Orb

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Orb as PDF for free.

More details

  • Words: 4,633
  • Pages: 23
(

!

"

# !$

% &' !)

P.W.Atkins* Molecular quantum mechanics* Clarendon Press (Oxford +,-. / 0 (

)

12 '

)

+

! " % &–$ $ ) #7 –

#

$56 343+ : ' 9 6 3438

! 7 &< !< => 9 6 343; (Slater 6A C' !

@ – % ? ' 3434

' 6 (

')

) = $D E 6 ' F D 343B ) = $D !

$H>

C' 343G

( – I – $#

NO – !

J

! '

6 ) < 1' 3B3+

K L # 7 !<

RHF ' ! 7 &< 5=

7

M 3B38

#

" 3B3; < P 3B34

Q RS6 M 3B3B LCAO – ! ) Roothaan W+V ! 1$2 W 7

67 TU 1' 3G3+ " V K R6 3G38 *

" "

((Pupulation Analysis) 3W+V !+,- " %$

\< ! !$ (

5<

) KP

$ (

O

' K[ L' KP

@7

L ! $56

!1 ( \ _)

!$ K[ L' X Y < &< '

!Z

]

)? ' (

!

)

#

'

2

I –

)

6 ) a `7

( L) 7 D *n !$ F

7 &< D

1

#*

W )?

(

e 5' ! 7 &<

i 8V

!
6 !'

= '7 M

C'

P

KP

7 V e 5'

)

'

!'

?

K<

(

H

k 6 !' − 1

7

&6

2

7 + 1

2

M7

n ! F !$

D

7 % gC Wl i m i . *n i +V+s ! 7

* ) 7 &< ( D7

z

R'

!$ k (

1' m 7 l 7 n !$

1

D ms "

!'

l $ ms 7 m *l *n !$

D

>

C CP

)?

7 ? ' 7 H

CNDO ' 7

π

= 7

< 1'

) _6 7

!' !

D *l 7 ! F !$ != L gC

$6

# (_

RhF n e 5'

D

W k

2

' (!$

=

!'

*8p3+ *8p. *8pj+ *8s ?

7

) L)

>

Wn

gC ) 7 &<

P

&6 _ $'V ) 7 &<

(W !$

!'

/7 1' $6 ?

( Y7 L) J s

7 `7

D * m7 ! $ !$

6 !' !L 0 f' !$ #

d *


<

" Pople

` L 6 !' c O

(

^L'

!L

$ ) *? &< '

$b "

6 !' 7

< '

? &< ' '

W Pople *Parr *Paris ) K# # – # – !L # `7

! 7 &< _ L

7

!$ ! F

O

#_)

< 1' %$

< 1'

!' FA !$

( )? '

' = 7

' K[ L' = 7

#

5 ! $56 ? '

!&

= J &6" M7

) _6

V J

7 &< (

P k

'(

!' K 16 ) 7 &<

$

S6 KL #

!\

%

_)

K 16 =

HM 7 2

!67 \ ' #7

NO F A

P

U

_ 6 !' * M7

S6

) p K&

7

M

& nb

2 * <

) _6 !

7 &<

P

li8

b

(

#

'"

[ W A 'V+,8B ?

_6

(_ (_ [

( ?

!'

k !$ #

2

T S

`7 '

(_

>

!0 2

*W8sV !&

3

_)

7 &<

.0

0

! 7 &<

< &< ' ! 7 &<

# +s

(

K ' \F

K'

$

)

R

$ !1 h0

67 #

R F

_

(

( '" ) (

M7 r#

&'

!< &< '

) 'L

(

P ? &< ' $) 7 !$6 7

!'

!

_

(_

!' !

n ) _6 ?

) ^L' KP '

) R


T 1< d'

*+,8. < &< '

M7

)

# _ 6 !' &)

&#

! H' `7

7 &<

) ? &< ' % !' K ' n ) _6

7 %$

T F

C'

_) !L ?

<

H#

)

!< &< '

= q

(


7 )

#!L n )

( *

!

6 !$ _6 ?


