voila.fr‬‬

‫‪ -3‬ﻣﻌﺎدﻟﺔ ﻣﺴﺘﻮى ﻣﺤﺪد ﺑﻨﻘﻄﺔ و ﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‬ ‫‪ .a‬ﻣﺴﺘﻮى ﻣﺤﺪد ﺑﻨﻘﻄﺔ و ﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‬ ‫ﻣﺒﺮهﻨﺔ‬ ‫ﻟﺘﻜﻦ ‪ u‬ﻣﺘﺠﻬﺔ ﻏﻴﺮ ﻣﻨﻌﺪﻣﺔ و ‪ A‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء‬ ‫* اﻟﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ‪ A‬و اﻟﻤﺘﺠﻬﺔ ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻟﻪ هﻮ ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ‪ M‬ﻣﻦ اﻟﻔﻀﺎء ﺣﻴﺚ ‪AM ⋅ u = 0‬‬ ‫* ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ‪ M‬ﻣﻦ اﻟﻔﻀﺎء ﺣﻴﺚ ‪ AM ⋅ u = 0‬اﻟﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ‪ A‬و اﻟﻤﺘﺠﻬﺔ ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻟﻪ‬ ‫‪ .b‬ﻣﻌﺎدﻟﺔ ﻣﺴﺘﻮى ﻣﺤﺪد ﺑﻨﻘﻄﺔ و ﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‬ ‫ﺧﺎﺻﻴﺔ‬ ‫* آﻞ ﻣﺴﺘﻮى )‪ (P‬ﻓﻲ اﻟﻔﻀﺎء و ) ‪ u(a;b;c‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ ﻳﻘﺒﻞ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻣﻦ‬ ‫ﻧﻮع ‪ax + by + cz + d = 0‬‬ ‫* آﻞ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻣﻦ ﻧﻮع ‪ ax + by + cz + d = 0‬ﺣﻴﺚ ) ‪ ( a; b ; c ) ≠ ( 0;0;0‬هﻲ ﻣﻌﺎدﻟﺔ ﻣﺴﺘﻮى )‪ (P‬ﻓﻲ‬ ‫اﻟﻔﻀﺎء‬

