1er Taller De Cálculo Multivariable.docx

  • Uploaded by: Karen Carrascal
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View 1er Taller De Cálculo Multivariable.docx as PDF for free.

More details

  • Words: 444
  • Pages: 6
TALLER DE CÁLCULO MULTIVARIABLE

DOCENTE: JHONY BOLAÑO

ESTUDIANTES: -CONTRERAS CARO CARLOS -TORRES FONTALVO JESÚS -PALMA PADILLA VICTOR

UNIVERSIDAD POPULAR DEL CESAR 2017

Taller. 1) Resolver dos ejercicios de límites. 2) Resolver dos ejercicios de fracciones parciales de primer orden. 3) Resolver dos ejercicios de fracciones parciales de segundo orden.

Solución. 1)

x2 − 𝑦 2

lim

=

lim

=

lim

(x + y) = 1 + 1 = 2

(𝑥,𝑦)→(1,1)

(𝑥,𝑦)→(1,1)

x−y

(x + y)(x − y) (x − y)

(𝑥,𝑦)→(1,1)

lim

x3 +𝑦 3

(𝑥,𝑦)→(1,−1) x+y

→ 𝑎3 + 𝑏 3 = (𝑎 + 𝑏)(𝑎2 − 2𝑎𝑏 + 𝑏 2 )

(𝑥 + 𝑦)(𝑥 2 − 2𝑥𝑦 + 𝑦 2 ) lim (𝑥,𝑦)→(1,−1) (𝑥 + 𝑦) 2 lim = 𝑥 − 2𝑥𝑦 + 𝑦 2 = (1)2 − 2(1)(−1) + (−1)2 (𝑥,𝑦)→(1,−1)

=1+2+1 =4 2) f(x,y)=2𝑥 2 − 3𝑦 − 4 𝜕𝑓 𝜕𝑥 𝜕𝑓 𝜕𝑦

= 4𝑥 = −3

Primer orden. f (x,y)=5𝑥𝑦 − 7𝑥 2 − 𝑦 2 + 3𝑥 − 6𝑦 + 2 𝜕𝑓 𝜕𝑥

= 5𝑦 − 14𝑥 + 3 =-14x+5y+3

𝜕𝑓 𝜕𝑦

= 5𝑥 − 2𝑦 − 6 =5x-2(y+3)

f (x,y)=(2x-3𝑦)3 𝜕𝑓 𝜕𝑥 𝜕𝑦 𝜕𝑥

= 6(2𝑥 − 3𝑦)2 = −9(2𝑥 − 3𝑦)2

Primer orden.

3) Derivadas parciales de segundo orden: Primer orden: g(x,y)=𝑥 2 𝑦 + 𝑐𝑜𝑠𝑦 + 𝑦𝑠𝑒𝑛𝑥 𝜕𝑔

3.1 .𝜕𝑥 = 2𝑥𝑦 + 𝑦𝐶𝑜𝑠𝑥 𝜕𝑔

= 𝑦(2𝑥 + 𝐶𝑜𝑠𝑥)

𝜕𝑥 𝜕𝑔

. 𝜕𝑦= 𝑥 2 − 𝑆𝑒𝑛𝑦 + 𝑆𝑒𝑛𝑥 𝜕𝑔 𝜕𝑦

= 𝑥 2 + 𝑆𝑒𝑛𝑥 − 𝑆𝑒𝑛𝑦

Segundo orden: 𝑑 𝑑2 𝑔 = (𝑦(2𝑥 + 𝐶𝑜𝑠𝑥)) = −2𝑆𝑒𝑛𝑥 = 𝑑𝑥 𝑑𝑥 𝑑 𝑑𝑥 𝑑 𝑑𝑦

𝑑2 𝑔

= (𝑥 2 + 𝑆𝑒𝑛𝑥 − 𝑆𝑒𝑛𝑦) = 2𝑥 + 𝐶𝑜𝑠𝑥 = 𝑑𝑥𝑑𝑦 𝑑2 𝑔

= (𝑦(2𝑥 + 𝐶𝑜𝑠𝑥)) = 1 =𝑑𝑦𝑑𝑥

𝑑 𝑑2𝑔 = (𝑥 2 + 𝑆𝑒𝑛𝑥 − 𝑆𝑒𝑛𝑦) = −𝐶𝑜𝑠𝑦 = 𝑑𝑦 𝑑𝑦

2. h (x,y)=x𝑒 𝑦 + 𝑦 + 1 Primer orden. 2.1

𝜕ℎ 𝜕𝑥 𝜕ℎ 𝜕𝑦

= 𝑒𝑦 = 𝑥𝑒 𝑦 + 1

Segundo orden. 𝑑 𝑑2ℎ 𝑦 =𝑒 =0 𝑑𝑥 𝑑𝑥 𝑑 𝑑2ℎ = 𝑥𝑒 𝑦 + 1 = 𝑒 𝑦 𝑑𝑥 𝑑𝑥𝑑𝑦 2 𝑑 𝑑 ℎ = 𝑒𝑦 = 𝑒𝑦 𝑑𝑦 𝑑𝑦𝑑𝑥 𝑑 𝑑2 ℎ = 𝑥 𝑒𝑦 + 1 = 𝑥 𝑒𝑦 𝑑𝑦 𝑑𝑦

3. f(x,y) = Senxy Primer orden. 3.1

𝜕𝑓 𝜕𝑥

= y Cosxy

𝜕𝑓 𝜕𝑦

=x Cosxy

Segundo orden. 𝑑 = 𝑦 𝐶𝑜𝑠 𝑦 = 𝑦 − 𝑆𝑒𝑛 𝑥𝑦 𝑑𝑥 = −𝑦 2 𝑆𝑒𝑛𝑥 =

𝑑2ℎ 𝑑𝑥

𝑑 𝑑2 ℎ = 𝑥 𝐶𝑜𝑠𝑥𝑦 = 𝐶𝑜𝑠𝑥𝑦 − 𝑥𝑦𝑆𝑒𝑛 𝑥𝑦 𝑑𝑥 𝑑𝑥𝑑𝑦 𝑑 𝑑2ℎ = 𝑦 𝐶𝑜𝑠 𝑥𝑦 = 𝐶𝑜𝑠 𝑥𝑦 − 𝑥𝑦 𝑆𝑒𝑛 𝑥𝑦 𝑑𝑦 𝑑𝑦𝑑𝑥 𝑑 𝑑2 ℎ 2 = 𝑥 𝐶𝑜𝑠𝑥𝑦 = −𝑥 𝑆𝑒𝑛𝑥𝑦 𝑑𝑦 𝑑𝑦

Related Documents


More Documents from ""

October 2019 25
Karen Algebra.docx
October 2019 29
October 2019 19
Informe Mecanica Listo.docx
November 2019 23