16 l J

&

) ? '

!'

l

n ) '*

7 &<

l7n

W Pauli V !< [ # KF

7 &< 7

&# #

$ JD dC (

01

o$)

)

6 !' * $6

& J V !< [ #

W+sV8W8sV ! 7 &<


C6 D

(

= 7 l i. " !R Z 6

Wl V

7 &<

7

! 1'

*W8pV

)_L

L

D7

!' W Aufbau V KF 7 *_6

W

\

$6

' * ) nb

#

4 ./ (

m

=

(_

*KF

! ) _6

Q Z 6 ms 7 *m *l *n !$

7 1 h0 (

n i 8 ! 7 &<

> _6

) 7 &<

(_ 2

) 7 &<

! 7 &<

[ # *8s ?

6

7 &<

P 7 &< )

6 !' *

Jb6 _) (

!

'%

P != L J

2 ' 1

' ? &< ' ! 7 &<

M7 7 ? '

?P


) _6 7 ' & _

Mulliken

& '

H W Molecular Spectroscopy V

7 *!< &< '

)?

7 ) p K& Q Z 6

(

! 1' 7 &<

PQZ 6

!< &< ' ?

( P


'7

(

( 9

6

f6

J R→∞

!h< 2 m !7

q !L

(


! 7 &< K

M

( !< &< ' ?

7

2*

tR

7

7

H W Hund V

) p K& J>

%>

h R'

L _

J *

R→0

\

6 !'

$) !< &< '

+s ?

"

7 T S ! 1O ' *

!' _6

) L)

? &< ' %

>(

!'

O _6

?

7

7 &< J b "

(

K&

M7

) ? &< ' =

' = _6

! 7 &<

*? &< '

7 &< % & ' = ) !' !C 6 M7

L) !& J

v #7

'

7

? &< '

(

/7 1' *_6

<

& H2

+

_) (

_)

) ?

7

7 !d X

M7

) ? &< '

& !$6 7 ? &< ' L

N

ϕ= µ =1

Cµ χ µ

)

7 &< & ' = )

7 * ! L& ? $ P

TU P

ϕ = N [(1s )A ± (1s )B ]

LCAO

M

% *? s' %

!& !& J

!< &< ' ?

)

!= L

( )

' P

!' b ' ! $ != L

= q

7

*W R → ∞ V

'

( _6

7 I

7 W+(+V

F

'

(

u N b

J<'

6 W Linear Combination of Atomic Orbitals V 7 &< > ! 7 &<

)


`7

&#

< 1' !' $D gL

!F

" KS

2

) 1

^L'

)


W+(+V T hD

6 !'

W+(8V

<

!C O e 16 W+(8V T hD N → ∞

7

&"

!' q

W+(8V gL

o$) 7 *

I –

6 )W

$56V

# !' )

$56

*! $56 )

( qR< K C ' u 6*`7

# 9 6 K'

<

I w

>

= 7

6 )

!'

7 !$6 P 7 >

) P 7 (W

M

! $56 KP

O

d

w e 7 &< %

( " !'

%

)

$56 `7 6 E#

6 ) '

#

6 !' !< &< '

)?

!$ q

) 7 &<

( \ _)

5

\

V !$6 P 7

7 " Bohr "

d

10 −8 cm = 1.88976 Bohr

6 ) %

( H'

P 7V e !& &<

e = 1 7 W 2π

\ I w

(

!L =

P7 (

)

7 `7 '

"

) KS

*!$6

) P7

me−1e −2

' W Atomic unit = a.u. 6 )

H

=$) 9

! ) ' C'

(

T S ? 0 P7 (

2

>

+

H' W Correlation effect V != Lh$) u 6

a0 =

? &< ' 2 K O ']

7 H2

< 1'

< 1'

( ) !'

LCAO `7 (

K<

< &< ' ! 7 &<

T hu

χµ "

* χ µ !1 6 _ L

7

Y 7 PPP W8V * CNDO W+V

6 !'

D $b'

J N * &

!' $D

!$6 7

_)

$6

"

\

*_

(

K O ! L K$D

5 ? & ' e 5'

( _

'

_ LC6 % A#

H

me e 4

& −2

*!< $1' O

d (

T S

!'

P 7 ( Hartree = 27.2070 eV = 219475 cm uV

= 1 7 W me 7 &< n 2V me

O

-1

!$6

5

67 H

H8+

!1 *

!<7 (

KP !C O

_) !\ l#*

tR

L) > 0

_L % 6 !'

