Particle Physics & Cosmology Posters

  • Uploaded by: dgE
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Particle Physics & Cosmology Posters as PDF for free.

More details

  • Words: 6,668
  • Pages: 9
2

ω Ω r 1 , M1

M1

ω Ω r 2 , M2

M2

5

9

.

r2 r1

9

St ω

 dgE

Mag. of Hubble Cons. vs. Cosm. Age

EGM 1

The Cosmological Evolution Process 2.5 .10

Derived From Particle-Physics

42

Max. Cosmological Temp. Line: 3.2x1031(K)

t1



2

H = HβHα

Primordial Inflation

Thermal Inflation 42 2 .10 dH dt H β

dH dt e

M1

ω Ω r 2, M 2

M2

2



Region of positive Hubble gradient

t4

t1

0

42

0

Region of negative Hubble gradient

η 84 1 .10

FOR MORE INFO...

1

dH dt e

4

2

1

2

1 .10

42

84 2 .10

1 dH dt e

2 2 5 .µ . 5 .µ

1 84 3 .10

2 2 5 .µ . 5 .µ

2 1

5 .µ

dH dt e

2

4

2 2 2 5 .µ . 5 .µ . 5 .µ

1

2

84 4 .10

St T

H α

λ x 4.

http://www.deltagroupen gineering.com/public ations.htm

π

Hα ≈ 0.37ωh

λ x

5 .10

µ

λ x .ω h 4 .µ . µ π ( 4 .µ ) .c

ω h

1 .10

2 .µ

2

41

2 2 .µ

0 43 1 .10

1 .10

42

1 .10

41

1 .10

Big-Bang: 0(K)

40

1 .10

39

1 .10

t = (ΗβηΗα)-1

Time

TU2 (K)

dHdt (km/s/Mpc)2

|H| (km/s/Mpc)

0

-∞

-∞

+∞

Hα-1 ≈ 3.646967·10-43(s)

0

≈ -7.158752·10123

≈ 8.460941·1061

t1 ≈ 2.206287·10-42(s)

≈ 3.195518·1031

0

0

t4 ≈ 2.093267·10-41(s)

≈ 2.059945·1031

≈ 1.479167·10123

≈ 3.845994·1061

AU ≈ 14.575885·109(yr)

≈ 2.724752

≈ 4.500304·103

≈ 67.084304

See: “Quinta Essentia Part 2, 3, 4” for the complete mathematical derivations and computational algorithms.

38

1 .10

37

1 .10 1

36

Gr ap h 15  dgE

Cosmological Expansion

Cosmological Inflation

Max. Cosmological Temp. Line: 3.2x1031(K)

84 7 .10

G .h

1

84 1 .10

84 5 .10

5

H

1

2 2 2 5 .µ . 5 .µ . 5 .µ

c

. 2

. H5 µ

Hα Hγ . 5 .ln 1 .µ 2 2 Hγ 5 .µ Hγ

dH dt H γ

84 6 .10

ω h



1st Derivative of the Hubble Constant

(Hz^2)

(Hz)

T U2( H ) K W . St T . ln 2.

1

dH dt H β

2 2 5 .µ . 5 .µ dH dt e



84 2 .10

1 2 2 5 .µ . 5 .µ

St ω

Hγ = Ηβη

t4

1

9

r1

Hubble Expansion 1.5 .10

dH dt e

r2

.

Hubble Inflation

η

1 5 .µ

ω Ω r 1, M 1

5

9

43

1 .10

1 .10

35

42

1 .10

1 .10

η H β .H α Cosmological Age (s)

Applied Physical Constants NIST “≥ 2002” CODATA • c = 2.99792458·108 (ms-1) • G ≈ 6.6742·10-11 (m3kg-1s-2) • h ≈ 6.6260693·10-34 (Js) • KW ≈ 2.8977685·10-3 (mK) Derived Mathematical Constants λx, StT, Hα, η ≈ 4.595349, µ = 1/3 Graphic Range Variables Hβ, Hγ, t

41

34

1 .10

40

1 .10 1 η H β .H α Cosmological Age (s)

1 .10

33

39

1 .10

1 .10

32

38

1 .10

1 .10

37

31

1 .10

36

1 .10

30

www.deltagroupengineering.com  dgE Derived Physical Properties • Photon mass: mγγ ≤ 3.195095·10-45(eV) • Graviton mass: mgg = 2mγγ • Minimum gravitational lifetime of starving matter: TL = h/mγγ = 2h/mgg ≈ 4.101731·1022(yr) ≈ 2.814053·1012AU • Cosmological Constant: Λ0 ≈ 6.750456·103 (km/s/Mpc)2 Λ0/c2 ≈ 7.888431·10-47 (km-2) [3c2/8πG]·Λ0 ≈ 1.139608·10-9 (Pa)

1st Derivative of the Hubble Constant

EGM

2 .10

84 1

The Cosmological Evolution Process



Derived From Particle-Physics 1 .10

Region of positive Hubble gradient

t4

t1

84

0 0 2nd Derivative of the Hubble Constant 8 .10

t5

η

dH dt H β

84 1 .10

6 .10

2

1 2 .10

dH2 dt2 H β

84

dH dt e

2 2 5 .µ . 5 .µ

1

dH2 dt2 e

4

dH dt e

η 125 5 .10

5 .µ

2

1

2 2 5 .µ . 5 .µ

1

2 2 5 .µ . 5 .µ dH2 dt2 e

2 2 2 5 .µ . 5 .µ . 5 .µ

4 .10

125

3 .10

125

2 .10

125

2

1 .10

125

2 2 2 5 .µ . 5 .µ . 5 .µ

1

2

84 4 .10

ω h

St T

H α

2

1

0 0

1 .10

Hγ = Ηβ

1

2

4

2 1

3 2 H α .H γ . 5 .µ 2 . ln 1 . 5 .µ 2 2 Hγ 5 .µ Hγ

dH2 dt2 H γ

1

84 3 .10 2 2 5 .µ . 5 .µ

125

1 dH2 dt2 e

1 (Hz^3)

(Hz^2)

5 .µ

125 7 .10

Region of negative Hubble gradient

1 dH dt e

125

125

η 5 .10

c

5

G .h

λ x

ω h

π 2

µ

Cosmological Inflation 6 .10

84

7 .10

84

42

1 .10 η H β .H α

Cosmological Expansion

41

1 .10

40

1

Cosmological Age (s)

2 2 .µ

Hα ≈ 0.37ωh

λ x

1 .10

2 .µ

4.

