Ordre

  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ordre as PDF for free.

More details

  • Words: 1,992
  • Pages: 8
‫اﻟﺘﺮﺗﻴﺐ ﻓﻲ ‪IR‬‬ ‫اﻟﻘﺪرات اﻟﻤﻨﺘﻈﺮة‬ ‫*‪ -‬اﻟﺘﻤﻜﻦ ﻣﻦ ﻣﺨﺘﻠﻒ ﺗﻘﻨﻴﺎت ﻣﻘﺎرﻧﺔ ﻋﺪدﻳﻦ )أو ﺗﻌﺒﻴﺮﻳﻦ( واﺳﺘﻌﻤﺎل اﻟﻤﻨﺎﺳﺐ ﻣﻨﻬﺎ ﺣﺴﺐ‬ ‫اﻟﻮﺿﻌﻴﺔ اﻟﻤﺪروﺳﺔ‪.‬‬ ‫*‪ -‬ﺗﻤﺜﻴﻞ ﻣﺨﺘﻠﻒ اﻟﻌﻼﻗﺎت اﻟﻤﺮﺗﺒﻄﺔ ﺑﺎﻟﺘﺮﺗﻴﺐ ﻋﻠﻰ اﻟﻤﺴﺘﻘﻴﻢ اﻟﻌﺪدي‪.‬‬ ‫*‪ -‬إدراك وﺗﺤﺪﻳﺪ ﺗﻘﺮﻳﺐ ﻋﺪد )أو ﺗﻌﺒﻴﺮ( ﺑﺪﻗﺔ ﻣﻌﻠﻮﻣﺔ‪ .‬إﻧﺠﺎز إآﺒﺎرات أو إﺻﻐﺎرات ﻟﺘﻌﺎﺑﻴﺮ ﺟﺒﺮﻳﺔ‪.‬‬ ‫*‪ -‬اﺳﺘﻌﻤﺎل اﻟﻤﺤﺴﺒﺔ ﻟﺘﺤﺪﻳﺪ ﻗﻴﻢ ﻣﻘﺮﺑﺔ ﻟﻌﺪد ﺣﻘﻴﻘﻲ‪.‬‬ ‫‪ -I‬اﻟﺘﺮﺗﻴﺐ و اﻟﻌﻤﻠﻴﺎت‬ ‫‪ -1‬أﻧﺸﻄﺔ‬ ‫ﺗﻤﺮﻳﻦ‪1‬‬ ‫ﻟﻴﻜﻦ ‪ a‬ﻋﺪدا ﺣﻘﻴﻘﻴﺎ‬ ‫ﺗﻤﺮﻳﻦ‪1‬‬

‫ﻗﺎرن‬

‫ﻟﻴﻜﻦ ‪ a‬و ‪ b‬ﻋﺪدﻳﻦ ﺣﻘﻴﻘﻴﻴﻦ ﺑﺤﻴﺚ‬ ‫ﺑﻴﻦ أن ‪−41 ≤ a 2 − b 2 + 3a − 5b + 1 ≤ 24‬‬

‫‪ a 2 + 1‬و ‪2a‬‬ ‫‪− 1 ≤ b ≤ 4 ; −2 ≤ a ≤ 3‬‬

‫ﺗﻤﺮﻳﻦ‪2‬‬

‫ﻗﺎرن ‪ 1 + 3 2‬و ‪3 3‬‬ ‫ﺗﻤﺮﻳﻦ‪3‬‬ ‫ﻟﻴﻜﻦ‬ ‫أ‪ -‬ﺑﻴﻦ أن‬

‫*‬ ‫‪+‬‬

‫∈‪x‬‬ ‫‪1‬‬ ‫‪x 2 +1 + x‬‬

‫= ‪x 2 +1 − x‬‬

‫‪1‬‬ ‫ب‪ -‬ﻗﺎرن‬ ‫‪2x‬‬ ‫ﺗﻤﺮﻳﻦ‪4‬‬ ‫ﻟﻴﻜﻦ ‪ a‬و ‪ b‬ﻋﺪدﻳﻦ ﺣﻘﻴﻘﻴﻴﻦ ﺳﺎﻟﺒﻴﻦ ﻗﻄﻌﺎ ﺣﻴﺚ ‪a ≠ b‬‬ ‫‪b‬‬ ‫‪a‬‬ ‫ﻗﺎرن ‪ − 1‬و ‪1 −‬‬ ‫‪a b‬‬ ‫‪ -2‬ﺗﻌﺮﻳﻒ و ﺧﺎﺻﻴﺎت‬ ‫أ ﺗﻌﺮﻳﻒ‬ ‫ﻟﻴﻜﻦ ‪ a‬و ‪ b‬ﻋﺪدﻳﻦ ﺣﻘﻴﻘﻴﻴﻦ‬ ‫‪ a ≥ b‬ﻳﻌﻨﻲ ‪a − b ≥ 0‬‬ ‫‪ a ≤ b‬ﻳﻌﻨﻲ ‪a − b ≤ 0‬‬ ‫ب‪ -‬ﺧﺎﺻﻴﺎت و ﻧﺘﺎﺋﺞ‬ ‫ﻟﻴﻜﻦ ‪ a‬و ‪ b‬و ‪ c‬و ‪ d‬أﻋﺪاد ﺣﻘﻴﻘﻴﺔ‬ ‫إذا آﺎن ‪ a ≥ b‬و ‪ b ≥ c‬ﻓﺎن ‪a ≥ c‬‬ ‫إذا آﺎن ‪ a ≥ b‬ﻓﺎن ‪a + c ≥ b + c‬‬ ‫إذا آﺎن ‪ a ≥ b‬و ‪ c ≥ d‬ﻓﺎن ‪a + c ≥ b + d‬‬

