Pc Functions Basic Function Problems

  • Uploaded by: Hector R.
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Pc Functions Basic Function Problems as PDF for free.

More details

  • Words: 1,716
  • Pages: 17
Solved Problems on Basic Functions

Absolute Value Problem 1

Solve the equation 2 x  1  x  5  3.

Solution Strip first the absolute value signs. Start by observerving



1 2 x  1 if x    x  5 if x  5 2 that 2 x  1   and x  5    5  x if x  5  1  2 x if x  1  2  

1 x  6 if x  2 



1 2 x  1  x  5   4  3 x if  5  x  2  6  x if x  5   

Absolute Value Problem 1

Solve the equation 2 x  1  x  5  3.

Solution (cont’d)

1 x  6  3  x  9. This value satisfies the condition x  . 2 Hence x  9 is a solution. 7 1 4  3 x  3  x   . This solution satisfies  5  x  . 3 2 Hence it is a solution. 6  x  3  x  3. This does not satisfy the condition x  5. Hence it is not a solution.

Two solutions: x = 9 and x = -7/3

Absolute Value Problem 2

Simplify the expression x  y  x  y .

Solution

If x  y ,

x  y  x  y , and

x  y  x  y  x  y   x  y   2 x. If x  y ,

x  y  y  x, and

x  y  x  y  x  y   y  x   2y . Hence  2 x if x  y xy  xy  i.e.  2y if x  y x  y  x  y  2max  x, y  .

Absolute Value Problem 3 Solution

Sketch the graph of the function f  x   x 2  4 x  3 .

If x  0, x  x. Otherwise x   x. Hence  x 2  4 x  3 if x  0 

f  x   x2  4 x  3  

 x  4 x  3 if x  0 2

.

Next observe that x 2  4 x  3  0  x  1 or x  3. Hence x 2  4 x  3  0 if 1  x  3 and positive otherwise. Next observe that x 2  4 x  3  0  x  1 or x  3. Hence x 2  4 x  3  0 if  3  x  1 and positive otherwise.

Absolute Value Problem 3

Sketch the graph of the function f  x   x 2  4 x  3 .

Solution (cont’d)

By the previous considerations  x 2  4 x  3 if x  0 

f  x   x2  4 x  3  

2  x  4 x  3 if x  0

 

x 2  4 x  3 if 0  x  1 or x  3

2   x  4 x  3 if 1  x  3  2  x  4 x  3 if  1  x  0 or x  3   x 2  4 x  3 if  3  x  1

Graph of the function f.

Absolute Value Problem 4 Solution

Sketch the graph of the equation x  x  y  y . If x  0 and y  0, x  x  y  y  2 x  2y  y  x.

If x  0 and y  0, x  x  y  y  0  2y  y  0. If x  0 and y  0, x  x  y  y  2 x  0  x  0. If x  0 and y  0, x  x  y  y  0  0. Hence all points

 x, y  , x  0 and y  0,

satisfy the equation.

Graph of the equation

Inverse Functions Problem 1 Solution

y

Find a formula for the inverse of the function f  x  

4x  1 . x 1

4x  1 Solve x in terms of y from the equation y  . x 1

4x  1 y 1  y  x  1  4 x  1   4  y  x  y  1  x  x 1 4y

This computation assumes that x  1 and y  4.

Hence f 1  x  

x 1 . 4x

The above expression for x in terms of y defines the inverse function.

It is usual to call the variable of a function by “x”. That is why one usually replaces “y” by “x” in the final answer.

Inverse Functions Problem 2

1 ex Find a formula for the inverse of the function f  x   . 1 ex

Solution

1 ex x x x y  y 1  e  1  e  e  y  1  1  y   x 1 e

 ex 

 1 y  1 y  x  ln   provided that  1  y  1. 1 y  1 y 

 1 x  Hence the inverse function is f  x   ln  .   1 x  1

Inverse Functions Problem 3 Solution

1 ex Find a formula for the inverse of the function f  x   . 1 ex 1  ex Solve x in terms of y from the equation y  . 1 ex

1  ex x x y  y 1  e  1  e    x 1 e  1 y  1 y x x 1  y e  1  y  e   x  ln    . 1 y  1 y 

This computation assumes that

 1 x  Hence f  x   ln  .  1 x  1

1 y  0. 1 y

Inverse Functions Problem 4

Which of the formulae a)

 f+g

b)

 f og  f 1og1 1  f og  g1of 1

c)

1

 f 1  g1

1

are correct? Answer

Only formula c) is correct.

Inverse Functions Problem 5

Show that the number log2 3 is irrational.

Solution

Assume the contrary, i.e., assume that log2 3 

m for some m, n  ¥ . n

m m log2 3   2 n  3  2m  3n. n

This is not possible, since if m  0 and n  0, 2m is even and 3n is odd.

Hence we cannot find integers m and n such that log2 3 

m . n

Inverse Functions Problem 6

Answer

Assume that the function f has an inverse function denoted by g. Are the following true of false: 2.

If f is increasing, then g is also increasing.

3.

If f is decreasing, then g is increasing.

4.

The function f is injective.

5.

The function g is onto.

6.

f=1/g.

7.

f+g=0.

1 is true, 2 is false, 3 is true, 4 is true, 5 is false, 6 is false.

Inverse Functions Problem 7 Solution

Simplify cos  arcsin  t   . Use the formula cos      1  sin2    .

cos  arcsin  t    1  sin2  arcsin  t    1  t 2

By the definition of the arcsin function, -π/2 ≤ arcsin(t) ≤ π/2 for all t. Hence cos(arcsin(t)) is always non-negative, and we have plus sign in the front of the square root in the answer.

Inverse Functions 



Show that f  x   ln x  x 2  1

Problem 8

is an odd function.

Solution







since



x 1 x 2



 x  x 1

 



2   ln x  x 1  f  x 

2

x 1 x  2





1

f   x   ln  x  x  1  ln  2



2

x  1  x 2  1. 2

Inverse Functions Problem 9

Solve the equation arcsin  x   arcsin  y  .

Solution

arcsin  x   arcsin  y   sin  arcsin  x    sin  arcsin  y    x  y

Inverse Functions Problem 10

Solution

Show that the inverse function of an odd function is odd.

Assume that f is odd and has an inverse function f 1.

By the definition of the inverse function, the function f is onto and one-to-one. We have to show that y : f 1   y    f 1  y  . Let y be given. Since f is onto, x such that y  f  x   x  f 1  y  . Since f is odd,  f  x   f   x  .

f 1   y   f 1   f  x    f 1  f   x     x   f 1  y  . Hence f is odd.

Related Documents


More Documents from "Hector R."