λ x .ω h 4 .µ . µ π ( 4 .µ ) .c

84

Max. Cosmological Temp. Line: 3.2x1031(K)

1 .10

43

1 .10

42

Big-Bang: 0(K)

1 .10

41

1 .10

t = (ΗβηΗα)-1

Time

TU2 (K)

dHdt (km/s/Mpc)2

|H| (km/s/Mpc)

0

-∞

-∞

+∞

Hα-1 ≈ 3.646967·10-43(s)

0

≈ -7.158752·10123

≈ 8.460941·1061

t1 ≈ 2.206287·10-42(s)

≈ 3.195518·1031

0

0

t4 ≈ 2.093267·10-41(s)

≈ 2.059945·1031

≈ 1.479167·10123

≈ 3.845994·1061

AU ≈ 14.575885·109(yr)

≈ 2.724752

≈ 4.500304·103

≈ 67.084304

See: “Quinta Essentia Part 2, 3, 4” for the complete mathematical derivations and computational algorithms.

40

1 .10

39

1 .10

38

1 .10

37

1 .10

36

1

η H β .H α Cosmological Age (s)

Applied Physical Constants NIST “≥ 2002” CODATA • c = 2.99792458·108 (ms-1) • G ≈ 6.6742·10-11 (m3kg-1s-2) • h ≈ 6.6260693·10-34 (Js) • KW ≈ 2.8977685·10-3 (mK) Derived Mathematical Constants λx, StT, Hα, η ≈ 4.595349, µ = 1/3 Graphic Range Variables Hβ, Hγ, t

www.deltagroupengineering.com  dgE Derived Physical Properties • Photon mass: mγγ ≤ 3.195095·10-45(eV) • Graviton mass: mgg = 2mγγ • Minimum gravitational lifetime of starving matter: TL = h/mγγ = 2h/mgg ≈ 4.101731·1022(yr) ≈ 2.814053·1012AU • Cosmological Constant: Λ0 ≈ 6.750456·103 (km/s/Mpc)2 Λ0/c2 ≈ 7.888431·10-47 (km-2) [3c2/8πG]·Λ0 ≈ 1.139608·10-9 (Pa)

Av. Cosmological Temperature vs. Age

EGM

2

1

The Cosmological Evolution Process

t1



Derived From Particle-Physics

H = HβHα

ω Ω r 1, M 1

M1

ω Ω r 2, M 2

M2

5

9

.

r2 r1

9

St ω

TU2(H) → TU3(Hβ) t1

71 8 .10

t2

K W .St T .

dT dt ( t )

2 5 .ln H α .t .µ 5 .µ

2

2.5 .10

31

2 .10

31

1.5 .10

31

1 .10

31

5 .10

30

1

.t

71 4 .10

2 5 .µ

71 2 .10 dT dt

2 10 .µ

1

2 2 5 .µ . 5 .µ

H β .H α

1

dT dt t 1 (K/s)

0 5 .10

t2

dT dt t 3

1

2nd Derivative of Av. Cosmological Temp.

113

dT dt t 2 2 .10

71

4 .10

71

t3

0

dT2 dt2( t )

t

t2

H β .H α

3

2

8 .10

5 .µ

2

1

2

1

.t2

t3

1 114 1 .10

1 .10156

dT2 dt2 t 1 dT2 dt2 t 2 dT2 dt2 t 3

1.5 .10114

dT3 dt3 (K/s^3)

2 2 2 5 .µ . 5 .µ . 5 .µ

71 6 .10

2

2

2 2 5 .µ . ln H α .t . 5 .µ

3rd Derivative of Av. Cosmological Temp.

1 .10157

dT2 dt2

2 2 15 .µ . 5 .µ

K W .St T .

5 .10113

(K/s^2)

Av. Cosmological Temperature (K)

31

71 6 .10

1

T U3 e

3 .10

. 2

. H5 µ

H

t

T U3 H β

T U3 e



T U2( H ) K W . St T . ln

31

1st Derivative of Av. Cosmological Temp.

72 1 .10

T U3 e



3.5 .10

H β .H α

1 .10155 1

dT3 dt3 t 1 dT3 dt3 t 2 1 .10154

71

114 2 .10

1 .10153

dT3 dt3( t )

114 2.5 .10

1 .10

72

1.2 .10

72

3 .10114 42 2 .10

Hγ = Ηβη

42 1 .10

K W .St T .

2 2 2 5 .µ .ln H α .t . 5 .µ . 5 .µ

t 1 .10152 42 2 .10

3 .10

42

4 .10

42

41 1 .10

5 .10

42

6 .10

42

3 .10

7 .10

42

42

42

5 .10

8 .10

42

4 .10

42

6 .10

42

7 .10

42

8 .10

42

42 41 9 .10 1 .10 1 H β .H α Cosmological Age (s)

42 41 9 .10 1 .10 1 H β .H α Cosmological Age (s)

1.1 .10

41

1.1 .10

1.2 .10

41

1.2 .10

41

41

3 5 .µ

2

2

1.3 .10

2 2 15.µ . 5 .µ

2

2

.t 3

1.3 .10

41

41

1.4 .10

41

1.4 .10

1.5 .10

41

40 1 .10

41

1.5 .10

41

1 .10

39

1 H β .H α Cosmological Age (s)

ω h

St T

H α

c

5

λ x

G .h

2 .µ π

4 .µ ( 4 .µ )

4.