‫و ‪x 2 +1 − x‬‬

‫إذا آﺎن ‪ a ≥ b‬و ‪ c ≥ 0‬ﻓﺎن ‪ac ≥ bc‬‬ ‫إذا آﺎن ‪ a ≥ b‬و ‪ c ≤ 0‬ﻓﺎن ‪ac ≤ bc‬‬ ‫إذا آﺎن ‪a ≥ b ≥ 0‬‬ ‫إذا آﺎن ‪0 ≥ a ≥ b‬‬

‫ﻓﺎن ‪a 2 ≥ b 2‬‬ ‫ﻓﺎن ‪a 2 ≤ b 2‬‬

‫‪ 0 ≤ a ≤ b‬ﺗﻜﺎﻓﺊ ‪a ≤ b‬‬ ‫‪1 1‬‬ ‫إذا آﺎن ‪ a‬و ‪ b‬ﻋﺪدﻳﻦ ﻏﻴﺮ ﻣﻨﻌﺪﻣﻴﻦ و ﻟﻬﻤﺎ ﻧﻔﺲ ﻹﺷﺎرة و آﺎن ‪ a ≤ b‬ﻓﺎن ≥‬ ‫‪a b‬‬

‫ﻧﺒﻴﻦ ﻧﺘﻴﺠﺔ اﻷﺧﻴﺮة‬ ‫‪ a‬و ‪ b‬ﻋﺪدﻳﻦ ﻏﻴﺮ ﻣﻨﻌﺪﻣﻴﻦ و ﻟﻬﻤﺎ ﻧﻔﺲ ﻹﺷﺎرة وﻣﻨﻪ ‪ab 0‬‬ ‫‪1 1 b−a‬‬ ‫ﻟﺪﻳﻨﺎ‬ ‫= ‪−‬‬ ‫‪a b‬‬ ‫‪ab‬‬ ‫‪b−a‬‬ ‫‪1 1‬‬ ‫و ﺣﻴﺚ أن ‪ a ≤ b‬ﻓﺎن ‪ b − a ≥ 0‬و ﺑﺎﻟﺘﺎﻟﻲ ‪≥ 0‬‬ ‫اذن ≥‬ ‫‪a b‬‬ ‫‪ab‬‬ ‫‪ -II‬اﻟﻤﺠﺎﻻت‬ ‫‪ -1‬ﻣﺠﺎﻻت اﻟﻤﺠﻤﻮﻋﺔ‪IR‬‬ ‫ﻟﻴﻜﻦ ‪ ( a; b ) ∈ 2‬ﺣﻴﺚ ‪a ≺ b‬‬ ‫ﻣﺠﻤﻮﻋﺔ اﻻﻋﺪاد‬ ‫اﻟﺤﻘﻴﻘﻴﺔ ‪ X‬ﺣﻴﺚ‪:‬‬