!' x 2

OAD ? s' _ )

!' ! $ != L

^L'

*

^L' !' * ^L'

b'

? s'

"

<7

!' _)

u

&'

KP T hu \ y

! L 2 7

!$6

<

7

) 67 #

_

7 _

#!$

+

=>

"

_

& (_

!' Y"

b

'

( E. Teller, Z. Physik 61( 1930 ) 458 C6 y

* ) ? &< '

)?

7

) p K& (_ H&

−e

rA +e HA

r

rB +e HB

R

H8+

7

rA = r + R

2

6 !' z Z

rB = r − R

(

_)

QZ 6

H# _

7

2

> & K< (

! &'

)

u ) L)

7

1O '

1O '

KL # !<

'%

7 &<

1 1 Vˆ = − − rA rB T S W !$6

)

W8(+V ) P 7 V 7 &<

!

' ) = $D (

!'

1 1 1 Hˆ = Tˆ + Vˆ = − ∇ 2 − − 2 rA rB

P

W8(8V )

R F ! 1 *`

f6 : ' 9 6 1O '

6

) p K& ( [#


7 &< ! &' : '9 6 '(

1O ' =

r !1 6 7 &< : ' 9 6

)

) ' # 7J2 J _)

R (

)

*_ ) !' H

f6 ) 67 #

ϕ

#


ϕ = ϕ (r , R )

! 1O '

= 7 R = 0 !& *_ = q

!<7 ( R = ∞

C CP

'] T F

ϕ (r ,0) =


)

>(

_)

8

π

ϕ ( r , ∞) =

R % _L

! $56 ! 2 & !'

(

T hD 7

\

)

)

) _6

R=∞ "

W8(;V

&' 7

n7 ]

1s ? ! 2

=V '

ch0

_) (_ 7" !'

\

'

ϕ E# L) ! L& x O7 ? $ P

T F

W8(4V

1 −r e b" 2

χ (r ) =

7 (_

Y7

D

ϕ (r , R) = C A χ (rA ) + C B χ (rB ) (

'

e− 2r

1 {χ (rA ) + χ (rB )} 2

!' M7

2

He+

_

HA+j HB 7 HAjHB+ ' ( ) !' ' (

7

χ B = χ (rB ) 7 χ A = χ (rA )

W8(BV

)

H

Variation Method W f6V ` 7 '

"

!

CB 7 C A X Z (W!$

!$

C'

ϕ ∗ Hˆ ϕdv I = = E E0 N ϕ ∗ϕdv

W8(GV d

&

d CB 7 C A

% J E0

16 c 0

O E0

C" 7

(

U _)

(

W8(GV

W8(8V !

' ) = $D

'

_

!'

# M

W8(GV

ϕ

2

{7

C'

E

"

W8(BV T hD

r

[ # E0 "

6 2 '(

( ) !'

W $ V

$

2 '

I = H AAC A2 + 2 H AB C AC B + C B2 H BB

W8(-V

N = C A2 + 2 S AB C AC B + C B2

(_

&

)

H ' "

H AA = χ A Hˆ χ A dv H BB = χ B Hˆ χ B dv

W8(|V

H AB = χ A Hˆ χ B dv

d

o$) 7 (

χB !'

W Re al V !C CP

χA 1'

d

W8(-V d

(

H AA = H BB

W Overlap integral V ` k$) ? = (_

H AB = H BA

L2

S AB = χ A χ B dv

& >

C6 K <

W8(,V

L) ? '

χ A χ A dv = χ B χ B dv = 1

χB 7 χ A

<

7

2 6

( ) !'

c H' C B 7 C A

*

2 6 W8(GV

∂ I ∂N 1 ∂I −E ( )= ∂C A N ∂C A N ∂C A

W8(+.V

∂ I ∂N 1 ∂I −E ( )= ∂C B N ∂C B N ∂C B

!6U 1' _ L

7 W8(|V7 W8(-V %$

(_ ) !'

O \F 7 L'

) c H' * E !

C' ( " !'

( H AA − E )C A + ( H AB − S AB E )C B = 0

W8(++V

( H AB − S AB E )C A + ( H BB − E )C B = 0 C A = CB = 0 " S5H'

< 1'

! $

2

! 2

(

\F (

!'

&

=$) C B 7 C A

(

X Z E 6' 1'

E &$'

C'

H AA − E

H AB − S AB E

H AB − S AB E

H BB − E

' 6 * ) !'