. µ

ω h

.c

λ x .ω h

µ

2

π

Hα ≈ 0.37ωh

λ x

2 2 .µ

1 .10

43

1 .10

42

1 .10

Big-Bang: 0(K)

41

1 .10

t = (ΗβηΗα)-1

Time

TU2 (K)

dHdt (km/s/Mpc)2

|H| (km/s/Mpc)

0

-∞

-∞

+∞

Hα-1 ≈ 3.646967·10-43(s)

0

≈ -7.158752·10123

≈ 8.460941·1061

t1 ≈ 2.206287·10-42(s)

≈ 3.195518·1031

0

0

t4 ≈ 2.093267·10-41(s)

≈ 2.059945·1031

≈ 1.479167·10123

≈ 3.845994·1061

AU ≈ 14.575885·109(yr)

≈ 2.724752

≈ 4.500304·103

≈ 67.084304

See: “Quinta Essentia Part 2, 3, 4” for the complete mathematical derivations and computational algorithms.

40

1 .10 H β .H α

39

1 .10

1

Cosmological Age (s)

Applied Physical Constants NIST “≥ 2002” CODATA • c = 2.99792458·108 (ms-1) • G ≈ 6.6742·10-11 (m3kg-1s-2) • h ≈ 6.6260693·10-34 (Js) • KW ≈ 2.8977685·10-3 (mK) Derived Mathematical Constants λx, StT, Hα, η ≈ 4.595349, µ = 1/3 Graphic Range Variables Hβ, Hγ, t

38

1 .10

37

1 .10

36

www.deltagroupengineering.com  dgE Derived Physical Properties • Photon mass: mγγ ≤ 3.195095·10-45(eV) • Graviton mass: mgg = 2mγγ • Minimum gravitational lifetime of starving matter: TL = h/mγγ = 2h/mgg ≈ 4.101731·1022(yr) ≈ 2.814053·1012AU • Cosmological Constant: Λ0 ≈ 6.750456·103 (km/s/Mpc)2 Λ0/c2 ≈ 7.888431·10-47 (km-2) [3c2/8πG]·Λ0 ≈ 1.139608·10-9 (Pa)

EGM

3.5 .10

Av. Cosmological Temp. vs. Hubble Cons.

31 Hα

The Cosmological Evolution Process

2

1 t1

Derived From Particle-Physics

H = HβHα

ω Ω r 1, M 1

M1

ω Ω r 2, M 2

M2

31 3 .10

3.5 .10

TU2(H) → TU3(Hβ)

5

9

.

r2

9

St ω

r1





T U2( H ) K W . St T . ln

. 2

. H5 µ

H

Av. Cosmological Temp. vs. Hubble Cons.

31

Av. Cosmological Temperature vs. Age

1

1

t2

t3

1

3.5 .1031

t1



3 .1031

3 .10

31 2.5 .1031

31 2.5 .10 1

T U3 e

2 5 .µ 31 2 .10 2 10 .µ

T U3 e

2 2 5 .µ . 5 .µ

T U3 e

ω h

St T

H α

2 2 2 5 .µ . 5 .µ . 5 .µ

c

5

λ x

G .h

2 3

λ x .ω h . µ π ( 4 .µ ) .c

ω h

1.5 .10

2 2 .1031 2

2 2 5 .µ . 5 .µ

1 1

2 2 15 .µ . 5 .µ T U3 e

2 2 2 5 .µ . 5 .µ . 5 .µ

2

1.5 .1031

2 3

2

5 .µ

1 .1031

2 5 .1030

31 2 .10 10 .µ

2

1 1 .10

T U3 e

2 2 5 .µ . 5 .µ

2 2 15 .µ . 5 .µ T U3 e

43

1 .10

42

1

2 2 2 5 .µ . 5 .µ . 5 .µ

2

2 3

1 .10

41

1 .10

40

1 .10 1 H β .H α Cosmological Age (s)

39

1 .10

38

1 .10

37

1 .10

36

31 1.5 .10 2

1 .10

31

5 .10

30

31 1 .10

43

1 .10

42

1 .10

41

1 .10

40

1 .10 H β .H α Hubble Constant (Hz)

39

1 .10

38

1 .10

37

1 .10

36

2

1 .10

31

2

5 .10

30

µ

2 2 .µ

Hα ≈ 0.37ωh

λ x

5 .µ

10 .µ T U3 e

2 .µ

4.

π

4 .µ

T U3 e

1

2

1 T U3 e

1

1

2 2 15 .µ . 5 .µ

31 2.5 .10

T U3 H β Av. Cosmological Temperature (K)

Av. Cosmological Temperature (K)

T U3 H β

Av. Cosmological Temperature (K)

T U3 H β

1 .10

43

1 .10

42

1 .10

41

1 .10

Big-Bang: 0(K) Time

TU2 (K)

dHdt (km/s/Mpc)2

|H| (km/s/Mpc)

0

-∞

-∞

+∞

Hα-1 ≈ 3.646967·10-43(s)

0

≈ -7.158752·10123

≈ 8.460941·1061

t1 ≈ 2.206287·10-42(s)

≈ 3.195518·1031

0

0

t4 ≈ 2.093267·10-41(s)

≈ 2.059945·1031

≈ 1.479167·10123

≈ 3.845994·1061

AU ≈ 14.575885·109(yr)

≈ 2.724752

≈ 4.500304·103

≈ 67.084304

See: “Quinta Essentia Part 2, 3, 4” for the complete mathematical derivations and computational algorithms.