‫ﺑﺤﻴﺚ ) ‪ u(a;b;c‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‬

‫ﺗﻤﺮﻳﻦ‬

‫‪ x+y-2z+1=0‬‬ ‫‪(P) : 2x-y+3z+1=0‬‬ ‫ﻧﻌﺘﺒﺮ‬ ‫‪(D): ‬‬ ‫‪ x-y+z-2=0‬‬ ‫‪ -1‬ﺣﺪد ﻣﺘﺠﻬﺔ ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻰ )‪ (P‬وﻧﻘﻄﺔ ﻣﻨﻪ‪.‬‬ ‫‪ -2‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ)‪ A (2;0;3‬و )‪ n(1,2,1‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‪.‬‬ ‫‪ -3‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ)‪ A' (2;0;3‬واﻟﻌﻤﻮدي ﻋﻠﻰ )‪(D‬‬ ‫‪ -4‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ)‪ A (2;0;3‬و اﻟﻤﻮازي ﻟـ )‪(P‬‬ ‫دراﺳﺔ اﻻوﺿﺎع اﻟﻨﺴﺒﻴﺔ ﻟﻠﻤﺴﺘﻘﻴﻤﺎت و اﻟﻤﺴﺘﻮﻳﺎت ﻓﻲ اﻟﻔﻀﺎء‬ ‫أ‪ -‬اﻷوﺿﺎع اﻟﻨﺴﺒﻴﺔ ﻟﻤﺴﺘﻮﻳﻴﻦ ﻓﻲ اﻟﻔﻀﺎء‬ ‫)‪ (P‬اﻟﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ ‪ A‬و ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ )'‪ (P‬اﻟﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ '‪ A‬و ‪ v‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ‬ ‫اﻟﺤﺎﻟﺔ ‪ u 1‬و ‪ v‬ﻣﺴﺘﻘﻴﻤﻴﺘﺎن‬ ‫إذا آﺎن)'‪ A ∈ (P‬أو)‪ A' ∈ (P‬ﻓﺎن )‪(P') = (P‬‬ ‫إذا آﺎن)'‪ A ∉ (P‬و)‪ A' ∉ (P‬ﻓﺎن )‪ (P‬و )'‪ (P‬ﻣﺘﻮازﻳﺎن ﻗﻄﻌﺎ‪.‬‬ ‫اﻟﺤﺎﻟﺔ ‪ u 2‬و ‪ v‬ﻏﻴﺮ ﻣﺴﺘﻘﻴﻤﻴﺘﻴﻦ‬ ‫ اذا آﺎن ‪ u ⊥ v‬ﻓﺎن ) ‪(P')⊥(P‬‬‫ اذا آﺎن ‪ v‬و ‪ u‬ﻏﻴﺮ ﻣﺘﻌﺎﻣﺪﺗﻴﻦ ﻓﺎن )‪ (P‬و )'‪ (P‬ﻣﺘﻘﺎﻃﻌﺎن‪.‬‬‫ب‪ -‬اﻷوﺿﺎع اﻟﻨﺴﺒﻴﺔ ﻟﻤﺴﺘﻘﻴﻢ وﻣﺴﺘﻮى ﻓﻲ اﻟﻔﻀﺎء‬ ‫)‪ (P‬اﻟﻤﺴﺘﻮى اﻟﻤﺎر ﻣﻦ ‪ A‬و ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ )‪ (D‬اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﺎر ﻣﻦ '‪ A‬و ‪ v‬ﻣﻮﺟﻬﺔ ﻟﻪ‬ ‫اﻟﺤﺎﻟﺔ ‪ 1‬إذا آﺎن ‪ u‬و ‪ v‬ﻣﺴﺘﻘﻴﻤﻴﺘﻴﻦ ﻓﺎن ) ‪(D )⊥(P‬‬ ‫اﻟﺤﺎﻟﺔ ‪ u 2‬و ‪ v‬ﻏﻴﺮ ﻣﺴﺘﻘﻴﻤﻴﺘﻴﻦ‬ ‫ اذا آﺎن ‪ u ⊥ v‬ﻓﺎن )‪ (P‬و )‪ (D‬ﻣﺘﻮازﻳﺎن‬‫ اذا آﺎن ‪ u ⊥ v‬ﻓﺎن‬‫‪ IV‬ﻣﺴﺎﻓﺔ ﻧﻘﻄﺔ ﻋﻦ ﻣﺴﺘﻮى‬ ‫‪ -1‬ﺗﻌﺮﻳﻒ و ﺧﺎﺻﻴﺔ‬ ‫اﻟﻔﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ‪.‬م‪.‬م ) ‪(o;i ; j ;k‬‬ ‫ﻣﺴﺎﻓﺔ ﻧﻘﻄﺔ ‪ A‬ﻋﻦ ﻣﺴﺘﻮى )‪ (P‬هﻲ اﻟﻤﺴﺎﻓﺔ ‪AH‬‬ ‫ﺣﻴﺚ‪ H‬اﻟﻤﺴﻘﻂ اﻟﻌﻤﻮدي ﻟـ ‪ A‬ﻋﻠﻰ)‪ (P‬ﻧﻜﺘﺐ‬ ‫‪A B •u‬‬ ‫= ‪d ( A ; ( P )) = A H‬‬ ‫‪u‬‬ ‫)‪ (D‬ﻳﺨﺘﺮق )‪(P‬‬