!L

!6U 1' _ L (

(Secular equation)

W8(+8V

27

E g = ( H AA + H AB ) (1 + S AB )

*

< 1'

W8(+;V

) !' W8(++V

J 2

C A = −C B

W8(+4V

o$)

Eu = ( H AA − H AB ) (1 − S AB )

W8(+BV

C A = −C B

( !'

(

+

)

W8(+GV

hRF

N !1 (

W8(GV < 1'

27

!'

1' *

)

u7 g

?' !L

)

'AD

5 KU

1

CB 7 C A

ϕ & ]

C' ( )

#

< P c d' $Z

< = !L

&

ϕ g = [χ A + χ B ]

2 + 2S AB

W8(+-V

ϕ a = [χ A − χ B ]

2 − 2 S AB

W8(+|V

7

M (

6 _)

# h R' J

U

27

Eu 7 E g

% n ) M

_

! C' $Z

_)

!' U P

(

H 2+

_6 !

χB 7 χ A & ]

' ) = $D { 7 9 6

χB 7 χ A

Hˆ χ Hˆ χ

Hˆ = $D

_ ) !'

2

' (_ (_

!'

S AB !< C ? = 7 H AB 7 H AA

h R' \

*

E H = 0.5 a.u. { 7

C'

(

_)

Ek

W8(8V < 1' %$

H

− 1 rB ) χ

A

( 2 . 19 )

B

= (E

H

− 1 rA ) χ

B

( 2 . 20 )

AA

= EH −

H

AB

= EH S

S

AB

m

(1 r B ) χ A2 dv = E H + h AA

AB

(1 r A ) χ



A

'" S AB !< C ? =

(

= e − R (1 + R +

7"

χ B dv = E H S

AB

(2.22)

+ h AB

o$) 7 W8(88V 7 W8(8+V g 7

h R' != => +

1 2 R ) 3

M

' (_

h R'

9$2 7 &<

Eu 7 E g

M

) 67 # (

_)

#

(2.23)

1 (1 − e − 2 R (1 + R )) R = − e − R (1 + R )

(_

O W8(|V

(2.21)

(2.24)

h AA = − h AB

K$D

= (E

H

T F

)

A

_ ) !'

(

M7

M

(2.25)

_ 6 !' ! P

1R 1 r< *_ ) !' l $

W8(8BV 6 W8(8;V g 7 M

!L

εu 7 ε g _

R

?P !1 6

h R' _ )

K !'

M !

ε

g

= E

ε

u

= Eu

* 7

W

@ 2V !)

)

M

#


εg K

! R ' W8(8VK& (

−R

R >> 1

(2.26)

−R

R >> 1

(2.27)

ϕ1

M 1

R = 1.32 Å

2 6V ( M

1 2 ≈ EH − Re 3 R 1 2 + ≈ EH + Re R 3 +

g


$ %

2

_

2.78 eV 7 1.06 Å

!) =H ' "

hRF

" (

_)

'( ) H' 7 l ' "


ε g (R) ) !'

_)

!' *K

εu M

(W_2 ' (1au = 0.529177 Å

h R' (W

_

L C'

M

U !h 2 T hD

! ' 6

!' ! R '

*ε g < EH

!) = ( ) !'

H a.u.

H


!$6 P 7 ! R ' 7

P7

C'V 1.7 eV

h R' != L

!= L

M

}G;

C' != L

!C O

)

2

* # 9 6 Q RF

M

! $56 5

=>

ε (a.u.) − 0.40

εg

εu

− 0.50

R a.u.

− 0.60

! " # $%& # ' ( – ( ) .( *. / 0" /* 1 / * ) )*+( ,- -

W8(;V K&

( ) !'

ϕg 9 6 (

!= L !'


ϕg >

_) QZ 6_

χ B 7 χ A ! 1 $6 ?

? &' J '

hL

l $ Wn(

gerade ! $<" f< e5'V g E

L)

F

!' !1 *x Z ' 7 7

$)

R

#

l# '

ϕu 7 ϕ a : ' 9 6 !\ '

!2 ' 9 6 (

! &1

C6


(

r

C6 J '

< &< '

R'

ungerade ! $<" f< e5'V u E

Wn(

7 &< 6

!'

k ) _6

) L)

$D

" H

'

K<

ϕg

ϕu (

R\F % E&D

2 '

(

!'

D

'AD ` ! &1

7 &<

7 ( ) !' (

HA

? &< '

W w w w wV

F ( ) !'

