(
!
"
# !$
% &' !)
P.W.Atkins* Molecular quantum mechanics* Clarendon Press (Oxford +,-. / 0 (
)
12 '
)
+
! " % &–$ $ ) #7 –
#
$56 343+ : ' 9 6 3438
! 7 &< !< => 9 6 343; (Slater 6A C' !
@ – % ? ' 3434
' 6 (
')
) = $D E 6 ' F D 343B ) = $D !
$H>
C' 343G
( – I – $#
NO – !
J
! '
6 ) < 1' 3B3+
K L # 7 !<
RHF ' ! 7 &< 5=
7
M 3B38
#
" 3B3; < P 3B34
Q RS6 M 3B3B LCAO – ! ) Roothaan W+V ! 1$2 W 7
67 TU 1' 3G3+ " V K R6 3G38 *
" "
((Pupulation Analysis) 3W+V !+,- " %$
\< ! !$ (
5<
) KP
$ (
O
' K[ L' KP
@7
L ! $56
!1 ( \ _)
!$ K[ L' X Y < &< '
!Z
]
)? ' (
!
)
#
'
2
I –
)
6 ) a `7
( L) 7 D *n !$ F
7 &< D
1
#*
W )?
(
e 5' ! 7 &<
i 8V
!
6 !'
= '7 M
C'
P
KP
7 V e 5'
)
'
!'
?
K<
(
H
k 6 !' − 1
7
&6
2
7 + 1
2
M7
n ! F !$
D
7 % gC Wl i m i . *n i +V+s ! 7
* ) 7 &< ( D7
z
R'
!$ k (
1' m 7 l 7 n !$
1
D ms "
!'
l $ ms 7 m *l *n !$
D
>
C CP
)?
7 ? ' 7 H
CNDO ' 7
π
= 7
< 1'
) _6 7
!' !
D *l 7 ! F !$ != L gC
$6
# (_
RhF n e 5'
D
W k
2
' (!$
=
!'
*8p3+ *8p. *8pj+ *8s ?
7
) L)
>
Wn
gC ) 7 &<
P
&6 _ $'V ) 7 &<
(W !$
!'
/7 1' $6 ?
( Y7 L) J s
7 `7
D * m7 ! $ !$
6 !' !L 0 f' !$ #
d *
<
" Pople
` L 6 !' c O
(
^L'
!L
$ ) *? &< '
$b "
6 !' 7
< '
? &< ' '
W Pople *Parr *Paris ) K# # – # – !L # `7
! 7 &< _ L
7
!$ ! F
O
#_)
< 1' %$
< 1'
!' FA !$
( )? '
' = 7
' K[ L' = 7
#
5 ! $56 ? '
!&
= J &6" M7
) _6
V J
7 &< (
P k
'(
!' K 16 ) 7 &<
$
S6 KL #
!\
%
_)
K 16 =
HM 7 2
!67 \ ' #7
NO F A
P
U
_ 6 !' * M7
S6
) p K&
7
M
& nb
2 * <
) _6 !
7 &<
P
li8
b
(
#
'"
[ W A 'V+,8B ?
_6
(_ (_ [
( ?
!'
k !$ #
2
T S
`7 '
(_
>
!0 2
*W8sV !&
3
_)
7 &<
.0
0
! 7 &<
< &< ' ! 7 &<
# +s
(
K ' \F
K'
$
)
R
$ !1 h0
67 #
R F
_
(
( '" ) (
M7 r#
&'
!< &< '
) 'L
(
P ? &< ' $) 7 !$6 7
!'
!
_
(_
!' !
n ) _6 ?
) ^L' KP '
) R
T 1< d'
*+,8. < &< '
M7
)
# _ 6 !' &)
! H' `7
7 &<
) ? &< ' % !' K ' n ) _6
7 %$
T F
C'
_) !L ?
<
H#
)
!< &< '
= q
(
7 )
#!L n )
( *
!
6 !$ _6 ?