40

1 .10 . Hβ Hα Hubble Constant (Hz)

39

Applied Physical Constants NIST “≥ 2002” CODATA • c = 2.99792458·108 (ms-1) • G ≈ 6.6742·10-11 (m3kg-1s-2) • h ≈ 6.6260693·10-34 (Js) • KW ≈ 2.8977685·10-3 (mK) Derived Mathematical Constants λx, StT, Hα, η ≈ 4.595349, µ = 1/3 Graphic Range Variables Hβ, Hγ, t

1 .10

38

1 .10

37

1 .10

36

www.deltagroupengineering.com  dgE Derived Physical Properties • Photon mass: mγγ ≤ 3.195095·10-45(eV) • Graviton mass: mgg = 2mγγ • Minimum gravitational lifetime of starving matter: TL = h/mγγ = 2h/mgg ≈ 4.101731·1022(yr) ≈ 2.814053·1012AU • Cosmological Constant: Λ0 ≈ 6.750456·103 (km/s/Mpc)2 Λ0/c2 ≈ 7.888431·10-47 (km-2) [3c2/8πG]·Λ0 ≈ 1.139608·10-9 (Pa)

The Cosmological evolution process derived from Particle-Physics utilising the EGM construct (1 of 2) e

5 .µ

Av. Cosmological Temperature vs. Age

Av. Cosmological Temperature

1

31 3.5 .10

1

e

31 3 .10

31 3 .10

31 2.5 .10

1 T U3 e

2 5 .µ 31 1.5 .10

1 .10

0.01

3

1 .10

4

1 .10

5

1 .10

1 .10

6

43

42

1 .10

1 .10

41

1 .10

40

Hβ Dimensionless Range Variable

1 .10 1 H β .H α Cosmological Age (s)

39

1 .10

38

1 .10

37

5 .µ

2 31 2 .10 2 10 .µ

T U3 e

1

2 2 5 .µ . 5 .µ

1

2 2 15 .µ . 5 .µ T U3 e

2

2 2 2 5 .µ . 5 .µ . 5 .µ

31 1.5 .10

2 3

2

Av. Cosmological Temp. vs. Hubble Cons.

3.5 .10

31

1

1.5 .10

31

T U3 H β

2

10 .µ

2

1 1

2 2 15 .µ . 5 .µ T U3 e

2

2

2 2 2 5 .µ . 5 .µ . 5 .µ

3

2 2 15 .µ . 5 .µ T U3 e

2 2 2 5 .µ . 5 .µ . 5 .µ

2

30 5 .10

1 .10

36

1 .10

43

1 .10

42

1 .10

41

1 .10

40

1 .10 1 H β .H α Cosmological Age (s)

39

1 .10

38

1 .10

37

1 .10

1 .10

36

Av. Cosmological Temperature vs. Size

1

c

2.5 .10

31

2 .10

31

3.5 .10

10 .µ T U3 e

2

1.5 .10

31

1

2 2 5 .µ . 5 .µ

1

2 2 15 .µ . 5 .µ T U3 e

2

2

2 2 2 5 .µ . 5 .µ . 5 .µ

41

1 .10

40

39

1 .10 1 H β .H α Cosmological Age (s)

1 .10

38

1 .10

37

1 .10

36

3

Av. Cosmological Temperature vs. Size

31

3.5 .10

2

2.5 .10

31

2 .10

31

1.5 .10

31

T U3 H β

1 T U3 e

2

5 .µ

10 .µ T U3 e

2

1

2 2 5 .µ . 5 .µ

1

2 2 15 .µ . 5 .µ T U3 e

2

2 2 2 5 .µ . 5 .µ . 5 .µ

2 3

31

31 3 .10

2

2.5 .10

31

2 .10

31

1.5 .10

31

1 2

5 .µ

T U3 e

10 .µ

2

1

2 2 5 .µ . 5 .µ

T U3 e

1

2 2 15 .µ . 5 .µ

2

2 2 2 5 .µ . 5 .µ . 5 .µ

T U3 e

2 3

2

31

1 .10

31

1 .10

31

1 .10

31

5 .10

30

5 .10

30

5 .10

30

43

1 .10

42

1 .10

41

1 .10

40

1 .10 H β .H α Hubble Constant (Hz)

39

1 .10

38

37 1 .10

36 1 .10

1 .10

1st Derivative of Av. Cosmological Temp. t1

43

1 .10

42

1 .10

41

1 .10

40

1 .10 H β .H α Hubble Constant (Hz)

39

1 .10

38

37 1 .10

36 1 .10

1 .10

t2

71 8 .10

34

1 .10

33

1 .10

32

1 .10

31

1 .10

30

29

1 .10

1 .10

28

1 .10

27

71 6 .10

71 4 .10

34

1 .10

1 .10

33

1 .10

32

1 .10

1. H β .H α c EGM Cosmological Size (m)

1st Derivative of Av. Cosmological Temp.

72 1 .10

t2

2nd Derivative of Av. Cosmological Temp.

113 5 .10

t3

t1

5 .10

113

1 .10

114

31

1 .10

30

1 .10

29

1 .10

28

1 .10

27

1. H β .H α c EGM Cosmological Size (m)

2nd Derivative of Av. Cosmological Temp.

113 5 .10

t2

t2

t3

0

5 .10

113

1 .10

114

1.5 .10

114

114

2 .10

114

114 2.5 .10

2.5 .10

114

3 .10

114

71 2 .10

1

dT dt

H β .H α

1

dT2 dt2

dT dt t 1

71 2 .10

0

(K/s^2)

(K/s)

0

dT dt t 2

dT dt t 2 71 2 .10

dT dt t 3

71 4 .10

71 4 .10

71 6 .10

71 6 .10

71 8 .10

71 8 .10

72 1 .10

1

H β .H α

dT2 dt2

dT2 dt2 t 1

(K/s^2)

71 2 .10

(K/s)

1 .10

t 2 .c t 3 .c

T U3 H β

2

5 .µ

71 4 .10

dT2 dt2 t 2 dT2 dt2 t 3

dT2 dt2 t 1 dT2 dt2 t 2 dT2 dt2 t 3

114 1.5 .10

2 .10

1

H β .H α

72 1 .10

72 1.2 .10 42 1 .10

1 .10

41

1 .10

40

1 .10

72 1.2 .10 42 1 .10

39

1 .10

41

1 .10

1 H β .H α Cosmological Age (s)

40

1 .10

3 .10

39

114 2 .10

42

3 .10

42

4 .10

42

5 .10

42

42

6 .10

7 .10

42

8 .10

42

1 H β .H α Cosmological Age (s)

3rd Derivative of Av. Cosmological Temp.