‫ﺗﺮﻣﻴﺰهﺎ‬

‫‪a≤ x≤b‬‬

‫] ‪[ a; b‬‬

‫‪a≺ x≺b‬‬

‫[‪]a; b‬‬

‫‪a≤ x≺b‬‬

‫[‪[ a; b‬‬

‫‪a≺ x≤b‬‬

‫] ‪] a; b‬‬

‫‪a≤x‬‬

‫[∞‪[ a; +‬‬

‫‪a≺ x‬‬

‫[∞‪]a; +‬‬

‫‪x≤b‬‬

‫]‪]−∞,b‬‬

‫ﻳﻘﺮأ اﻟﻤﺠﺎل ﻧﺎﻗﺺ ﻻﻧﻬﺎﻳﺔ‪ b ،‬ﻣﻐﻠﻖ ﻓﻲ ‪b‬‬

‫‪x≺b‬‬

‫[‪]−∞;b‬‬

‫ﻳﻘﺮأ اﻟﻤﺠﺎل ﻧﺎﻗﺺ ﻻﻧﻬﺎﻳﺔ‪ b ،‬ﻣﻔﺘﻮح ﻓﻲ ‪b‬‬

‫أﻣﺜﻠﺔ‬ ‫* }‪/ − 1 ≤ x ≤ 4‬‬

‫ﻗﺮاءة و ﺗﻤﺜﻴﻞ ﻋﻠﻰ اﻟﻤﺴﺘﻘﻴﻢ‬

‫ﻳﻘﺮأ اﻟﻤﺠﺎل اﻟﻤﻐﻠﻖ اﻟﺬي ﻃﺮﻓﺎﻩ ‪ a‬و ‪b‬‬

‫ﻳﻘﺮأ اﻟﻤﺠﺎل اﻟﻤﻔﺘﻮح اﻟﺬي ﻃﺮﻓﺎﻩ ‪ a‬و ‪b‬‬ ‫ﻳﻘﺮأ اﻟﻤﺠﺎل اﻟﻤﻔﺘﻮح ﻋﻠﻰ اﻟﻴﻤﻴﻦ اﻟﺬي ﻃﺮﻓﺎﻩ ‪ a‬و ‪b‬‬

‫ﻳﻘﺮأ اﻟﻤﺠﺎل اﻟﻤﻔﺘﻮح ﻋﻠﻰ اﻟﻴﺴﺎر اﻟﺬي ﻃﺮﻓﺎﻩ ‪ a‬و ‪b‬‬ ‫ﻳﻘﺮأ اﻟﻤﺠﺎل ‪ a‬زاﺋﺪ ﻣﺎ ﻻﻧﻬﺎﻳﺔ ﻣﻐﻠﻖ ﻓﻲ ‪a‬‬ ‫ﻳﻘﺮأ اﻟﻤﺠﺎل ‪ a‬زاﺋﺪ ﻣﺎ ﻻﻧﻬﺎﻳﺔ ﻣﻔﺘﻮح ﻓﻲ ‪a‬‬

‫∈ ‪[ −1;4] = { x‬‬

‫‪−1‬‬ ‫]‪∈ [ −1;4‬‬ ‫]‪−2 ∉ [ −1;4‬‬ ‫‪2‬‬ ‫* }‪]−∞;2[ = { x ∈ / x ≺ 2‬‬

‫[‪2 ∉ ]−∞;2‬‬

‫[‪π ∉ ]−∞;2‬‬

‫]‪3 ∈ [ −1;4‬‬

‫[‪− 2 ∈ ]−∞;2‬‬

‫‪ -III‬اﻟﻘﻴﻤﺔ اﻟﻤﻄﻠﻘﺔ‬ ‫‪ -1‬اﻟﻘﻴﻤﺔ و اﻟﻤﻄﻠﻘﺔ‬ ‫ﺗﻌﺮﻳﻒ‬ ‫ﻟﻴﻜﻦ ) ‪ ∆ ( O; I‬ﻣﺴﺘﻘﻴﻤﺎ ﻣﺪرﺟﺎ‬

‫اﻟﻘﻴﻤﺔ اﻟﻤﻄﻠﻘﺔ ﻟﻜﻞ ﻋﺪد ﺣﻘﻴﻘﻲ ‪ x‬هﻲ اﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ اﻟﻨﻘﻄﺔ ‪ M‬اﻟﺘﻲ أﻓﺼﻮﻟﻬﺎ ‪x‬‬ ‫و اﻟﻨﻘﻄﺔ ‪ . O‬ﻧﺮﻣﺰ ﻟﻠﻘﻴﻤﺔ اﻟﻤﻄﻠﻘﺔ ﻟﻠﻌﺪد ‪ x‬ﺑـ ‪ x‬ﻧﻜﺘﺐ ‪OM = x‬‬

‫ﻟﻴﻜﻦ ∈ ‪x‬‬ ‫إذا آﺎن ‪ x ≥ 0‬ﻓﺎن ‪x = x‬‬ ‫إذا آﺎن ‪ x ≤ 0‬ﻓﺎن ‪x = − x‬‬

‫أﻣﺜﻠﺔ‬

‫‪2 = 2‬‬

‫; ‪3 −1 = 3 −1‬‬

‫; ‪−12 = 12‬‬

‫; ‪2 −π =π − 2‬‬

‫ﺗﻤﺮﻳﻦ‬ ‫ﺣﺪد ‪ 1 − 2‬و‬

‫‪2‬‬

‫)‬

‫‪15‬‬

‫‪(4 −‬‬

‫و‬

‫‪2‬‬

‫) ‪(2 − 5‬‬

‫‪ (c‬ﺧﺎﺻﻴﺎت‬

‫‪ OM = ON‬إذن ‪x = − x‬‬ ‫*‪ -‬ﻟﻜﻞ‬

‫∈‪x‬‬

‫‪x ≥0‬‬

‫‪−x ≤ x ، x ≤ x ،‬‬

‫و ‪ a‬ﻣﻦ‬ ‫*‪ -‬ﻟﻴﻜﻦ ‪ x‬و ‪ y‬ﻣﻦ‬ ‫‪9‬‬ ‫‪ x = 0‬ﺗﻜﺎﻓﺊ ‪x = 0‬‬ ‫‪9‬‬ ‫‪9‬‬ ‫‪9‬‬

