Pdf Finite Diff.pdf

  • Uploaded by: fab
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Pdf Finite Diff.pdf as PDF for free.

More details

  • Words: 1,147
  • Pages: 9
29/11/2018

PROBLEMA

DIFERENCIAS FINITAS REGIMEN TRANSITORIO

A great plane plate of steel has 2 cm of thickness. If the initial temperatures inside the plate are function from the distance to a face according to the equations: T=100x for 0≤x≤1 ; T=100*(2-x) for 1≤x≤2 determine the temperatures as a function of x and t when both faces stay to 0 oC. to use Δx=0.4 cm. and kΔt /ρ CpΔx2 =1/4. (to apply 5 increments of time).

To use Δx=0.4 cm. and kΔt /ρ CpΔx2 =1/4. (to apply 5 increments of time).

∆𝑥 = 0.4𝑐𝑚

∆𝑥 = 0.4𝑐𝑚

Propiedades del material

∆𝑡 =

Steel, AISI 1010 (0.1% carbon) 1.88 x 10−5 m2/s Steel, 1% carbon

1.172 × 10−5 m2/s

Steel, stainless 304A at 27 °C

4.2 × 10−6 m2/s

Steel, stainless 310 at 25 °C

3.352 × 10−6 m2/s

∆𝑡 = 0.2128𝑠𝑒𝑔

∆𝑥 4 𝛼

29/11/2018

Difusividad térmica y lambda (Fourier:Fo)

T=100x for 0≤x≤1 ; T=100*(2-x) for 1≤x≤2 0°𝐶

40°𝐶

80°𝐶

80°𝐶

40°𝐶

0°𝐶

2cm y x 0.4cm

0.4cm

0.4cm

0.4cm

0.4cm

1cm

1cm

𝑇 = 100𝑥, 0 ≤ 𝑥 ≤ 1

𝑇 = 100 2 − 𝑥 , 1 ≤ 𝑥 ≤ 2

COMPROBAR SISTEMA DE UNIDADES

clc, clear all ti=0; Nt=5; xi=0/100; xf=2/100; Dx=0.4/100; Nx=(xf-xi)/Dx; alfa=1.88e-5; %m^2/s Dt=Dx^2/4/alfa; t=ti:Dt:Nt*Dt; lambda=1/4; %alfa*Dt/(Dx^2)

0 0 0 0 0 0

40

80

80

40

0 0 0 0 0 0

29/11/2018

T=zeros(Nt+1,Nx+1); con=1; for c=xi:Dx:xf if c<=1/100 T(1,con)=100*c*100; else T(1,con)=100*(2-c*100); end con=con+1; end

T=

𝑻𝒊

T=

0 0 0 0 0 0 𝟏,𝒋0𝟏 =0𝑻𝒊,𝒋 0 0 0 0

for i=1:Nt for j=1:Nx-1 T(i+1,j+1)=T(i,j+1)+lambda*(T(i,j+2)-2*T(i,j+1)+T(i,j)); end end (1,1)

i=1 %fila j=1 %columna

(1,2)

0 0 0

(1,3)

40 (2,2)

80

80

40

0 0 0

y x

0 0 0 0 0 0 0 0 0 0 0 0 0𝟏 + 𝝀0𝑻𝒊,𝒋 0𝟐 − 𝟐𝑻 0 𝒊,𝒋 0 0 0 0 0 0 0 0

𝟏

+ 𝑻𝒊,𝒋

0 40 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80 0 0 0 0 0

40 0 0 0 0 0

0

40.0000 80.0000 80.0000 40.0000 0

0

40.0000 70.0000 70.0000 40.0000 0

0

37.5000 62.5000 62.5000 37.5000 0

0

34.3750 56.2500 56.2500 34.3750 0

0

31.2500 50.7813 50.7813 31.2500 0

0

28.3203 45.8984 45.8984 28.3203 0

0 0 0 0 0 0

29/11/2018

0 0 0 0 0 0

40

80

80

40

40

70

70

40

37.5

62.5

62.5

37.5

34.375

56.25

56.25

34.375

31.25 50.7813 50.7813 31.25 28.3203 45.8984 45.8984 28.3203

0 0 0 0 0 0

T x=(xi:Dx:xf)*100; plot(x,T’) grid on title('Gráfica de Schmidt') xlabel('Distancia') ylabel('Temperaturas')