16 l J
&
) ? '
!'
l
n ) '*
7 &<
l7n
W Pauli V !< [ # KF
7 &< 7
#
$ JD dC (
01
o$)
)
6 !' * $6
& J V !< [ #
W+sV8W8sV ! 7 &<
C6 D
(
= 7 l i. " !R Z 6
Wl V
7 &<
7
! 1'
*W8pV
)_L
L
D7
!' W Aufbau V KF 7 *_6
W
\
$6
' * ) nb
#
4 ./ (
m
=
(_
*KF
! ) _6
Q Z 6 ms 7 *m *l *n !$
7 1 h0 (
n i 8 ! 7 &<
> _6
) 7 &<
(_ 2
) 7 &<
! 7 &<
[ # *8s ?
6
7 &<
P 7 &< )
6 !' *
Jb6 _) (
!
'%
P != L J
2 ' 1
' ? &< ' ! 7 &<
M7 7 ? '
?P
) _6 7 ' & _
Mulliken
& '
H W Molecular Spectroscopy V
7 *!< &< '
)?
7 ) p K& Q Z 6
(
! 1' 7 &<
PQZ 6
!< &< ' ?
( P
'7
(
( 9
6
f6
J R→∞
!h< 2 m !7
q !L
(
! 7 &< K
M
( !< &< ' ?
7
2*
tR
7
7
H W Hund V
) p K& J>
%>
h R'
L _
J *
R→0
\
6 !'
$) !< &< '
+s ?
"
7 T S ! 1O ' *
!' _6
) L)
? &< ' %
>(
!'
O _6
?
7
7 &< J b "
(
K&
M7
) ? &< ' =
' = _6
! 7 &<
*? &< '
7 &< % & ' = ) !' !C 6 M7
L) !& J
v #7
'
7
? &< '
(
/7 1' *_6
<
& H2
+
_) (
_)
) ?
7
7 !d X
M7
) ? &< '
& !$6 7 ? &< ' L
N
ϕ= µ =1
Cµ χ µ
)
7 &< & ' = )
7 * ! L& ? $ P
TU P
ϕ = N [(1s )A ± (1s )B ]
LCAO
M
% *? s' %
!& !& J
!< &< ' ?
)
!= L
( )
' P
!' b ' ! $ != L
= q
7
*W R → ∞ V
'
( _6
7 I
7 W+(+V
F
'
(
u N b
J<'
6 W Linear Combination of Atomic Orbitals V 7 &< > ! 7 &<
)
`7
< 1' !' $D gL
!F
" KS
2
) 1
^L'
)
W+(+V T hD
6 !'
W+(8V
<
!C O e 16 W+(8V T hD N → ∞
7
&"
!' q
W+(8V gL
o$) 7 *
I –
6 )W
$56V
# !' )
$56
*! $56 )
( qR< K C ' u 6*`7
# 9 6 K'
<
I w
>
= 7
6 )
!'
7 !$6 P 7 >
) P 7 (W
M
! $56 KP
O
d
w e 7 &< %
( " !'
%
)
$56 `7 6 E#
6 ) '
#
6 !' !< &< '
)?
!$ q
) 7 &<
( \ _)
5
\
V !$6 P 7
7 " Bohr "
d
10 −8 cm = 1.88976 Bohr
6 ) %
( H'
P 7V e !& &<
e = 1 7 W 2π
\ I w
(
!L =
P7 (
)
7 `7 '
"
) KS
*!$6
) P7
me−1e −2
' W Atomic unit = a.u. 6 )
H
=$) 9
! ) ' C'
(
T S ? 0 P7 (
2
>
+
H' W Correlation effect V != Lh$) u 6
a0 =
? &< ' 2 K O ']
7 H2
< 1'
< 1'
( ) !'
LCAO `7 (
K<
< &< ' ! 7 &<
T hu
χµ "
* χ µ !1 6 _ L
7
Y 7 PPP W8V * CNDO W+V
6 !'
D $b'
J N * &
!' $D
!$6 7
_)
$6
"
\
*_
(
K O ! L K$D
5 ? & ' e 5'
( _
'
_ LC6 % A#
H
me e 4
& −2
*!< $1' O
d (
T S
!'
P 7 ( Hartree = 27.2070 eV = 219475 cm uV
= 1 7 W me 7 &< n 2V me
O
-1
!$6
5
67 H
H8+
!1 *
!<7 (
KP !C O
_) !\ l#*
tR
L) > 0
_L % 6 !'