‫‪ x = a‬ﺗﻜﺎﻓﺊ ‪ x = a‬أو ‪x = −a‬‬

‫‪ x = y‬ﺗﻜﺎﻓﺊ ‪ x = y‬أو ‪. x = − y‬‬ ‫‪xy = x y‬‬

‫;‬

‫‪x‬‬ ‫‪x‬‬ ‫=‬ ‫‪y‬‬ ‫‪y‬‬

‫‪ x ≤ a 9‬ﺗﻜﺎﻓﺊ ‪−a ≤ x ≤ a‬‬ ‫‪9‬‬

‫‪+‬‬

‫‪x +y ≤ x + y‬‬

‫ﺑﻴﻦ ﻧﺘﻴﺠﺘﻴﻦ اﻷﺧﻴﺮﺗﻴﻦ‬

‫‪y ≠0‬‬

‫‪x = −x ،‬‬

‫‪2‬‬

‫‪x = x2 ،‬‬

‫ﺗﻤﺎرﻳﻦ‬ ‫ﺗﻤﺮﻳﻦ ‪1‬‬ ‫ﻟﻴﻜﻦ ∈ ‪x‬‬ ‫‪ -1‬أآﺘﺐ اﻟﺘﻌﺎﺑﻴﺮ اﻟﺘﺎﻟﻴﺔ ﺑﺪون اﺳﺘﻌﻤﺎل اﻟﻘﻴﻤﺔ اﻟﻤﻄﻠﻘﺔ‬ ‫‪3− x ،‬‬ ‫‪2x − 1‬‬ ‫‪x−2 + x+3‬‬ ‫‪،‬‬

‫‪ -2‬ﺑﻴﻦ ﺑﺪون ﺣﺪف رﻣﺰ اﻟﻘﻴﻤﺔ اﻟﻤﻄﻠﻘﺔ أن ‪x − 5 + x + 1 ≠ 4‬‬

‫ﻟﻜﻞ ‪ x‬ﻣﻦ‬

‫ﺗﻤﺮﻳﻦ ‪2‬‬

‫ﻟﻴﻜﻦ ∈ ‪x‬‬

‫ﺑﻴﻦ إذا آﺎن ‪ x − 1 ≺ 10−3‬ﻓﺎن ‪x 2 − 1 ≺ 10−2‬‬ ‫‪ -2‬اﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ ﻧﻘﻄﺘﻴﻦ و اﻟﻘﻴﻤﺔ اﻟﻤﻄﻠﻘﺔ‬ ‫ﺧﺎﺻﻴﺔ‬ ‫ﻟﻴﻜﻦ ) ‪ A ( a‬و ) ‪ B ( b‬ﻧﻘﻄﺘﻴﻦ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ ﻣﺪرج‬

‫) ‪∆ ( O; I‬‬

‫‪AB = b − a‬‬

‫ﺗﻌﺮﻳﻒ‬ ‫اﻟﻤﺴﺎﻓﺔ ‪ b − a‬ﻟﻨﻘﻄﺘﻴﻦ ) ‪ A ( a‬و ) ‪ B ( b‬ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ ﻣﺪرج ‪ ،‬ﺗﺴﻤﻰ أﻳﻀﺎ‬

‫اﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ اﻟﻌﺪدﻳﻦ ‪ a‬و ‪b‬‬ ‫أﻣﺜﻠﺔ‬ ‫* ﻟﻨﺤﺪد اﻷﻋﺪاد ‪ x‬اﻟﺘﻲ ﻣﺴﺎﻓﺘﻬﺎ ﻋﻦ ‪ 3‬هﻲ ‪5‬‬ ‫* ﺣﺪد هﻨﺪﺳﻴﺎ ﻋﻠﻰ اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﺪرج ) ‪ ∆ ( O; I‬اﻟﻨﻘﻄﺔ ) ‪ M ( x‬ﺣﻴﺚ ‪x − 2 = x + 5‬‬ ‫‪ -3‬ﻣﺮآﺰ و ﺳﻌﺔ وﺷﻌﺎع ﻣﺠﺎل‬ ‫ﻟﻴﻜﻦ ‪(a;b ) ∈ 2‬‬

‫ﻋﻠﻰ اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﺪرج ) ‪ ∆ ( O; I‬ﻧﻌﺘﺒﺮ ) ‪B (b ) ; A ( a‬‬ ‫ﻃﻮل ] ‪ [ A ; B‬هﻮ ‪b − a‬‬

