Our-labs-brief

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Our-labs-brief as PDF for free.

More details

  • Words: 613
  • Pages: 7
Hybrid Silicon Nanoelectronics Oda Laboratory Tokyo Institute of Technology

Fusion of top-down & bottom-up nanotechnology 100

hp65

hp32

hp45

hp22

Lg (nm)

•High-k •FUSI

Low -pow er High -per form Strained Si a

ITRS2003 predicts 9 nm gate MOSFETs in 2016.

Dual metal gate

nce

FD SOI Multiple gate(3D)

10

Quasi ballistic

2005

2015 Year

2010

TOP-DOWN SILICON

BOTTOM-UP SILICON

Source

Si nanodot (SiND) Drain

Si (111)

Si nanorod (SiNR)

SiO2

30nm

10nm

In collaboration with Cambridge Univ.

Hybrid Silicon Nanoelectronics 1  Structural control of nanocrystalline Si structures Si nanodots

Si nanorods

ナノシリコンドット

ドットサイズ を揃える

In collaboration with Cambridge Univ. トンネル膜厚 を揃える

Substrate UHV Chamber

To TMP Orifice (φ ∼ 5 mm)

位置を揃える

Structural control

evaporation

SiH4 gas H2 or Ar gas

10nm nc-Si dot

VHF (144MHz) Plasma Cell

Dispersion solution LB film

PC control

VHF Plasma CVD system (room temperature deposition)

100n m

nc-Si dot assembly technique

Hybrid Silicon Nanoelectronics 2  Nanocrystalline Si based New functional devices Collector 電子

Acceleration voltage 100V

Thin Au

50 nm

nc-Si layer

50nm

電流 (A/c m 2)

10-3

1

10-5

10-2

10-7

効率 (%)

Si substrate Al electrode

Diode voltage

10-4 ダイオード 放出電子

10-9

効率

10

0

20

10-6 30

引出電圧 (V)

BSD (ballistic electron surface emitting display) Bending SiO2 beam with Si nanodots

Nanodot flash memory

Si nanodots

G e-

Air gap S

e -

e -

e-

MOSFET channel

D

2μm

Nanoelectromechanical devices

Hybrid Silicon Nanoelectronics Vg2(V)

3  Quantum information devices based on nc-Si 15nm Source

Vg2 (V)

nc-Si dot 10 nm

0.04

15 nm

Vsd (V)

0.02 -8 0 -9 -0.02 -10 3.5

4

Vg1

0 -1

VVg1(V) (V) g1

T = 20K

3

1

-3 -4 -3 -2 -1 0 1 2 3 4

-7

-0.04

4.5

Anti-bonding

-2

Vg1 (V)

Observation of quantum-mechanical interaction between two nc-Si dots ( in collaboration with CU ) Current (A) (Log Scale)

30 nm

0.4 meV

Bonding

2

Drain

20 nm

Vg2

Initialization

Read-out

Control

5

Gate Voltage (V)

Single-electron charging effects

Design & fabrication of nc-Si quantum information devices for solid-state quantum computers

Hybrid Silicon Nanoelectronics 4  Multi-scale nc-Si material & device simulation Pseudopotential

Atomistic nanostructure DFT ( LCAO base ) simulation H = i −  ∇ + V ( ρ ) j 2

i, j

2

eff

HOMO

2m

LUMO

Icosahedral structure SiND (d=1.56nm)

H Nanoscale quantum transport simulation

D Nonequilibrium Green’s function

[

G(E ) = E − H −



(E)

]

−1

Nonequilibrium quantum transport through SiNR

Equilibrium distribution & linear response parameters

Mesoscale device ・ circuit simulation

Quantum device simulation ( DG method ) Hybrid circuit simulation

Ids (A)

D e n s ity ( c m -2 ) 2.0D 11

1.0D 11

Vg2 (V)

0.0D

0 .5

20

X (n m )

-.5

40 60

-1 .0

1 .0

0

k ( n m -1 )

Wigner distribution

Vg1 (V)

Quantum equivalent circuit modelling

Hybrid Silicon Nanoelectronics 5  High-k dielectric thin films for next generation ULSIs •

•HfO2

Pr-oxide/silicate Si-O-Si/H-O-H

HfO2 3.2 nm

equivalent thickness ~ 1.2 nm

界面層 0.8 nm 5 nm

Si基板

3.5 nm

Normalized Intensity[a.u.]

SiO2

Pr-O-Pr

Pr silicate formation

TOA 90° 52° 30° 15°

537

535

533

531

529

527

Binding Energy [eV]

Cross sectional TEM

XPS spectrum ( in collaboration with Musashi Tech.)

Purge gas

O2 gas

Material gas

Change in ellipsometric angle ∆ エリプソメトリ角Δの変化

Fabrication and characterization of high-k dielectric gate insulator 1 1サイクル cycle

∆ [deg]

167.5

HfO2/Si 約 1.1Å

165.5

Sample Heater

1 degree 1度

166.5

Ellipsometer

s 原料 3秒 パージ 酸素

20秒 s 40秒 s

164.5 Novel stacked memory 時間 100 100 秒 time sec 1950 2050 2150 2250 In-situ real-time spectroscopic ellipsometry study time [s] drai n