T([1:end],1)=100 T([1:end],end)=10 T(1,[2:end-1])=50

100 100 100 100 100 100

50

50

50

50

10 10 10 10 10 10

29/11/2018

DIFERENCIAS FINITAS REGIMEN ESTACIONARIO

DATOS 𝒌 = 𝟒𝟓

𝑾 𝒎°𝑪

𝒆̇ = 𝟓 × 𝟏𝟎𝟔

𝒉 = 𝟓𝟓 𝑾 𝒎𝟑

𝑾 𝒎𝟐 °𝑪

𝒒̇ 𝑳 = 𝟖𝟎𝟎𝟎

𝑾 𝒎𝟐

𝑻𝟎 = 𝟏𝟐𝟎°𝑪

#𝒏𝒐𝒅𝒐𝒔 = 𝟏𝟑

𝑻

∆𝒙 = ∆𝒚 = 𝟏.5cm

= 𝟑𝟎°𝑪

29/11/2018

BALANCE DE ENERGIA

ANALISIS NODOS #1, #2 y #3 − 𝑻𝟑 𝑻𝒆̇ 𝟎 𝒍−𝟐 𝑻 −𝟐𝑻−𝟐 𝑻𝟑 +𝒍 𝒌𝑻𝒍𝟑𝒍 𝑻𝑻 −𝟐𝟔𝑻− 𝑳 − 𝑻𝟐𝑳 +𝒍 𝒌𝑻𝟏𝒍 𝑻 𝑻𝟐𝟒𝟎 −𝒆̇ 𝟎𝑻𝒍𝟏𝟐 𝒆̇ 𝟎 𝒍𝟐 𝟐 𝑻𝟏+ 𝟓 𝒍 = 𝒉𝒍 𝒉𝒍 𝑻𝒒̇ 𝑻− 𝑻 + 𝒌 + 𝒌 + =𝟎 𝟐 𝑻 𝟐−𝒍 𝑻𝒍𝟏 + 𝟐𝒌 𝟐 𝒍 𝒍 + 𝒌𝒍+ 𝒌 =𝟎 𝟐𝒍 𝑳 +𝒉 𝟐 𝟐 +

𝟐

𝑇

+𝑇

+𝑇

+𝑇

− 4𝑇

+

𝑒̇

𝑙 𝑘

𝟐

𝟐

𝒍

𝟐

𝒍

𝟒

=0

ANALISIS NODOS #4, #5 y #6 𝒍 𝑻𝟏 −𝒍𝑻𝑻𝟒𝟑 − 𝑻𝟔𝒍 𝟏𝟐𝟎𝒍 𝑻 −𝟓 𝑻−𝟒𝑻𝟔 𝒆̇𝑻𝟎𝟓𝟏𝟐𝟎 𝒍𝟐− 𝑻 −𝟒𝑻𝟔 𝒆̇ 𝟎𝒆̇𝒍𝟎𝟐𝒍𝟐 𝒉𝒍𝒒̇ 𝑳𝑻𝒍 +−𝒌𝑻𝟔 +𝑻𝒌𝟒 + 𝑻𝟐++𝒌𝑻𝟔++𝒌𝟏𝟐𝟎 − 𝟒𝑻 +𝒌𝒍 = 𝟎 + + ++ 𝒌𝒍 ==𝟎𝟎 𝒍 𝟐 𝟐𝒍 𝒍 𝟓 𝒌 𝒍 𝒍 𝟐 𝒍𝟐 𝟒𝟐

ANALISIS NODOS #7 y #8 𝒉

𝒍 𝒍 𝑻 𝟕 − 𝑻𝟖 𝒍 𝑻𝟖 − 𝑻𝟕 𝟏𝟐𝟎 − 𝑻𝟕 𝒆̇ 𝟎 𝒍𝟐 𝑻 − 𝑻𝟖 + 𝒌 +𝒌 + 𝒌𝒍 + =𝟎 𝟐 𝟐 𝒍 𝟐 𝒍 𝒍 𝟐

29/11/2018

SISTEMA DE ECUACIONES LINEALES

𝑳 𝑳 𝒍 𝑻𝟐 − 𝑻𝟏 𝒍 𝑻𝟒 − 𝑻𝟏 𝒆̇ 𝟎 𝒍𝟐 + 𝒉 𝑻 − 𝑻𝟏 + 𝒌 +𝒌 + =𝟎 𝟐 𝟐 𝟐 𝒍 𝟐 𝒍 𝟒 𝒍 𝑻𝟏 − 𝑻𝟐 𝒍 𝑻𝟑 − 𝑻𝟐 𝑻𝟓 − 𝑻𝟐 𝒆̇ 𝟎 𝒍𝟐 𝒉𝒍 𝑻 − 𝑻𝟐 + 𝒌 +𝒌 + 𝒌𝒍 + =𝟎 𝟐 𝒍 𝟐 𝒍 𝒍 𝟐