‫‪a +b‬‬ ‫أﻓﺼﻮل ‪ I‬ﻣﻨﺘﺼﻒ ] ‪ [ A ; B‬هﻮ‬ ‫‪2‬‬ ‫‪b−a‬‬ ‫= ‪IA = IB‬‬ ‫‪2‬‬ ‫ﺗﻌﺮﻳﻒ‬ ‫‪2‬‬ ‫ﻟﻴﻜﻦ ∈ ) ‪(a;b‬‬ ‫‪a +b‬‬ ‫ﻣﺮآﺰ ﻣﺠﺎل ﻃﺮﻓﺎﻩ ‪ a‬و ‪ b‬هﻮ‬ ‫‪2‬‬ ‫ﺳﻌﺔ ﻣﺠﺎل ﻃﺮﻓﺎﻩ ‪ a‬و ‪ b‬هﻮ ‪b − a‬‬ ‫ﺷﻌﺎع ﻣﺠﺎل ﻃﺮﻓﺎﻩ ‪ a‬و ‪ b‬هﻮ‬

‫‪b−a‬‬ ‫‪2‬‬

‫ﺗﻤﺮﻳﻦ‬ ‫‪ -1‬ﺣﺪد ﻣﺮآﺰ وﺷﻌﺎع ]‪]−3;5‬‬ ‫‪ -2‬ﺣﺪد ﻣﺠﺎﻻ ﻣﻔﺘﻮﺣﺎ ﻣﺮآﺰﻩ ‪ -2‬وﺷﻌﺎﻋﻪ ‪3‬‬ ‫‪−3‬‬ ‫‪ -3‬ﺣﺪد ﻣﺠﺎﻻ ﻣﻐﻠﻘﺎ ﻣﺮآﺰﻩ ‪ 1‬و أﺣﺪ ﻃﺮﻓﻴﻪ‬ ‫‪2‬‬ ‫‪ -4‬اﻟﻘﻴﻤﺔ اﻟﻤﻄﻠﻘﺔ واﻟﻤﺠﺎﻻت‬ ‫ﻣﺒﺮهﻨﺔ‬ ‫*‬ ‫و ‪r∈ +‬‬ ‫ﻟﻴﻜﻦ ‪ x‬و ‪ a‬ﻣﻦ‬ ‫‪ x − a ≤ r‬ﺗﻜﺎﻓﺊ ‪a − r ≤ x ≤ a + r‬‬

‫}‪/ x − a ≤ r‬‬

‫∈ ‪[a − r ; a + r ] = { x‬‬

‫ﻣﺠﺎل ﻣﻐﻠﻖ ﻣﺮآﺰﻩ ‪ a‬و ﺷﻌﺎﻋﻪ ‪r‬‬ ‫ﻧﺘﻴﺠﺔ‬ ‫و‬ ‫ﻟﻴﻜﻦ ‪ x‬و ‪ a‬ﻣﻦ‬ ‫∈‪r‬‬ ‫‪ x − a ≺ r‬ﺗﻜﺎﻓﺊ ‪a − r ≺ x ≺ a + r‬‬ ‫*‬ ‫‪+‬‬

‫}‪/ x − a ≺ r‬‬

‫∈ ‪]a − r ; a + r [ = {x‬‬

‫ﻣﺠﺎل ﻣﻔﺘﻮح ﻣﺮآﺰﻩ ‪ a‬و ﺷﻌﺎﻋﻪ ‪r‬‬ ‫ﻧﺘﻴﺠﺔ‬ ‫∈‪r‬‬ ‫و‬ ‫ﻟﻴﻜﻦ ‪ x‬و ‪ a‬ﻣﻦ‬ ‫‪ x − a ≥ r‬ﺗﻜﺎﻓﺊ ‪ x ≥ a + r‬أو ‪x ≤ a − r‬‬ ‫*‬ ‫‪+‬‬

‫[∞‪/ x − a ≥ r } = ]−∞; a − r ] ∪ [a + r ; +‬‬

‫ﺗﻤﺮﻳﻦ‬ ‫ﺣﺪد اﻟﻤﺠﻤﻮﻋﺎت اﻟﺘﺎﻟﻴﺔ‬

‫}‪A = { x ∈ / x − 3 ≤ 2‬‬

‫∈ ‪{x‬‬

‫و }‪ B = { x ∈ / x + 4 ≺ 7‬و }‪C = { x ∈ / x − 1 ≥ 2‬‬

‫‪ -IV‬اﻟﺘﺄﻃﻴﺮ و اﻟﺘﻘﺮﻳﺐ‬ ‫‪ (A‬اﻟﺘﺄﻃﻴﺮ‬ ‫‪ -1‬أﻧﺸﻄﺔ‬

‫‪2‬‬ ‫أ‪ -‬ﺣﺪد ﻣﺠﺎﻻ ﻣﻔﺘﻮﺣﺎ ﺳﻌﺘﻪ ‪ 10−2‬ﻳﺤﺘﻮي ﻋﻠﻰ‬ ‫‪3‬‬ ‫ب‪ -‬ﻋﻠﻤﺎ أن ‪1, 41 ≺ 2 ≺ 1, 42‬‬ ‫ﺣﺪد ﻣﺠﺎﻻ ﻣﻐﻠﻘﺎ ﻳﺤﺘﻮي ﻋﻠﻰ ‪ −3 2‬ﺳﻌﺘﻪ ‪7 ⋅ 10−2‬‬

