Pc Solve By Quads By Comp Sq

  • Uploaded by: Hector R.
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Pc Solve By Quads By Comp Sq as PDF for free.

More details

  • Words: 621
  • Pages: 9
Solve Qua dratics by Comple ting th e Squ are MATH PRO JECT

MODELING COMPLETING THE SQUARE Use algebra tiles to complete a perfect square trinomial. Model the expression x 2 + 6x. Arrange the x­tiles to  form part of a square. To complete the square,  add nine 1­tiles.

You have completed the square.

x2

x x x x x x

x x x

1

1

1

1

1

1

1

1

1

x2 + 6x + 9 = (x + 3)2

SOLVING BY COMPLETING THE SQUARE To complete the square of the expression square of half the coefficient of x.

x2 + bx +

2

( ) ( b 2

x2 + bx, add the 

= x+ b 2

2

)

Completing the Square

What term should you add to x2 perfect square?

– 8x so that the result is a 

SOLUTION

The coefficient of x is –8, so you should add to the expression.

–8 x – 8x + 2 2

2 –8 , or 16,

( 2)

2

( )

= x2 – 8x + 16 = (x – 4)2

Completing the Square

Factor  2x2

–x–2=0

SOLUTION Write original equation.

2x2 – x – 2 = 0

Add 2 to each side.

2x2 – x = 2 1 x – 2 x=1

Divide each side by 2.

2

x2 –

2

( )

1 1 x+ – 2 4

=1+ 1

16

2 1 2 1 1 1 – – • Add                    =               , or 2 2               16 4

(

to each side.

)( )

Completing the Square

x2 –

( )

1 1 x+ – 2 4

(

1 x– 4

x–

2 2 1 1 1 – – • 1 Add                    =               , or 2 2               16 4

2

2

)

(

=1+ 1

16

to each side.

17 = 16

1 = ± 4

x=

Write left side as a fraction.

17 4

1 ± 4

1 The solutions are + 4

)( )

Find the square root of each side.

17 4

1 4

Add        to each side. 

1 17 – ≈ 1.28 and 4 4

17 ≈ – 0.78. 4

Completing the Square

1 The solutions are + 4 CHECK

1 17 – ≈ 1.28 and 4 4

17 ≈ – 0.78. 4

You can check the solutions on a graphing calculator.

CHOOSING A SOLUTION METHOD Investigating the Quadratic Formula

Perform the following steps on the general quadratic equation ax2 + bx + c = 0 where a ≠ 0.

ax2 + bx = – c

Subtract c from each side.

bx –c x + a+ = a

Divide each side by a.

2

( )= a +( ) b –c + b x + = ( 2a ) a 4a

bx b x + + a 2a 2

2

–c

b 2a 2

2

2

(

b x+ 2a

)

2

– 4ac + b 2 = 2 4a

2

Add the square of half the coefficient  of x to each side. Write the left side as a perfect square. Use a common denominator to express  the right side as a single fraction. 

CHOOSING A SOLUTION METHOD Investigating the Quadratic Formula

(

)

b x+ 2a

2

2 – 4ac + b = 2

4a

b ± x+ = 2a

2

b − 4ac 2a

± b2 − 4ac b x= –

2a

2a

–b ± b − 4ac 2

x=

2a

Use a common denominator to express  the right side as a single fraction.  Find the square root of each side. Include ± on the right side. Solve for x by subtracting the same  term from each side. Use a common denominator to express  the right side as a single fraction.

Related Documents


More Documents from "Hector R."