29/11/2018
PROBLEMA
DIFERENCIAS FINITAS REGIMEN TRANSITORIO
A great plane plate of steel has 2 cm of thickness. If the initial temperatures inside the plate are function from the distance to a face according to the equations: T=100x for 0≤x≤1 ; T=100*(2-x) for 1≤x≤2 determine the temperatures as a function of x and t when both faces stay to 0 oC. to use Δx=0.4 cm. and kΔt /ρ CpΔx2 =1/4. (to apply 5 increments of time).
To use Δx=0.4 cm. and kΔt /ρ CpΔx2 =1/4. (to apply 5 increments of time).
∆𝑥 = 0.4𝑐𝑚
∆𝑥 = 0.4𝑐𝑚
Propiedades del material
∆𝑡 =
Steel, AISI 1010 (0.1% carbon) 1.88 x 10−5 m2/s Steel, 1% carbon
1.172 × 10−5 m2/s
Steel, stainless 304A at 27 °C
4.2 × 10−6 m2/s
Steel, stainless 310 at 25 °C
3.352 × 10−6 m2/s
∆𝑡 = 0.2128𝑠𝑒𝑔
∆𝑥 4 𝛼
29/11/2018
Difusividad térmica y lambda (Fourier:Fo)
T=100x for 0≤x≤1 ; T=100*(2-x) for 1≤x≤2 0°𝐶
40°𝐶
80°𝐶
80°𝐶
40°𝐶
0°𝐶
2cm y x 0.4cm
0.4cm
0.4cm
0.4cm
0.4cm
1cm
1cm
𝑇 = 100𝑥, 0 ≤ 𝑥 ≤ 1
𝑇 = 100 2 − 𝑥 , 1 ≤ 𝑥 ≤ 2
COMPROBAR SISTEMA DE UNIDADES
clc, clear all ti=0; Nt=5; xi=0/100; xf=2/100; Dx=0.4/100; Nx=(xf-xi)/Dx; alfa=1.88e-5; %m^2/s Dt=Dx^2/4/alfa; t=ti:Dt:Nt*Dt; lambda=1/4; %alfa*Dt/(Dx^2)
0 0 0 0 0 0
40
80
80
40
0 0 0 0 0 0
29/11/2018
T=zeros(Nt+1,Nx+1); con=1; for c=xi:Dx:xf if c<=1/100 T(1,con)=100*c*100; else T(1,con)=100*(2-c*100); end con=con+1; end
T=
𝑻𝒊
T=
0 0 0 0 0 0 𝟏,𝒋0𝟏 =0𝑻𝒊,𝒋 0 0 0 0
for i=1:Nt for j=1:Nx-1 T(i+1,j+1)=T(i,j+1)+lambda*(T(i,j+2)-2*T(i,j+1)+T(i,j)); end end (1,1)
i=1 %fila j=1 %columna
(1,2)
0 0 0
(1,3)
40 (2,2)
80
80
40
0 0 0
y x
0 0 0 0 0 0 0 0 0 0 0 0 0𝟏 + 𝝀0𝑻𝒊,𝒋 0𝟐 − 𝟐𝑻 0 𝒊,𝒋 0 0 0 0 0 0 0 0
𝟏