‫‪ -2‬ﺗﻌﺮﻳﻒ‬ ‫ﻟﻴﻜﻦ‬

‫‪2‬‬

‫∈ ) ‪ ( a; b‬ﺣﻴﺚ ‪a ≺ b‬‬

‫آﻞ ﻣﺘﻔﺎوﺗﺔ ﻣﻦ اﻟﻤﺘﻔﺎوﺗﺎت اﻟﻤﺰدوﺟﺔ ‪ a ≤ x ≤ b‬و‬ ‫ﺗﺄﻃﻴﺮا ﻟﻠﻌﺪد ‪ x‬ﺳﻌﺘﻪ ‪b − a‬‬ ‫أﻣﺜﻠﺔ‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﺳﻌﺘﻪ ‪1‬‬ ‫‪ 0 ≺ ≺ 1‬ﺗﺄﻃﻴﺮ ﻟﻠﻌﺪد‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪ 0, 666 ≺ ≺ 0, 667‬ﺗﺄﻃﻴﺮ ﻟﻠﻌﺪد‬ ‫ﺳﻌﺘﻪ ‪10−3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫ﺗﻤﺎرﻳﻦ‬ ‫ﺗﻤﺮﻳﻦ‪1‬‬

‫‪1‬‬ ‫أﻃﺮ ‪− 5‬‬ ‫‪y‬‬

‫‪ -1‬ﻟﻴﻜﻦ ‪2 ≺ y ≺ 4 ; −3 ≺ x ≺ 5‬‬ ‫‪ -2‬ﻟﻴﻜﻦ ‪y ≺ 1‬‬

‫‪ a ≺ x ≤ b‬و ‪ a ≤ x ≺ b‬و ‪ a ≺ x ≺ b‬ﺗﺴﻤﻰ‬

‫‪x 2 + 3x −‬‬

‫; ‪x ≺1‬‬

‫‪1‬‬ ‫أ‪ -‬أﻃﺮ‬ ‫‪x + y + xy + 4‬‬ ‫ب‪ -‬أﻃﺮ )‪ . ( x + 1)( y + 1‬أﻧﺸﺮ )‪( x + 1)( y + 1‬‬ ‫‪1‬‬ ‫اﺳﺘﻨﺘﺞ ﺗﺄﻃﻴﺮا ﻟﻠﻌﺪد‬ ‫‪x + y + xy + 4‬‬ ‫ﺗﻤﺮﻳﻦ‪2‬‬ ‫‪2 2‬‬ ‫ﺳﻌﺘﻪ ‪ 7 ⋅ 10−3‬ﻋﻠﻤﺎ أن ‪1, 41 ≺ 2 ≺ 1, 42‬‬ ‫‪ -1‬ﻟﻨﺤﺪد ﺗﺄﻃﻴﺮا ﻟﻠﻌﺪد‬ ‫‪3‬‬ ‫‪ -2‬ﻧﻌﺘﺒﺮ ‪1,53 ≺ x ≺ 1,54 , −0, 01 ≺ y ≺ 0, 02‬‬

‫ﺣﺪد ﺗﺄﻃﻴﺮا ﻟﻠﻌﺪد ‪ xy‬ﺳﻌﺘﻪ ‪6 ⋅ 10−2‬‬ ‫ﺗﻤﺮﻳﻦ‪3‬‬ ‫ﻟﻴﻜﻦ ‪1, 2 ≺ x ≺ 1, 4 , 0, 2 ≺ y ≺ 0, 4‬‬ ‫‪y‬‬ ‫ﺳﻌﺘﻪ ‪0, 20‬‬ ‫ﺣﺪد ﺗﺄﻃﻴﺮا ﻟﻠﻌﺪد‬ ‫‪x‬‬ ‫‪(B‬اﻟﺘﻘﺮﻳﺐ‬ ‫‪ -1‬ﺗﻌﺮﻳﻒ‬ ‫ﻟﻴﻜﻦ ‪ a ≤ x ≤ b‬أ و ‪ a ≺ x ≤ b‬أ و ‪ a ≤ x ≺ b‬أ و ‪ a ≺ x ≺ b‬ﺗﺄﻃﻴﺮا ﻟﻠﻌﺪد ‪x‬‬ ‫ﺳﻌﺘﻪ ‪b − a‬‬ ‫اﻟﻌﺪد ‪ a‬ﻳﺴﻤﻰ ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد ‪ x‬إﻟﻰ ‪ b − a‬ﺑﺘﻔﺮﻳﻂ‬ ‫اﻟﻌﺪد ‪ b‬ﻳﺴﻤﻰ ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد ‪ x‬إﻟﻰ ‪ b − a‬ﺑﺈﻓﺮاط‬ ‫أﻣﺜﻠﺔ‬ ‫ﻟﺪﻳﻨﺎ ‪3,14 ≺ π ≺ 3,15‬‬