157

t1

1 .10

42 41 9 .10 1 .10 1 H β .H α Cosmological Age (s)

t2

41

1.2 .10

41

1.3 .10

41

1.4 .10

41

1.5 .10

41

2 .10

42

3 .10

42

4 .10

42

5 .10

42

6 .10

156

1 .10

42

7 .10

42

8 .10

42

42 41 9 .10 1 .10 1 H β .H α Cosmological Age (s)

1.1 .10

1st Derivative of the Hubble Constant

3rd Derivative of Av. Cosmological Temp.

157

t2

1.1 .10

1.6 .10

t3

t1

156

1.4 .10

84

1.2 .10

84

41

1.2 .10

41

1.3 .10

41

1.4 .10

41

1.5 .10

41

1st Derivative of the Hubble Constant 2 .10

84

84 1

t4

t4

t1

Hα 1 .10

1 .10

42

31 3 .10

1 T U3 e

71 6 .10

1 .10

1 .10

t 1 .c



0

dT dt t 3

43

30

71 8 .10

dT dt t 1

2

1 .10

72 1 .10

H β .H α

31 1.5 .10

2 3

5 .10

1 .10

dT dt

2

30 5 .10

t2 t3

1

2 2 5 .µ . 5 .µ

1

30 5 .10

Av. Cosmological Temperature (K)

31

2 .10

1

31 1 .10

31 3 .10

Av. Cosmological Temperature (K)

Av. Cosmological Temperature (K)

2.5 .10

31 2 .10 2

31 1 .10

Av. Cosmological Temp. vs. Hubble Cons.

31

1 t1

31 3 .10

T U3 H β

2

10 .µ T U3 e

2 2 5 .µ . 5 .µ

Big-Bang: 0(K)

31 Hα

5 .µ

31 1 .10

Average Cosmological Temperature Maximum Av. Cosmological Temperature

3.5 .10

1 T U3 e

Av. Cosmological Temperature (K)

0.1

T U3 H β

1 T U3 e

Av. Cosmological Temperature (K)

31 2 .10

30 5 .10

1

T U3 H β Av. Cosmological Temperature (K)

2

T U3 H β

31 1 .10

T U3 e

31 3.5 .10

t3

31 2.5 .10

31 1.5 .10

5 .µ

t2

31 3 .10

1

T U3 e

Av. Cosmological Temperature vs. Age

31 3.5 .10

t1

31 2.5 .10

31 2 .10

5 .µ

1 Hα

31 2.5 .10

T U3 H β

T U3 e

2 5 .µ . 1 Hα

31 3 .10

Av. Cosmological Temperature (K)

Av. Cosmological Temperature (K)



Av. Cosmological Temperature vs. Age

31 3.5 .10

1

2

Region of positive Hubble gradient

84

0 0

dH dt H β

η

dH dt H β

1 155 dT3 dt3

dT3 dt3 t 2 1 .10

H β .H α

1 .10 1

155

dH dt e

dT3 dt3 t 1 dT3 dt3 t 2

154

1 .10

153

1 .10

2

1 .10

1

dH dt e

2 2 5 .µ . 5 .µ

dH dt e

2 2 5 .µ . 5 .µ

154

8 .10

1

4

2 2 2 5 .µ . 5 .µ . 5 .µ

2 1

2

6 .10

83

5 .µ

dH dt e

2 .10

83

84

2 .10

84

3 .10

84

4 .10

84

5 .10

84

6 .10

84

7 .10

84

1

2 2 5 .µ . 5 .µ

1

2 2 5 .µ . 5 .µ dH dt e

83

2

1

83

4 .10

1 .10 1

84

1

dH dt e

1 .10

5 .µ

(Hz^2)

1 .10 1

(Hz^2)

H β .H α

(K/s^3)

(K/s^3)

dT3 dt3

dT3 dt3 t 1

Region of negative Hubble gradient

η

4

2 2 2 5 .µ . 5 .µ . 5 .µ

2 1

2

Cosmological Inflation

0 0 1 .10

152 2 .10

42

3 .10

42

4 .10

42

5 .10

42

6 .10

42

7 .10

42

8 .10

42

9 .10

42

H β .H α

1 .10 1

41

1.1 .10

41

1.2 .10

41

1.3 .10

41

1.4 .10

41

1.5 .10

1 .10

41

Max. Cosmological Temp. Line: 3.2x1031(K)

152 2 .10

42

3 .10

42

4 .10

42

5 .10

42

6 .10

42

7 .10

42

8 .10

42

9 .10

42

H β .H α

Cosmological Age (s)

1 .10 1

41

1.1 .10

41

1.2 .10

41

1.3 .10

41

1.4 .10

41

1.5 .10

41

1 .10

43

1 .10

42

1 .10

41

1 .10

40

1 .10 η H β .H α

Cosmological Age (s)

39

1 .10

38

1 .10

37

1 .10

36

1 .10

43

1 .10

42

1 .10

41

1

Cosmological Age (s)

2

H = HβHα

ω Ω r 1, M 1

M1

ω Ω r 2, M 2

M2

Cosmological Expansion

153

1 .10

40

1 .10 1 η H β .H α Cosmological Age (s)