!' x 2
OAD ? s' _ )
!' ! $ != L
^L'
*
^L' !' * ^L'
b'
? s'
"
<7
!' _)
u
&'
KP T hu \ y
! L 2 7
!$6
<
7
) 67 #
_
7 _
#!$
+
=>
"
_
& (_
!' Y"
b
'
( E. Teller, Z. Physik 61( 1930 ) 458 C6 y
* ) ? &< '
)?
7
) p K& (_ H&
−e
rA +e HA
r
rB +e HB
R
H8+
7
rA = r + R
2
6 !' z Z
rB = r − R
(
_)
QZ 6
H# _
7
2
> & K< (
! &'
)
u ) L)
7
1O '
1O '
KL # !<
'%
7 &<
1 1 Vˆ = − − rA rB T S W !$6
)
W8(+V ) P 7 V 7 &<
!
' ) = $D (
!'
1 1 1 Hˆ = Tˆ + Vˆ = − ∇ 2 − − 2 rA rB
P
W8(8V )
R F ! 1 *`
f6 : ' 9 6 1O '
6
) p K& ( [#
7 &< ! &' : '9 6 '(
1O ' =
r !1 6 7 &< : ' 9 6
)
) ' # 7J2 J _)
R (
)
*_ ) !' H
f6 ) 67 #
ϕ
#
ϕ = ϕ (r , R )
! 1O '
= 7 R = 0 !& *_ = q
!<7 ( R = ∞
C CP
'] T F
ϕ (r ,0) =
)
>(
_)
8
π
ϕ ( r , ∞) =
R % _L
! $56 ! 2 & !'
(
T hD 7
\
)
)
) _6
R=∞ "
W8(;V
&' 7
n7 ]
1s ? ! 2
=V '
ch0
_) (_ 7" !'
\
'
ϕ E# L) ! L& x O7 ? $ P
T F
W8(4V
1 −r e b" 2
χ (r ) =
7 (_
Y7
D
ϕ (r , R) = C A χ (rA ) + C B χ (rB ) (
'
e− 2r
1 {χ (rA ) + χ (rB )} 2
!' M7
2
He+
_
HA+j HB 7 HAjHB+ ' ( ) !' ' (
7
χ B = χ (rB ) 7 χ A = χ (rA )
W8(BV
)
H
Variation Method W f6V ` 7 '
"
!
CB 7 C A X Z (W!$
!$
C'
ϕ ∗ Hˆ ϕdv I = = E E0 N ϕ ∗ϕdv
W8(GV d
&
d CB 7 C A
% J E0
16 c 0
O E0
C" 7
(
U _)
(
W8(GV
W8(8V !
' ) = $D
'
_
!'
# M
W8(GV
ϕ
2
{7
C'
E
"
W8(BV T hD
r
[ # E0 "
6 2 '(
( ) !'
W $ V
$
2 '
I = H AAC A2 + 2 H AB C AC B + C B2 H BB
W8(-V
N = C A2 + 2 S AB C AC B + C B2
(_
&
)
H ' "
H AA = χ A Hˆ χ A dv H BB = χ B Hˆ χ B dv
W8(|V
H AB = χ A Hˆ χ B dv
d
o$) 7 (
χB !'
W Re al V !C CP
χA 1'
d
W8(-V d
(
H AA = H BB
W Overlap integral V ` k$) ? = (_
H AB = H BA
L2
S AB = χ A χ B dv
& >
C6 K <
W8(,V
L) ? '
χ A χ A dv = χ B χ B dv = 1
χB 7 χ A
<
7
2 6
( ) !'
c H' C B 7 C A
*
2 6 W8(GV
∂ I ∂N 1 ∂I −E ( )= ∂C A N ∂C A N ∂C A
W8(+.V
∂ I ∂N 1 ∂I −E ( )= ∂C B N ∂C B N ∂C B
!6U 1' _ L
7 W8(|V7 W8(-V %$
(_ ) !'
O \F 7 L'
) c H' * E !
C' ( " !'
( H AA − E )C A + ( H AB − S AB E )C B = 0
W8(++V
( H AB − S AB E )C A + ( H BB − E )C B = 0 C A = CB = 0 " S5H'
< 1'
! $
2
! 2
(
\F (
!'
&
=$) C B 7 C A
(
X Z E 6' 1'
E &$'
C'
H AA − E
H AB − S AB E
H AB − S AB E
H BB − E
' 6 * ) !'