𝒒̇ 𝑳

𝟏𝟔𝟑. 𝟔

𝟏𝟔𝟎. 𝟓

𝟏𝟓𝟔. 𝟒

𝒉𝒍 𝑻 − 𝑻𝟐 + 𝒌

𝟏𝟓𝟒. 𝟎 𝟏𝟓𝟏. 𝟎 𝟏𝟒𝟒. 𝟒 𝟏𝟑𝟒. 𝟓 𝟏𝟑𝟐. 𝟔

𝒍 𝑻𝟏 − 𝑻𝟒 𝒍 𝟏𝟐𝟎 − 𝑻𝟒 𝑻𝟓 − 𝑻𝟒 𝒆̇ 𝟎 𝒍𝟐 +𝒌 + 𝒌𝒍 + =𝟎 𝟐 𝒍 𝟐 𝒍 𝒍 𝟒 𝒆̇ 𝟎 𝒍𝟐 𝑻𝟒 + 𝑻𝟐 + 𝑻𝟔 + 𝟏𝟐𝟎 − 𝟒𝑻𝟓 + =𝟎 𝒌 𝒍 𝑻𝟑 − 𝑻𝟔 𝒍 𝑻𝟓 − 𝑻𝟔 𝟏𝟐𝟎 − 𝑻𝟔 𝒆̇ 𝟎 𝒍𝟐 𝒉𝒍 𝑻 − 𝑻𝟔 + 𝒌 +𝒌 + 𝒌𝒍 + =𝟎 𝟐 𝒍 𝟐 𝒍 𝒍 𝟐 𝒒̇ 𝑳 𝒍 + 𝒌

𝒉

DIFERENCIAS FINITAS SUPERFICIES EXTENDIDAS

𝒍 𝑻𝟐 − 𝑻𝟑 𝒍 𝑻𝟔 − 𝑻𝟑 𝒆̇ 𝟎 𝒍𝟐 +𝒌 + =𝟎 𝟐 𝒍 𝟐 𝒍 𝟐

𝒍 𝒍 𝑻𝟕 − 𝑻𝟖 𝒍 𝑻𝟖 − 𝑻𝟕 𝟏𝟐𝟎 − 𝑻𝟕 𝒆̇ 𝟎 𝒍𝟐 𝑻 − 𝑻𝟖 + 𝒌 +𝒌 + 𝒌𝒍 + =𝟎 𝟐 𝟐 𝒍 𝟐 𝒍 𝒍 𝟐

𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖

= 𝟏𝟔𝟑. 𝟔°𝑪 = 𝟏𝟔𝟎. 𝟓°𝑪 = 𝟏𝟓𝟔. 𝟒°𝑪 = 𝟏𝟓𝟒. 𝟎°𝑪 = 𝟏𝟓𝟏. 𝟎°𝑪 = 𝟏𝟒𝟒. 𝟒°𝑪 = 𝟏𝟑𝟒. 𝟓°𝑪 = 𝟏𝟑𝟐. 𝟔°𝑪

Determine the temperature distribution based to time and distance, a thin copper fin joined by one side to a wall having a constant temperature of 200°C. The air around the fin is 10°C. Consider that initially fin is 30°C and the convective coefficient is 40W/ °C m2 . Consider Δx = 0.5 cm , time of 5 minutes. The answer must be shown in a table and a graph. (Properties of copper: k=332 Kcal/mh°C, ρ=8950 Kg/m3, Cp=0.0915 Kcal/Kg).(L=10 cm; w=3 cm; e=0.5 cm).(Using λ = 1/4 and λ = 1/2 discuss the results corresponding obtained). The equation for the fin is:



29/11/2018

ALETA RECTANGULAR

ALETA CILINDRICA

En nuestro caso: 𝐴 = 𝑤𝑡 𝐴 = 2𝑤 𝐿 + 𝑡⁄2

10°C

Properties of copper: k=332 Kcal/mh°C ρ=8950 Kg/m3 Cp=0.0915 Kcal/Kg

L=10 cm w=3 cm e=0.5 cm

e=0.5 cm

200°C 30°C

𝐴𝑐 w=3 cm

L=10 cm

29/11/2018

𝑘

𝑘

𝜕 𝜕𝑇 𝜕𝐴 𝐴 −ℎ 𝑇−𝑇 𝜕𝑥 𝜕𝑥 𝜕𝑥

= 𝜌𝐶 𝐴

𝜕𝐴 𝜕𝑇 𝜕 𝑇 𝜕𝐴 +𝐴 −ℎ 𝑇−𝑇 𝜕𝑥 𝜕𝑥 𝜕𝑥 𝜕𝑥 𝜕𝐴 =0 𝜕𝑥

𝜕𝑇 𝜕𝑡

= 𝜌𝐶 𝐴

𝜕𝐴 = 𝑤𝐿 𝜕𝑥

𝐵𝑖 =

ℎ𝐿 𝑘

𝐹 =

𝛼𝑡 𝐿

𝑘 𝜕 𝑇 ℎ 𝑤𝑒 − 𝑤𝐿 𝑇 − 𝑇 𝜌𝐶 𝜕𝑥 𝜌𝐶 𝜕𝑇 𝜕𝑡

𝛼

𝜕 𝑇 ℎ 𝐿 − 𝑇−𝑇 𝜕𝑥 𝜌𝐶 𝑒

= 𝜌𝐶 𝑒𝑤

=

𝜕𝑇 𝜕𝑡

𝜕𝑇 𝜕𝑡

Related Documents

Pdf Finite Diff.pdf
December 2019 12
Finite Automata
July 2020 6
Finite Rotations
November 2019 9
Finite Mathematics
November 2019 17
Finite Verb
May 2020 12

More Documents from "Stella S Daisy"

Arboles.docx
December 2019 14
Pdf Finite Diff.pdf
December 2019 12
Traseu.pdf
May 2020 6
Outline.docx
October 2019 11