39

1 .10

38

1 .10

37

1 .10

36

5

9

.

r2 r1

9

St ω



T U2( H ) K W . St T . ln

Hα H

. 2

. H5 µ

TU2(H) → TU3(Hβ)

T U3 H β

(i) “Big-Bang” properties: “t = 1/Hα”, “H = Hα”, “TU2(Hα) = TU3(1) = 0(K)”; (ii) “Maximum Cosmological Temperature = 3.2 x1031(K)” @ “t = t1”

K W .St T .ln

1 Hβ

. H .H β α

5 .µ

2

www.deltagroupengineering.com  dgE

The Cosmological evolution process derived from Particle-Physics utilising the EGM construct (2 of 2) 1st Derivative of the Hubble Constant 2 .10 t2 1 .10

2nd Derivative of the Hubble Constant

1st Derivative of the Hubble Constant

84

t5

84

1 .10

t4

0

1 .10 1

2 5 .µ

1

2 2 5 .µ . 5 .µ

2 .10

84

3 .10

84

dH dt e

1

4

2 2 5 .µ . 5 .µ

4 .10

84

5 .10

6 .10

7 .10

2 .10

84

3 .10

84

1

2 2 5 .µ . 5 .µ 2

1

1 1

dH dt e

2

2 2 2 5 .µ . 5 .µ . 5 .µ

127

4 .10

127

3.5 .10

127

t1

t2

t3

4

dH2 dt2 H β

2 2 2 5 .µ . 5 .µ . 5 .µ

3 .10

127

127

2.5 .10

127

2 .10

127

dH2 dt2 H β

η

127 1.5 .10 2

1

127

η

2 4 .10

84

84

5 .10

84

84

6 .10

84

84

7 .10

84

dH dt e

3 .10

2.5 .10

84

(Hz^3)

1

2 2 5 .µ . 5 .µ dH dt e

η

2 5 .µ

1 dH dt e

3.5 .10

1 Hα

0

dH dt H β

84

(Hz^2)

(Hz^2)

dH dt e

127

0

η 1 .10

4 .10

84

0

dH dt H β

2nd Derivative of the Hubble Constant

84

t3

(Hz^3)

2 .10

2 .10

127

1.5 .10

127

1 .10

127

1 .10

127

5 .10

126

5 .10

126

0

43

1 .10

42

1 .10

41

1 .10

40

39

1 .10 1 η H β .H α Cosmological Age (s)

1 .10

38

1 .10

37

1 .10

36

1 .10

43

1 .10

42

1 .10

2nd Derivative of the Hubble Constant

4 .10

127

3.5 .10

127

3 .10

127

41

1 .10

40

1 .10 1 η H β .H α Cosmological Age (s)

39

1 .10

38

1 .10

37

1 .10

36

2nd Derivative of the Hubble Constant

t1

dH2 dt2 H β

125 5 .10

127

1.5 .10

127

5 .µ

2

2 2 5 .µ . 5 .µ

1

125 3 .10

2 2 5 .µ . 5 .µ dH2 dt2 e

1 .10

dH2 dt2 e

125 4 .10

1 dH2 dt2 e

t5

125 6 .10

η

dH2 dt2 H β

125 5 .10

4

2 2 2 5 .µ . 5 .µ . 5 .µ

5 .µ

2 2 5 .µ . 5 .µ

125 2 .10

2

dH2 dt2 e

1

125 3 .10 4

2 2 2 5 .µ . 5 .µ . 5 .µ

dH2 dt2 e

1

125 4 .10

2 2 5 .µ . 5 .µ

1

2 2 5 .µ . 5 .µ

125 3 .10 4

2

2 2 2 5 .µ . 5 .µ . 5 .µ

dH2 dt2 e

125 2 .10

2

1

125 1 .10

125 1 .10 0

0

0

125 1 .10

0

2

1

125 2 .10

2

0

126

5 .µ

2 1

125 1 .10

127

dH2 dt2 e

125 4 .10

2 2 5 .µ . 5 .µ

2 1

1 1

dH2 dt2 e

125 5 .10 1

2

0

5 .10

η

1 1

40

125 7 .10

125 6 .10

η

1 .10

2nd Derivative of the Hubble Constant

t4

125 7 .10

(Hz^3)

2 .10

(Hz^3)

(Hz^3)

dH2 dt2 H β

dH2 dt2 e

41 1 .10 1 η H β .H α Cosmological Age (s)

t3

1

127

42 1 .10

125 8 .10

t2

125 6 .10

η

43 1 .10

125 8 .10

t4

dH2 dt2 H β

40 1 .10

2nd Derivative of the Hubble Constant

125 8 .10

t5

41 1 .10 1 η H β .H α Cosmological Age (s)

125 7 .10

2.5 .10

0

42 1 .10

(Hz^3)

1 .10

0

0

43 1 .10

0

125 1 .10

125 1 .10

0

1 .10

43

1 .10

42

1 .10

41

1 .10

40

1 .10

42

1 .10

Mag. of Hubble Cons. vs. Cosm. Age 1 42

40

42

1 .10

1 .10

Max. Cosmological Temp. Line: 3.2x1031(K)

2.5 .10

42

1 .10

40

1 .10

42

41 1 .10 1 η H β .H α Cosmological Age (s)

η H β .H α Cosmological Age (s)

Av. Cosmological Temp. vs. Hubble Cons.

31 3.5 .10

40

1



t1

31 3 .10

1 .10

Av. Cosmological Temp. vs. Hubble Cons.