!L
!6U 1' _ L (
(Secular equation)
W8(+8V
27
E g = ( H AA + H AB ) (1 + S AB )
*
< 1'
W8(+;V
) !' W8(++V
J 2
C A = −C B
W8(+4V
o$)
Eu = ( H AA − H AB ) (1 − S AB )
W8(+BV
C A = −C B
( !'
(
+
)
W8(+GV
hRF
N !1 (
W8(GV < 1'
27
!'
1' *
)
u7 g
?' !L
)
'AD
5 KU
1
CB 7 C A
ϕ & ]
C' ( )
#
< P c d' $Z
< = !L
&
ϕ g = [χ A + χ B ]
2 + 2S AB
W8(+-V
ϕ a = [χ A − χ B ]
2 − 2 S AB
W8(+|V
7
M (
6 _)
# h R' J
U
27
Eu 7 E g
% n ) M
_
! C' $Z
_)
!' U P
(
H 2+
_6 !
χB 7 χ A & ]
' ) = $D { 7 9 6
χB 7 χ A
Hˆ χ Hˆ χ
Hˆ = $D
_ ) !'
2
' (_ (_
!'
S AB !< C ? = 7 H AB 7 H AA
h R' \
*
E H = 0.5 a.u. { 7
C'
(
_)
Ek
W8(8V < 1' %$
H
− 1 rB ) χ
A
( 2 . 19 )
B
= (E
H
− 1 rA ) χ
B
( 2 . 20 )
AA
= EH −
H
AB
= EH S
S
AB
m
(1 r B ) χ A2 dv = E H + h AA
AB
(1 r A ) χ
−
A
'" S AB !< C ? =
(
= e − R (1 + R +
7"
χ B dv = E H S
AB
(2.22)
+ h AB
o$) 7 W8(88V 7 W8(8+V g 7
h R' != => +
1 2 R ) 3
M
' (_
h R'
9$2 7 &<
Eu 7 E g
M
) 67 # (
_)
#
(2.23)
1 (1 − e − 2 R (1 + R )) R = − e − R (1 + R )
(_
O W8(|V
(2.21)
(2.24)
h AA = − h AB
K$D
= (E
H
T F
)
A
_ ) !'
(
M7
M
(2.25)
_ 6 !' ! P
1R 1 r< *_ ) !' l $
W8(8BV 6 W8(8;V g 7 M
!L
εu 7 ε g _
R
?P !1 6
h R' _ )
K !'
M !
ε
g
= E
ε
u
= Eu
* 7
W
@ 2V !)
)
M
#
εg K
! R ' W8(8VK& (
−R
R >> 1
(2.26)
−R
R >> 1
(2.27)
ϕ1
M 1
R = 1.32 Å
2 6V ( M
1 2 ≈ EH − Re 3 R 1 2 + ≈ EH + Re R 3 +
g
$ %
2
_
2.78 eV 7 1.06 Å
!) =H ' "
hRF
" (
_)
'( ) H' 7 l ' "
ε g (R) ) !'
_)
!' *K
εu M
(W_2 ' (1au = 0.529177 Å
h R' (W
_
L C'
M
U !h 2 T hD
! ' 6
!' ! R '
*ε g < EH
!) = ( ) !'
H a.u.
H
!$6 P 7 ! R ' 7
P7
C'V 1.7 eV
h R' != L
!= L
M
}G;
C' != L
!C O
)
2
* # 9 6 Q RF
M
! $56 5
=>
ε (a.u.) − 0.40
εg
εu
− 0.50
R a.u.
− 0.60
! " # $%& # ' ( – ( ) .( *. / 0" /* 1 / * ) )*+( ,- -
W8(;V K&
( ) !'
ϕg 9 6 (
!= L !'
ϕg >
_) QZ 6_
χ B 7 χ A ! 1 $6 ?
? &' J '
hL
l $ Wn(
gerade ! $<" f< e5'V g E
L)
F
!' !1 *x Z ' 7 7
$)
R
#
l# '
ϕu 7 ϕ a : ' 9 6 !\ '
!2 ' 9 6 (
! &1
C6
(
r
C6 J '
< &< '
R'
ungerade ! $<" f< e5'V u E
Wn(
7 &< 6
!'
k ) _6
) L)
$D
" H
'
K<
ϕg
ϕu (
R\F % E&D
2 '
(
!'