‫ﺣﻴﺚ )‪ B ∈ (P‬و ‪ u‬ﻣﻨﻈﻤﻴﺔ ﻋﻠﻰ)‪(P‬‬

‫‪Moustaouli Mohamed‬‬

‫‪http://arabmaths.site.voila.fr‬‬

‫‪ -2‬ﺧﺎﺻﻴﺔ‬ ‫ﻟﻴﻜﻦ )‪ (P‬ﻣﺴﺘﻮى ﻣﻌﺎدﻟﺘﻪ ‪ax + by + cz + d = 0‬‬

‫‪ax 0 + by 0 + cz 0 + d‬‬ ‫‪a2 + b 2 + c 2‬‬ ‫ﻣﺜﺎل‬ ‫ﻟﻴﻜﻦ )‪ (P‬ﻣﺴﺘﻮى ﻣﺎر ﻣﻦ )‪ B ( 2;1;3‬و ‪u 1; −1; 2‬‬ ‫ﺣﺪد‬

‫)) ‪d ( A ; ( P‬‬

‫)‬

‫(‬

‫و ) ‪ A ( x 0 ; y 0 ; z 0‬ﻧﻘﻄﺔ ﻣﻦ اﻟﻔﻀﺎء‬

‫= )) ‪d ( A ; ( P‬‬ ‫ﻣﻨﻈﻤﻴﺔ ﻋﻠﻴﻪ ﻟﺘﻜﻦ )‪A (1;2;0‬‬

‫ﺗﻤﺮﻳﻦ‪1‬‬ ‫ﻓﻲ ﻓﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ‪.‬‬ ‫ﻧﻌﺘﺒﺮ )‪ A(1;-1;1‬و )‪ B(3;1;-1‬و )‪ (P‬اﻟﻤﺴﺘﻮى ذا اﻟﻤﻌﺎدﻟﺔ ‪ 2x-3y+2z=0‬و )‪ (D‬اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﻤﺜﻞ‬ ‫‪ x = 3t‬‬ ‫‪‬‬ ‫ﺑﺎرا ﻣﺘﺮﻳﺎ ﺑـ‬ ‫∈ ‪ x = − 2 − 3t t‬‬ ‫‪ z = 2 + 4t‬‬ ‫‪‬‬ ‫‪ -1‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )‪ (Q‬اﻟﻤﺎر ﻣﻦ ‪ A‬واﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻘﻴﻢ )‪(D‬‬ ‫ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )´‪ (Q‬اﻟﻤﺎر ﻣﻦ ‪ A‬و ‪ B‬واﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻮى )‪(P‬‬ ‫‪ -2‬أﺣﺴﺐ ))‪ d(A;(P‬و ))‪d(A;(D‬‬ ‫‪ -3‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )´´‪ (Q‬اﻟﻤﺎر ﻣﻦ ‪ B‬و اﻟﻤﻮازي ﻟﻠﻤﺴﺘﻮى )‪(P‬‬ ‫ﺗﻤﺮﻳﻦ‪2‬‬ ‫ﻓﻲ ﻓﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ‪.‬‬ ‫ﻧﻌﺘﺒﺮ اﻟﻤﺴﺘﻮى)‪ (P‬ذا اﻟﻤﻌﺎدﻟﺔ ‪ 3x+2y-z-5=0‬و )‪ (D‬اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﻌﺮف ﺑـ‬ ‫‪x − 2 y + z − 3 = 0‬‬ ‫‪‬‬ ‫‪ x− y−z+2=0‬‬ ‫‪ -1‬ﺣﺪد ﺗﻤﺜﻴﻼ ﺑﺎرا ﻣﺘﺮﻳﺎ ﻟﻠﻤﺴﺘﻘﻴﻢ )‪(D‬‬ ‫ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى )´‪ (P‬اﻟﺬي ﻳﺘﻀﻤﻦ )‪ (D‬و اﻟﻌﻤﻮدي ﻋﻠﻰ )‪(P‬‬

‫‪Moustaouli Mohamed‬‬

‫‪http://arabmaths.site.voila.fr‬‬

More Documents from "OUSSAMA"

May 2020 8
October 2019 12
July 2020 4
May 2020 19
June 2020 7
June 2020 5