ϕu 7 WwwwwwwwV ϕ g ? &< '

<

7

'J$) W(((((((((((( V

H ? &< '

<

7

) p K& ~

ϕu 7 ϕ g

ϕu

H 2 '

HB

R' ? 0

χ B 7 χ A $6 ? K& (

!'

(1.32 Å W 2.5a.u. V

l $ 6 QZ 7 * L)

!'


H'

ρ u 7 ρ g ? $ P !< => h R'

( 7" !'

: ' 9 6 c d'

O 7rb'

7 8(; K&

H 2+ HA − HB

x Z '

_ 6 !' '

? $ P !< => (_ )

2

ρg = ϕg ρu = ϕu

2

= (χ

2 A

+ 2 χ A χ B + χ B2 ) ( 2 + 2 S AB )

(2.28)

= (χ

2 A

− 2 χ A χ B + χ B2 ) ( 2 − 2 S AB )

(2.29)

! 7 &< (

L C' K O *_ 7"

E# (

_)

&$'

"! $


#

"?$P

_

l # _ L 6 !'

!'

'(

!< =>

6 !'

7 &< !< =>

χB 7 χA ?

!'

7

!) _

ρ0 =

(

_

? &< '

' K' D

ϕu

l) (

1 ( χ A2 χ B2 ) 2

R'

>( Cd '

_6

Cd '

$)

' (

> ? &< '

< )

<

7 !$6

)

#

= _6

> 6 2 W _2 ' (

< = *! L

!< => !' ~

' * ) !'

1 R

8(4 K&

ϕg ?

< &< '

(

(

7

<

_6 7

&
0 " 8 %

7

7

@2KL #

0 " 8 *? &< '

# Z &
#%

< "

&$' ) ?

(

7" y

!< &< '

<

]

' 6

_

O K R6

% 0 " 0 Cd '

'

7

&$' !)

2 'V (

C' !$ H AA ? = (_ )

( %

7 ! 7 &< !< =>

' T hD

7

7 T F

# !

!$6

Cd ' <

0 "0

@2 KL # * M

& >

_6 7

# ? &< '

! H

!' ! $ )

"

(

# Z =

K&

1 K L # E# _ 2 ' 7 &< !< =>

!' _6 7 <

!'

7 ' r<

% 0 " ? &< '

>

W8(;.V 6 W8(8|V ? $ P !< =>

! 7 &< J $6

> ? &< ' %

"

> ? &< ' (

T7 \ ' E H −

ϕg

7 !$6 _6 7

!'

Cd '

Cd ' > _6

$ !

(

' (_ ' !'

'(

T S

(

$6

> ? &< '

% Cd ' " !'

hL ) !< => b " lJ


2 ' _6

(2.30)

? &< ' ?

7

7

? s' &

' W8(88V 7 W8(8+V g 7 ! 1 * H BB 7 H AA

!)

< = x

M

J>

( L _

,!0 •U $1' O

d

L) 1

(

T7 \ ' n 7

!' $6 • h C6

!' 6

ch0

#

!= L R

? =

"

,!0 W Huckel Theory K )

( ' !' . 2 9

z Z7

< = x

M

ϕu

ϕ g * H AB ? =

hL

!H5 ( ^6

D

• F S5'V

7(

#

O ( ' !' W Re sonance Integrals V

_

€(

εu +1 2 > ε g +1 2

1

n \'

( (

!' 1

@2 H

#



'

ϕu

1

H

= !& 7 _ )

# Z O

ϕg

< P = T hD 7 &< %

? s'

2

HA

7 V

ϕu

HB

ρ 0 !< => W(((((V g ( ) !' H ? &< ' R' ? 0 # Z?

7 !< => W3333V g 7

ϕg

)

+

!< => K& ( H 2

# !< &< ' ?

7 &< !< => 8(4 K&

7 !< => WwwwwwwwwV g • W ! $

# (

) ' M7

) _6

C' Eu 7 E g !
2 7 !' R → ∞ ! O7 *

!R RF )

M

_

2 =

(

2

+V h

!<

He + (1s ) ) !'

7

M7

) _6

' * 7 !' 1s ?

$

" Q RF H

C' & < P

& J K R6 % (

H#

!' W8(8-V 7 W8(8GV g 7 #

( L Q RF 8

!

7

M

6

!' −

!'

!'

f'

6 ?

ϕg ?