‫اﻟﻌﺪد ‪ 3,14‬ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد ‪π‬‬ ‫اﻟﻌﺪد ‪ 3,15‬ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد ‪ π‬إﻟﻰ‬ ‫إﻟﻰ‬

‫‪−2‬‬

‫‪ 10‬ﺑﺘﻔﺮﻳﻂ‬

‫‪−2‬‬

‫‪ 10‬ﺑﺈﻓﺮاط‬

‫ﺧﺎﺻﻴﺔ‬ ‫ﻟﻴﻜﻦ ‪ a‬و ‪ x‬ﻋﺪدﻳﻦ ﺣﻘﻴﻘﻴﻦ و ‪ a‬ﻋﺪدا ﺣﻘﻴﻘﻴﺎ ﻣﻮﺟﺐ ﻗﻄﻌﺎ‬ ‫اﻟﻌﺪد ‪ a‬ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد ‪ x‬إﻟﻰ ‪ r‬ﺑﺈﻓﺮاط إذا وﻓﻘﻂ إذا آﺎن ‪a − r ≤ x ≤ a‬‬

‫اﻟﻌﺪد ‪ a‬ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد ‪ x‬إﻟﻰ ‪ r‬ﺑﺘﻔﺮﻳﻂ إذا وﻓﻘﻂ إذا آﺎن ‪a ≤ x ≤ a + r‬‬

‫‪22‬‬ ‫ﺗﻤﺮﻳﻦ ﻟﻨﺤﺪد ﺗﻘﺮﻳﺒﺎت ﻟﻠﻌﺪد‬ ‫‪3‬‬ ‫‪1+ 5‬‬ ‫= ‪x‬‬ ‫ﺗﻤﺮﻳﻦ ﻟﻴﻜﻦ‬ ‫‪2‬‬ ‫إذا ﻋﻠﻤﺖ أن ‪ 2, 236‬ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد ‪ 5‬إﻟﻰ ‪ 10−3‬ﺑﺘﻔﺮﻳﻂ ﻓﺄﻋﻂ ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد ‪ x‬إﻟﻰ ‪ 10−3‬ﺑﺘﻔﺮﻳﻂ‬ ‫ﺛﻢ ﺑﺈﻓﺮاط‬ ‫‪ -2‬ﻗﻴﻤﺔ ﻣﻘﺮﺑﺔ‬ ‫ﺗﻌﺮﻳﻒ‬ ‫ﻟﻴﻜﻦ ‪ x‬ﻋﺪدا ﺣﻘﻴﻘﻴﺎ و ‪ r‬ﻋﺪدا ﺣﻘﻴﻘﻴﺎ ﻣﻮﺟﺒﺎ‬ ‫آﻞ ﻋﺪد ﺣﻘﻴﻘﻲ ‪ a‬ﻳﺤﻘﻖ ‪ x − a ≤ r‬ﻳﺴﻤﻰ ﻗﻴﻤﺔ ﻣﻘﺮﺑﺔ ) أو ﺗﻘﺮﻳﺒﺎ( ﻟﻠﻌﺪد ‪ x‬إﻟﻰ ‪r‬‬ ‫إﻟﻰ ‪ 10−3‬ﺑﺈﻓﺮاط‬

‫) أو ﺑﺎﻟﺪﻗﺔ ‪( r‬‬

‫أﻣﺜﻠﺔ‬

‫‪22‬‬ ‫‪− 3,14 ≤ 0, 003‬‬ ‫‪7‬‬ ‫ﺧﺎﺻﻴﺔ‬ ‫ﻟﻴﻜﻦ ] ‪x ∈ [a , b‬‬

‫‪22‬‬ ‫إذن ‪ 3,14‬ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد‬ ‫‪7‬‬

‫إﻟﻰ ‪3 ⋅ 10−3‬‬

‫آﻞ ﻋﺪد ‪ α‬ﻣﻦ ] ‪ [a , b‬ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد ‪ x‬إﻟﻰ ‪b − a‬‬

‫ﻣﻼﺣﻈﺔ‬ ‫‪a +b‬‬ ‫ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد ‪x‬‬ ‫إذا آﺎن ] ‪ x ∈ [a , b‬ﻓﺎن‬ ‫‪2‬‬

‫‪b −a‬‬ ‫إﻟﻰ‬ ‫‪2‬‬

‫ﻣﺜﺎل‬ ‫‪1, 41 ≺ 2 ≺ 1, 42‬‬ ‫اﻟﻌﺪد ‪ 1, 415‬ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد ‪2‬‬ ‫ﺗﻤﺮﻳﻦ‬