D
'AD ` ! &1
7 &<
7 ( ) !' (
HA
? &< '
W w w w wV
F ( ) !'
ϕu 7 WwwwwwwwV ϕ g ? &< '
<
7
'J$) W(((((((((((( V
H ? &< '
<
7
) p K& ~
ϕu 7 ϕ g
ϕu
H 2 '
HB
R' ? 0
χ B 7 χ A $6 ? K& (
!'
(1.32 Å W 2.5a.u. V
l $ 6 QZ 7 * L)
!'
H'
ρ u 7 ρ g ? $ P !< => h R'
( 7" !'
: ' 9 6 c d'
O 7rb'
7 8(; K&
H 2+ HA − HB
x Z '
_ 6 !' '
? $ P !< => (_ )
2
ρg = ϕg ρu = ϕu
2
= (χ
2 A
+ 2 χ A χ B + χ B2 ) ( 2 + 2 S AB )
(2.28)
= (χ
2 A
− 2 χ A χ B + χ B2 ) ( 2 − 2 S AB )
(2.29)
! 7 &< (
L C' K O *_ 7"
E# (
_)
&$'
"! $
#
"?$P
_
l # _ L 6 !'
!'
'(
!< =>
6 !'
7 &< !< =>
χB 7 χA ?
!'
7
!) _
ρ0 =
(
_
? &< '
' K' D
ϕu
l) (
1 ( χ A2 χ B2 ) 2
R'
>( Cd '
_6
Cd '
$)
' (
> ? &< '
< )
<
7 !$6
)
#
= _6
> 6 2 W _2 ' (
< = *! L
!< => !' ~
' * ) !'
1 R
8(4 K&
ϕg ?
< &< '
(
(
7
<
_6 7
&
0 " 8 %
7
7
@2KL #
0 " 8 *? &< '
# Z &
#%
< "
&$' ) ?
(
7" y
!< &< '
<
]
' 6
_
O K R6
% 0 " 0 Cd '
'
7
&$' !)
2 'V (
C' !$ H AA ? = (_ )
( %
7 ! 7 &< !< =>
' T hD
7
7 T F
# !
!$6
Cd ' <
0 "0
@2 KL # * M
& >
_6 7
# ? &< '
! H
!' ! $ )
"
(
# Z =
K&
1 K L # E# _ 2 ' 7 &< !< =>
!' _6 7 <
!'
7 ' r<
% 0 " ? &< '
>
W8(;.V 6 W8(8|V ? $ P !< =>
! 7 &< J $6
> ? &< ' %
"
> ? &< ' (
T7 \ ' E H −
ϕg
7 !$6 _6 7
!'
Cd '
Cd ' > _6
$ !
(
' (_ ' !'
'(
T S
(
$6
> ? &< '
% Cd ' " !'
hL ) !< => b " lJ
2 ' _6
(2.30)
? &< ' ?
7
7
? s' &
' W8(88V 7 W8(8+V g 7 ! 1 * H BB 7 H AA
!)
< = x
M
J>
( L _
,!0 •U $1' O
d
L) 1
(
T7 \ ' n 7
!' $6 • h C6
!' 6
ch0
#
!= L R
? =
"
,!0 W Huckel Theory K )
( ' !' . 2 9
z Z7
< = x
M
ϕu
ϕ g * H AB ? =
hL
!H5 ( ^6
D
• F S5'V
7(
#
O ( ' !' W Re sonance Integrals V
_
€(
εu +1 2 > ε g +1 2
1
n \'
( (
!' 1
@2 H
#
'
ϕu
1
H
= !& 7 _ )
# Z O
ϕg
< P = T hD 7 &< %
? s'
2
HA
7 V
ϕu
HB
ρ 0 !< => W(((((V g ( ) !' H ? &< ' R' ? 0 # Z?
7 !< => W3333V g 7
ϕg
)
+
!< => K& ( H 2
# !< &< ' ?
7 &< !< => 8(4 K&
7 !< => WwwwwwwwwV g • W ! $
# (
) ' M7
) _6
C' Eu 7 E g !
2 7 !' R → ∞ ! O7 *
!R RF )
M
_
2 =
(
2
+V h
!<
He + (1s ) ) !'
7
M7
) _6
' * 7 !' 1s ?