+ 𝑻𝒊,𝒋
0 40 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0
40 0 0 0 0 0
0
40.0000 80.0000 80.0000 40.0000 0
0
40.0000 70.0000 70.0000 40.0000 0
0
37.5000 62.5000 62.5000 37.5000 0
0
34.3750 56.2500 56.2500 34.3750 0
0
31.2500 50.7813 50.7813 31.2500 0
0
28.3203 45.8984 45.8984 28.3203 0
0 0 0 0 0 0
29/11/2018
0 0 0 0 0 0
40
80
80
40
40
70
70
40
37.5
62.5
62.5
37.5
34.375
56.25
56.25
34.375
31.25 50.7813 50.7813 31.25 28.3203 45.8984 45.8984 28.3203
0 0 0 0 0 0
T x=(xi:Dx:xf)*100; plot(x,T’) grid on title('Gráfica de Schmidt') xlabel('Distancia') ylabel('Temperaturas')
T([1:end],1)=100 T([1:end],end)=10 T(1,[2:end-1])=50
100 100 100 100 100 100
50
50
50
50
10 10 10 10 10 10
29/11/2018
DIFERENCIAS FINITAS REGIMEN ESTACIONARIO
DATOS 𝒌 = 𝟒𝟓
𝑾 𝒎°𝑪
𝒆̇ = 𝟓 × 𝟏𝟎𝟔
𝒉 = 𝟓𝟓 𝑾 𝒎𝟑
𝑾 𝒎𝟐 °𝑪
𝒒̇ 𝑳 = 𝟖𝟎𝟎𝟎
𝑾 𝒎𝟐
𝑻𝟎 = 𝟏𝟐𝟎°𝑪
#𝒏𝒐𝒅𝒐𝒔 = 𝟏𝟑
𝑻
∆𝒙 = ∆𝒚 = 𝟏.5cm
= 𝟑𝟎°𝑪
29/11/2018
BALANCE DE ENERGIA
ANALISIS NODOS #1, #2 y #3 − 𝑻𝟑 𝑻𝒆̇ 𝟎 𝒍−𝟐 𝑻 −𝟐𝑻−𝟐 𝑻𝟑 +𝒍 𝒌𝑻𝒍𝟑𝒍 𝑻𝑻 −𝟐𝟔𝑻− 𝑳 − 𝑻𝟐𝑳 +𝒍 𝒌𝑻𝟏𝒍 𝑻 𝑻𝟐𝟒𝟎 −𝒆̇ 𝟎𝑻𝒍𝟏𝟐 𝒆̇ 𝟎 𝒍𝟐 𝟐 𝑻𝟏+ 𝟓 𝒍 = 𝒉𝒍 𝒉𝒍 𝑻𝒒̇ 𝑻− 𝑻 + 𝒌 + 𝒌 + =𝟎 𝟐 𝑻 𝟐−𝒍 𝑻𝒍𝟏 + 𝟐𝒌 𝟐 𝒍 𝒍 + 𝒌𝒍+ 𝒌 =𝟎 𝟐𝒍 𝑳 +𝒉 𝟐 𝟐 +
𝟐
𝑇
+𝑇
+𝑇
+𝑇
− 4𝑇
+
𝑒̇
𝑙 𝑘
𝟐
𝟐
𝒍
𝟐
𝒍
𝟒
=0
ANALISIS NODOS #4, #5 y #6 𝒍 𝑻𝟏 −𝒍𝑻𝑻𝟒𝟑 − 𝑻𝟔𝒍 𝟏𝟐𝟎𝒍 𝑻 −𝟓 𝑻−𝟒𝑻𝟔 𝒆̇𝑻𝟎𝟓𝟏𝟐𝟎 𝒍𝟐− 𝑻 −𝟒𝑻𝟔 𝒆̇ 𝟎𝒆̇𝒍𝟎𝟐𝒍𝟐 𝒉𝒍𝒒̇ 𝑳𝑻𝒍 +−𝒌𝑻𝟔 +𝑻𝒌𝟒 + 𝑻𝟐++𝒌𝑻𝟔++𝒌𝟏𝟐𝟎 − 𝟒𝑻 +𝒌𝒍 = 𝟎 + + ++ 𝒌𝒍 ==𝟎𝟎 𝒍 𝟐 𝟐𝒍 𝒍 𝟓 𝒌 𝒍 𝒍 𝟐 𝒍𝟐 𝟒𝟐
ANALISIS NODOS #7 y #8 𝒉
𝒍 𝒍 𝑻 𝟕 − 𝑻𝟖 𝒍 𝑻𝟖 − 𝑻𝟕 𝟏𝟐𝟎 − 𝑻𝟕 𝒆̇ 𝟎 𝒍𝟐 𝑻 − 𝑻𝟖 + 𝒌 +𝒌 + 𝒌𝒍 + =𝟎 𝟐 𝟐 𝒍 𝟐 𝒍 𝒍 𝟐
29/11/2018
SISTEMA DE ECUACIONES LINEALES
𝑳 𝑳 𝒍 𝑻𝟐 − 𝑻𝟏 𝒍 𝑻𝟒 − 𝑻𝟏 𝒆̇ 𝟎 𝒍𝟐 + 𝒉 𝑻 − 𝑻𝟏 + 𝒌 +𝒌 + =𝟎 𝟐 𝟐 𝟐 𝒍 𝟐 𝒍 𝟒 𝒍 𝑻𝟏 − 𝑻𝟐 𝒍 𝑻𝟑 − 𝑻𝟐 𝑻𝟓 − 𝑻𝟐 𝒆̇ 𝟎 𝒍𝟐 𝒉𝒍 𝑻 − 𝑻𝟐 + 𝒌 +𝒌 + 𝒌𝒍 + =𝟎 𝟐 𝒍 𝟐 𝒍 𝒍 𝟐