31 3.5 .10

1



t4



41 1

Mag. of Hubble Cons. vs. Cosm. Age 1

t1



1 .10

η H β .H α Cosmological Age (s)

η H β .H α Cosmological Age (s)

2.5 .10

41 1

1

t1

31 3 .10

Primordial Inflation

5 .µ

2

1 1.5 .10

dH dt e

42

(Hz)

2 2 5 .µ . 5 .µ

1

2 2 5 .µ . 5 .µ dH dt e

4

2 1

2

1 .10

31 2.5 .10

1

2 2 5 .µ . 5 .µ

42

1

2 2 5 .µ . 5 .µ

42 dH dt e

5 .10

2

1 dH dt e

2 2 2 5 .µ . 5 .µ . 5 .µ

5 .µ

1.5 .10

t4

1 dH dt e

42

η

1

(Hz)

dH dt e

2 .10 dH dt H β

Hubble Inflation Hubble Expansion

4

2 2 2 5 .µ . 5 .µ . 5 .µ

41

2 1

2

1 .10

42

5 .10

41

T U2

dH dt H β

31 2.5 .10 Av. Cosmological Temperature (K)

Thermal Inflation

42

η

1

Av. Cosmological Temperature (K)

2 .10 dH dt H β

η 31 2 .10

T U3 H β 1 T U3 e

5 .µ

2 31 1.5 .10

1 .10

42

1 .10

41

1 .10

40

1 .10

39

1 .10

Big-Bang: 0(K)

Time

38

37 36 1 .10 1 η H β .H α Cosmological Age (s)

1 .10

1 .10

35

1 .10

34

TU2 (K)

1 .10

33

1 .10

32

1 .10

31

1 .10

0 43 1 .10

30

dHdt (km/s/Mpc)2

1 .10

42

1 .10

41

1 .10

40

1 .10

39

-∞

+∞

Hα-1 ≈ 3.646967·10-43(s)

0

≈ -7.158752·10123

≈ 8.460941·1061

t4 ≈ 2.093267·10-41(s) 9

AU ≈ 14.575885·10 (yr) Applied Physical Constants NIST “≥ 2002” CODATA • c = 2.99792458·108 (ms-1) • G ≈ 6.6742·10-11 (m3kg-1s-2) • h ≈ 6.6260693·10-34 (Js) • KW ≈ 2.8977685·10-3 (mK) Derived Mathematical Constants λx, StT, Hα, η ≈ 4.595349, µ = 1/3 Graphic Range Variables Hβ, Hγ, t

≈ 2.059945·1031 ≈ 2.724752

0

1 .10

35

3

≈ 3.845994·1061

34

1 .10

33

1 .10

32

1 .10

31

1 .10



t1

ω h λ x

t2

1 .10

2 . 4.µ . λ x ω h St T µ π ( 4.µ ) . c

t

e

e

2 .µ

t3

e

2

42

41 1 .10

. 1 Hα

1 .10

40

1 .10

39

2

dT dt ( t )

38 1 .10

1 .10

37

36 1 .10

43 1 .10

1 .10

42

41 1 .10

1 .10

2 5 .ln H α .t .µ

K W .St T .

1

2 2 5 .µ . 5 .µ

dT2 dt2 ( t )

. 1 Hα

1

2

2 2 2 5 .µ . 5 .µ . 5 .µ

K W .St T .

5 .µ

2

2

. 1 Hα

dT3 dt3 ( t )

39

38 1 .10

1 .10

37

36 1 .10

1

2 2 5 .µ . ln H α .t . 5 .µ 5 .µ

2

.t

1

2

K W .St T .

1

2

2.

2

1 .10

.t

t

3

40

η dH dt H β Hubble Constant (Hz)

t

2 2 5 .µ ln H α .t . 5 .µ . 5 .µ

t

1

t4

e

t5

e

2 2 5 .µ . 5 .µ

2 2 5 .µ . 5 .µ

η

31 1.5 .10

3

2

2 2 15.µ . 5 .µ

2

2

2 5 .µ . 3

t

2

1 H γ .H α

Hγ Hβ

5 .µ

2 2 15 .µ . 5 .µ

Hα ≈ 0.37ωh

2

30 5 .10

10 .µ

µ

5 .µ

η dH dt H β , H β .H α Hubble Constant (Hz)

2.µ π

31 2 .10

1 T U3 e

31 1 .10

1

λ x 4.

η

31 1 .10

30

5

≈ 67.084304

Derived Physical Properties • Photon mass: mγγ ≤ 3.195095·10-45(eV) • Graviton mass: mgg = 2mγγ • Minimum gravitational lifetime of starving matter: TL = h/mγγ = 2h/mgg ≈ 4.101731·1022(yr) ≈ 2.814053·1012AU • Cosmological Constant: Λ0 ≈ 6.750456·103 (km/s/Mpc)2 Λ0/c2 ≈ 7.888431·10-47 (km-2) [3c2/8πG]·Λ0 ≈ 1.139608·10-9 (Pa)

1 .10

c G. h

0

≈ 1.479167·10123 ≈ 4.500304·10

37 36 1 .10 1 η H β .H α Cosmological Age (s)

1 .10

ω h

-∞

≈ 3.195518·1031

38

|H| (km/s/Mpc)

0

t1 ≈ 2.206287·10-42(s)

1 .10

dH dt H β

30 5 .10

43 1 .10 0 43 1 .10

T U2

2.

. 1 Hα

1

4

2 2 2 5 .µ . 5 .µ . 5 .µ

dH dt H γ



2 1

Hα Hγ

2

. 1 Hα

dH2 dt2 H γ

5 .µ

2

. 5 .ln 1 .µ 2 Hγ

1

3 2 H α .H γ . 5 .µ 2 . ln 1 . 5.µ2 2 Hγ . 5µ Hγ

1

2

1

See: “Quinta Essentia Part 2, 3, 4” for the complete mathematical derivations and computational algorithms.

www.deltagroupengineering.com  dgE

The Deceleration Parameter “q0” & Cosmological Constant “Λ0” [excerpts from “Quinta Essentia – Part 2”  dgE]

1st Derivative of the Hubble Constant 2 .10

84 1

1 .10

t4

t1



Region of positive Hubble gradient

5

84

c G. h

ω h 0

2.µ

λ x 4.