$
" Q RF H
C' & < P
& J K R6 % (
H#
!' W8(8-V 7 W8(8GV g 7 #
( L Q RF 8
!
7
M
6
!' −
!'
!'
f'
6 ?
ϕg ?
C CP
3 a.u. 2
6 !$ 7
*R = 0
!<7 (W
(
)
!'
L ~ F
o$)
5
+
ϕu
C'
χ b
" !'
(
!'
# 7"
(
ϕu
L C'
− 2 a.u.
>(
W l = 1V p w ‚ 6
T hD
?
7 % '
W 2.5 V T hD '
r= 2 c 0
ς f' R =∞ '
' Variation method ! (_
$ ?
M
#
Virial Theory
7 +
2 J He
' V ) !' !R RF
!' +(84 ? 16
J= 2 ? 1' *: ' 9 6 T hD ^6
7 `7
6 qPA'
M
*: ' 9 6 *
_ 6
ς =2
ϕg (
7 1.06 Å 6 ? 16 F *T hD (
H 8
(WW 2.3 V
W8(;+V
h R' WQ RF C' 81% V 2.25 eV 6 != L
*
!' R = 0
7 7 !' R → 0 & ' = )
Eg M L
C B 7 C A X Z _ 6 !' 6
W8(BV
E H = −0.5 a.u.
5
ς 3 − ςr e π
χ′ =
!' & _ 7"
7
L C'V
! 2 ? 1' ! L *
(_ (_
W8(BV T hD
o$) ' (W8(4
H e+
*
*
$ C L'
*: ' 9 6
L
? f' #
7 6
6 J= 2
C'
2 < Tˆ > g + < Vˆ > g + R
7 R = Re
_
!'
' x7
(
dε =0 dR
_)
\
W8(;8V
!= L
M
K R6
g7
'
R=∞
_
2 < Tˆ > g + < Vˆ > g = 0
W8(;;V
Re
-
-
-2
-3
< Tˆ > g , < Vˆ > g
# 7%8 9 "
)$
' (
4 ( 5 +6.7
R *(%45
# ' ( :4; <= .>.8 .*/ .*./
/ ' ( : 2.5
! " $ %.! H 2+ $%& 8 $ +(
8 $ +( R = ∞
- )*
- .4?
( Eg ( %" @ 4
& A8 A B%C= . ε g
( ) !'
d KL # M 7
P
T
f6
2∆ < Tˆ > g = −∆ < Vˆ > g
∆ε g =
W 7" 1dO n D KF
2 < Tˆ > g
!hdO ?
' 6 7 %
$6
Cd '
H
6 !' U ? '
V
$6
f6 R
"
1s ƒ< ?
f6 e 5'
( ) !'
7 %
χ
_)
∆ < Vˆ > g
=> h
U 2 &
lJ 7
!' l J < Vˆ > g
) ~ \6
!' $6 W8(BV K& (
6 hD _ 6 !' n 6
7 C d'
C'
6
!' l)
>
7J
( 7 1' W Polarization terms V
2
_ J !' "
λ! 7
χ ′′ = N ((1s ) + λ (2 p ))
(
C CP
!' n 1' z Z7
!Hh 2 M
C CP ( M
$ ' F S5' (_ H5
hs' ∆ < Tˆ > g
< Tˆ > g
! O7 !'
!\ '
7 &< J $6 l J (
!\ ' W83;;V T hD R > Re
>
!' % J _ ( ) !'
1 ˆ < V >g 2
2pw
Z
W8(;4V
2?
7
R'
2p w ?
7 "
χA
χB
HA
χA
χ ′A′
HA
HB
&5
χ B′′
HB
( $ # 6CD) $%4- E& F%5 9 " 4G " – (2.6)
? 4
. χB C' l J
' (W8(G *K& V (
WJ 2 p w ?
'
7 *!<
χB 7 χA
) 7
6 7V
#9 6
! '" l J tD
λ X Z (_ 7" !' (
#
cO {79 6
d
' (
_
# !'
K
H
< =
6 !'
> ) '* #9 6 !' $D T hD (
!'
$6
7 J $'?
7
7
16 l J +
) H2
W8(;BV
µ
( L) B 7 A
H6
* H AB
(C µA χ µA + C µB χ µB )
ϕ=
' 6
1' (Variation Method ) !
!' ! P K&
M
!hdO
χ µB 7 χ µA "