𝒒̇ 𝑳
𝟏𝟔𝟑. 𝟔
𝟏𝟔𝟎. 𝟓
𝟏𝟓𝟔. 𝟒
𝒉𝒍 𝑻 − 𝑻𝟐 + 𝒌
𝟏𝟓𝟒. 𝟎 𝟏𝟓𝟏. 𝟎 𝟏𝟒𝟒. 𝟒 𝟏𝟑𝟒. 𝟓 𝟏𝟑𝟐. 𝟔
𝒍 𝑻𝟏 − 𝑻𝟒 𝒍 𝟏𝟐𝟎 − 𝑻𝟒 𝑻𝟓 − 𝑻𝟒 𝒆̇ 𝟎 𝒍𝟐 +𝒌 + 𝒌𝒍 + =𝟎 𝟐 𝒍 𝟐 𝒍 𝒍 𝟒 𝒆̇ 𝟎 𝒍𝟐 𝑻𝟒 + 𝑻𝟐 + 𝑻𝟔 + 𝟏𝟐𝟎 − 𝟒𝑻𝟓 + =𝟎 𝒌 𝒍 𝑻𝟑 − 𝑻𝟔 𝒍 𝑻𝟓 − 𝑻𝟔 𝟏𝟐𝟎 − 𝑻𝟔 𝒆̇ 𝟎 𝒍𝟐 𝒉𝒍 𝑻 − 𝑻𝟔 + 𝒌 +𝒌 + 𝒌𝒍 + =𝟎 𝟐 𝒍 𝟐 𝒍 𝒍 𝟐 𝒒̇ 𝑳 𝒍 + 𝒌
𝒉
DIFERENCIAS FINITAS SUPERFICIES EXTENDIDAS
𝒍 𝑻𝟐 − 𝑻𝟑 𝒍 𝑻𝟔 − 𝑻𝟑 𝒆̇ 𝟎 𝒍𝟐 +𝒌 + =𝟎 𝟐 𝒍 𝟐 𝒍 𝟐
𝒍 𝒍 𝑻𝟕 − 𝑻𝟖 𝒍 𝑻𝟖 − 𝑻𝟕 𝟏𝟐𝟎 − 𝑻𝟕 𝒆̇ 𝟎 𝒍𝟐 𝑻 − 𝑻𝟖 + 𝒌 +𝒌 + 𝒌𝒍 + =𝟎 𝟐 𝟐 𝒍 𝟐 𝒍 𝒍 𝟐
𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖
= 𝟏𝟔𝟑. 𝟔°𝑪 = 𝟏𝟔𝟎. 𝟓°𝑪 = 𝟏𝟓𝟔. 𝟒°𝑪 = 𝟏𝟓𝟒. 𝟎°𝑪 = 𝟏𝟓𝟏. 𝟎°𝑪 = 𝟏𝟒𝟒. 𝟒°𝑪 = 𝟏𝟑𝟒. 𝟓°𝑪 = 𝟏𝟑𝟐. 𝟔°𝑪
Determine the temperature distribution based to time and distance, a thin copper fin joined by one side to a wall having a constant temperature of 200°C. The air around the fin is 10°C. Consider that initially fin is 30°C and the convective coefficient is 40W/ °C m2 . Consider Δx = 0.5 cm , time of 5 minutes. The answer must be shown in a table and a graph. (Properties of copper: k=332 Kcal/mh°C, ρ=8950 Kg/m3, Cp=0.0915 Kcal/Kg).(L=10 cm; w=3 cm; e=0.5 cm).(Using λ = 1/4 and λ = 1/2 discuss the results corresponding obtained). The equation for the fin is:
∝
29/11/2018
ALETA RECTANGULAR
ALETA CILINDRICA
En nuestro caso: 𝐴 = 𝑤𝑡 𝐴 = 2𝑤 𝐿 + 𝑡⁄2
10°C
Properties of copper: k=332 Kcal/mh°C ρ=8950 Kg/m3 Cp=0.0915 Kcal/Kg
L=10 cm w=3 cm e=0.5 cm
e=0.5 cm
200°C 30°C
𝐴𝑐 w=3 cm
L=10 cm
29/11/2018
𝑘
𝑘
𝜕 𝜕𝑇 𝜕𝐴 𝐴 −ℎ 𝑇−𝑇 𝜕𝑥 𝜕𝑥 𝜕𝑥
= 𝜌𝐶 𝐴
𝜕𝐴 𝜕𝑇 𝜕 𝑇 𝜕𝐴 +𝐴 −ℎ 𝑇−𝑇 𝜕𝑥 𝜕𝑥 𝜕𝑥 𝜕𝑥 𝜕𝐴 =0 𝜕𝑥
𝜕𝑇 𝜕𝑡
= 𝜌𝐶 𝐴
𝜕𝐴 = 𝑤𝐿 𝜕𝑥
𝐵𝑖 =
ℎ𝐿 𝑘
𝐹 =
𝛼𝑡 𝐿
𝑘 𝜕 𝑇 ℎ 𝑤𝑒 − 𝑤𝐿 𝑇 − 𝑇 𝜌𝐶 𝜕𝑥 𝜌𝐶 𝜕𝑇 𝜕𝑡
𝛼
𝜕 𝑇 ℎ 𝐿 − 𝑇−𝑇 𝜕𝑥 𝜌𝐶 𝑒
= 𝜌𝐶 𝑒𝑤
=
𝜕𝑇 𝜕𝑡
𝜕𝑇 𝜕𝑡