π



µ

ω h λ x

Hα ≈ 0.37ωh

0

dH dt H β

Region of negative Hubble gradient

η 1 .10

84

2 .10

84

3 .10

84

4 .10

84

5 .10

84

1

(Hz^2)

dH dt e

5 .µ

2

St T

1 dH dt e

2 2 5 .µ . 5 .µ

1

2 2 5 .µ . 5 .µ dH dt e

4.µ

1

4

2 2 2 5 .µ . 5 .µ . 5 .µ

.

2 .µ

2 λ x. ω h

µ ( 4.µ ) . c

2

t

π

1 H γ .H α

Hγ Hβ

η

2 2

1

1

Cosmological Inflation

Cosmological Expansion

84 6 .10

7 .10

1 .10

43

1 .10

42

1 .10

41

1 .10

40

1 .10 1 η H β .H α Cosmological Age (s)

39

1 .10

38

1 .10

37

1 .10

t2

e

1

t1



dH dt H β

5 .µ

η

2

(Hz)

2 2 5 .µ . 5 .µ

ω Ω r 1, M 1

M1

ω Ω r 2, M 2

M2

H = HβHα

5

9

.

r2 r1

dH dt e

9

St ω



TU2(H) → TU3(Hβ)

T U2 ( H ) K W . St T . ln

T U3 H β

K W .St T .ln



1 .10

42

5 .10

41

t4

2

4

2 2 2 5 .µ . 5 .µ . 5 .µ

. 2

.H5 µ

1

2

1

t4

5 .µ

0 43 1 .10

2

K W .St T .

2 5 .ln H α .t .µ

t

2

5 .µ

2

1

.t

e

1 .10

42

1 .10

41

Big-Bang: 0(K)

1 .10

40

1 .10

39

1 .10

38

37 36 1 .10 1 η H β .H α Cosmological Age (s)

1 .10

1 .10

35

1 .10

34

1 .10

33

1 .10

32

1 .10

31

1 .10

30

e

2 2 5 .µ . ln H α .t . 5 .µ

1

2 2 5 .µ . 5 .µ

dT2 dt2 ( t )

. 1 Hα

1

2

2 2 2 5 .µ . 5 .µ . 5 .µ

2 2 5 .µ . 5 .µ

2 2 5 .µ . 5 .µ

t5

. H .H β α

dT dt ( t )

K W .St T .

t 2

3

2

. 1 Hα

dT3 dt3 ( t )

K W .St T .

5 .µ

2

1

2

1

.t 2

2 2 2 5 .µ .ln H α .t . 5 .µ . 5 .µ

t

3 5 .µ

2

2 .t

2 2 15.µ . 5 .µ

2

2

3

2.

1

H



e

1

2 2 5 .µ . 5 .µ

2

42

1 dH dt e

t3

Hubble Inflation Hubble Expansion

1 1.5 .10

. 1 Hα

2 2 15 .µ . 5 .µ

Thermal Inflation

42

1 dH dt e

2

Max. Cosmological Temp. Line: 3.2x1031(K)

Primordial Inflation 2 .10

5 .µ

10 .µ

36

Mag. of Hubble Cons. vs. Cosm. Age

42

e

Max. Cosmological Temp. Line: 3.2x1031(K)

84

2.5 .10

t1

dH dt H γ

. 1 Hα

1

4

2 2 2 5 .µ . 5 .µ . 5 .µ

2

1

2

. 1 Hα

dH2 dt2 H γ

Hα Hγ . 5 .ln 1 .µ 2 2 Hγ 5 .µ Hγ 3 2 H α .H γ



5 .µ

2

1

. 5 .µ 2 . ln 1 . 5.µ2 Hγ

1

2

1

(i) “Big-Bang” properties: “t = 1/Hα”, “H = Hα”, “TU2(Hα) = TU3(1) = 0(K)”; (ii) “Maximum Cosmological Temperature = 3.2 x1031(K)” @ “t = t1”

Time

TU2 (K)

dHdt (km/s/Mpc)2

|H| (km/s/Mpc)

0

-∞

-∞

+∞

Hα-1 ≈ 3.646967·10-43(s)

0

≈ -7.158752·10123

≈ 8.460941·1061

t1 ≈ 2.206287·10-42(s)

≈ 3.195518·1031

0

0

t4 ≈ 2.093267·10-41(s)

≈ 2.059945·1031

≈ 1.479167·10123

≈ 3.845994·1061

AU ≈ 14.575885·109(yr)

≈ 2.724752

≈ 4.500304·103

≈ 67.084304

See: “Quinta Essentia Part 2, 3, 4” for the complete mathematical derivations and computational algorithms.

Applied Physical Constants NIST “≥ 2002” CODATA • c = 2.99792458·108 (ms-1) • G ≈ 6.6742·10-11 (m3kg-1s-2) • h ≈ 6.6260693·10-34 (Js) • KW ≈ 2.8977685·10-3 (mK) Derived Mathematical Constants λx, StT, Hα, η ≈ 4.595349, µ = 1/3 Graphic Range Variables Hβ, Hγ, t

Derived Physical Properties • Photon mass: mγγ ≤ 3.195095·10-45(eV) • Graviton mass: mgg = 2mγγ • Minimum gravitational lifetime of starving matter: TL = h/mγγ = 2h/mgg ≈ 4.101731·1022(yr) ≈ 2.814053·1012AU • Cosmological Constant: Λ0 ≈ 6.750456·103 (km/s/Mpc)2 Λ0/c2 ≈ 7.888431·10-47 (km-2) [3c2/8πG]·Λ0 ≈ 1.139608·10-9 (Pa)

Key Artefact & Equation Summary [excerpt from “Quinta Essentia – Part 2”  dgE]

Related Documents


More Documents from "John McGowan"