‫اﻟﻰ ‪0, 005‬‬

‫‪−1‬‬ ‫ﻟﻨﺒﻴﻦ أن ‪ −0,14‬ﺗﻘﺮﻳﺐ ﻟﻠﻌﺪد‬ ‫‪7‬‬

‫ﺑﺎﻟﺪﻗﺔ ‪5 ⋅ 10−3‬‬

‫‪ -3‬اﻟﺘﻘﺮﻳﺒﺎت اﻟﻌﺸﺮﻳﺔ‬ ‫أ‪ -‬اﺳﺘﻌﻤﺎل اﻟﻤﺤﺴﺒﺔ ﻟﺘﺤﺪﻳﺪ ﺗﻘﺮﻳﺒﺎت ﻋﺸﺮﻳﺔ‬ ‫‪................................................................‬‬ ‫ب‪-‬اﻟﺘﻘﺮﻳﺐ اﻟﻌﺸﺮي‬ ‫ﻟﻴﻜﻦ ‪ x‬ﻋﺪدا ﺣﻘﻴﻘﻴﺎ و ‪ n‬ﻋﺪدا ﺻﺤﻴﺤﺎ ﻃﺒﻴﻌﻴﺎ‬ ‫ﻧﻘﺒﻞ اﻧﻪ ﻳﻮﺟﺪ ﻋﺪد ﺻﺤﻴﺢ ﻧﺴﺒﻲ و ﺣﻴﺪ ‪ p‬ﺣﻴﺚ )‪p ≤ x ≺ 10 ( p + 1‬‬ ‫‪−n‬‬

‫‪−n‬‬

‫‪10‬‬

‫اﻟﻌﺪد ‪ 10− n p‬ﺗﻘﺮﻳﺐ اﻟﻌﺸﺮي ﻟﻠﻌﺪد ‪ x‬ﺑﺘﻔﺮﻳﻂ إﻟﻰ ‪ ) 10− n‬أو ﻣﻦ اﻟﺮﺗﺒﺔ ‪( n‬‬ ‫اﻟﻌﺪد )‪ 10− n ( p + 1‬ﺗﻘﺮﻳﺐ اﻟﻌﺸﺮي ﻟﻠﻌﺪد ‪ x‬ﺑﺈﻓﺮاط إﻟﻰ ‪ ) 10− n‬أو ﻣﻦ اﻟﺮﺗﺒﺔ ‪( n‬‬ ‫اﺻﻄﻼح‪:‬‬ ‫اﻟﺘﻘﺮﻳﺐ اﻟﻌﺸﺮي ﻣﻦ اﻟﺮﺗﺒﺔ ‪ n‬اﻷآﺜﺮ ﻗﺮﺑﺎ ﻣﻦ اﻟﻌﺪد ‪ x‬ﻳﺴﻤﻰ اﻟﺠﺒﺮ ) ‪ (arrondi‬ﻣﻦ اﻟﺮﺗﺒﺔ ‪ n‬ﻟﻠﻌﺪد ‪x‬‬ ‫‪2‬‬ ‫ﻟﺪﻳﻨﺎ ‪666 ⋅ 10−3 ≺ ≺ 667 ⋅ 10−3‬‬ ‫ﻣﺜﺎل‬ ‫‪3‬‬ ‫‪2‬‬ ‫اﻟﻌﺪد ‪ 0, 666‬ﺗﻘﺮﻳﺐ اﻟﻌﺸﺮي ﻟﻠﻌﺪد ﻣﻦ اﻟﺮﺗﺒﺔ ‪ 3‬ﺑﺘﻔﺮﻳﻂ‬ ‫‪3‬‬ ‫‪2‬‬ ‫اﻟﻌﺪد ‪ 0, 667‬ﺗﻘﺮﻳﺐ اﻟﻌﺸﺮي ﻟﻠﻌﺪد ﻣﻦ اﻟﺮﺗﺒﺔ ‪ 3‬ﺑﺈﻓﺮاط‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪0, 002‬‬ ‫‪2 0, 001‬‬ ‫= ‪− 0, 666‬‬ ‫= ‪; 0, 667 −‬‬ ‫ﻧﻼﺣﻆ أن‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫ﻣﻦ اﻟﺮﺗﺒﺔ ‪3‬‬ ‫‪ 0, 667‬اﻟﺠﺒﺮ ﻟﻠﻌﺪد‬ ‫‪3‬‬ ‫ﺗﻤﺮﻳﻦ‬ ‫‪ 1, 24‬اﻟﺘﻘﺮﻳﺐ اﻟﻌﺸﺮي ﻟﻠﻌﺪد ‪ x‬ﻣﻦ اﻟﺮﺗﺒﺔ ‪ 2‬ﺑﺘﻔﺮﻳﻂ و ‪−0,31 ≺ y ≺ −0, 25‬‬ ‫‪y‬‬ ‫أﻃﺮ‬ ‫ﺗﺄﻃﻴﺮا ﺳﻌﺘﻪ ‪0, 05‬‬ ‫‪x‬‬

Related Documents

Ordre
December 2019 9
Ordre Du Jour Ce
June 2020 5
Ordre Joc Ranking
June 2020 2
Ordre Du Jour
June 2020 7
Ordre Du Jour 13112008
November 2019 19