C CP

3 a.u. 2

6 !$ 7

*R = 0

!<7 (W

(

)

!'

L ~ F

o$)

5

+

ϕu

C'

χ b

" !'

(

!'

# 7"

(

ϕu

L C'

− 2 a.u.

>(

W l = 1V p w ‚ 6

T hD

?

7 % '

W 2.5 V T hD '

r= 2 c 0

ς f' R =∞ '

' Variation method ! (_

$ ?

M

#

Virial Theory

7 +

2 J He

' V ) !' !R RF

!' +(84 ? 16

J= 2 ? 1' *: ' 9 6 T hD ^6

7 `7

6 qPA'

M

*: ' 9 6 *

_ 6

ς =2

ϕg (

7 1.06 Å 6 ? 16 F *T hD (

H 8

(WW 2.3 V

W8(;+V

h R' WQ RF C' 81% V 2.25 eV 6 != L

*

!' R = 0

7 7 !' R → 0 & ' = )

Eg M L

C B 7 C A X Z _ 6 !' 6

W8(BV

E H = −0.5 a.u.

5

ς 3 − ςr e π

χ′ =

!' & _ 7"

7

L C'V

! 2 ? 1' ! L *

(_ (_

W8(BV T hD

o$) ' (W8(4

H e+

*

*

$ C L'


*: ' 9 6


L

? f' #

7 6

6 J= 2

C'

2 < Tˆ > g + < Vˆ > g + R

7 R = Re

_

!'

' x7

(

dε =0 dR

_)

\

W8(;8V

!= L

M

K R6

g7

'

R=∞

_

2 < Tˆ > g + < Vˆ > g = 0

W8(;;V

Re

-

-

-2

-3

< Tˆ > g , < Vˆ > g

# 7%8 9 "

)$

' (

4 ( 5 +6.7

R *(%45

# ' ( :4; <= .>.8 .*/ .*./

/ ' ( : 2.5

! " $ %.! H 2+ $%& 8 $ +(

8 $ +( R = ∞

- )*

- .4?

( Eg ( %" @ 4

& A8 A B%C= . ε g

( ) !'

d KL # M 7

P

T

f6

2∆ < Tˆ > g = −∆ < Vˆ > g

∆ε g =

W 7" 1dO n D KF

2 < Tˆ > g

!hdO ?

' 6 7 %

$6

Cd '

H

6 !' U ? '

V

$6

f6 R

"

1s ƒ< ?

f6 e 5'

( ) !'

7 %

χ

_)

∆ < Vˆ > g

=> h

U 2 &

lJ 7

!' l J < Vˆ > g

) ~ \6

!' $6 W8(BV K& (

6 hD _ 6 !' n 6

7 C d'

C'

6

!' l)

>

7J

( 7 1' W Polarization terms V

2

_ J !' "

λ! 7

χ ′′ = N ((1s ) + λ (2 p ))

(

C CP

!' n 1' z Z7

!Hh 2 M

C CP ( M

$ ' F S5' (_ H5


hs' ∆ < Tˆ > g

< Tˆ > g

! O7 !'

!\ '

7 &< J $6 l J (

!\ ' W83;;V T hD R > Re

>

!' % J _ ( ) !'

1 ˆ < V >g 2

2pw

Z

W8(;4V

2?

7

R'

2p w ?

7 "

χA

χB

HA

χA

χ ′A′

HA

HB

&5

χ B′′

HB

( $ # 6CD) $%4- E& F%5 9 " 4G " – (2.6)

? 4

. χB C' l J

' (W8(G *K& V (

WJ 2 p w ?

'

7 *!<

χB 7 χA

) 7

6 7V

#9 6

! '" l J tD

λ X Z (_ 7" !' (

#


cO {79 6

d

' (

_

# !'

K

H

< =

6 !'

> ) '* #9 6 !' $D T hD (

!'

$6

7 J $'?

7

7

16 l J +

) H2

W8(;BV

µ

( L) B 7 A

H6

* H AB

(C µA χ µA + C µB χ µB )

ϕ=

' 6

1' (Variation Method ) !

!' ! P K&

M

!hdO

χ µB 7 χ µA "


Related Documents

Orb
December 2019 38
Orb
November 2019 30
Orb
October 2019 36
Orb Italy
November 2019 31
Chitaristul Orb
May 2020 2
Orb 01
November 2019 13