1、 (1) (2)
機率的定義 Probability Definition 0 ≤ P(A) ≤ 1,for each event A of S. P(S)=1 (3) For any finite # K of mutually exclusive events defined on S.
k k P U Ai = ∑ P( Ai ) i =1 i =1 (4)
If A1 , A2 , A3 ,…,is a denumerable sequence of mutually exclusive events defined on S,then
∞ ∞ P U Ai = ∑ P( Ai ) i =1 i =1 二、p.d.f (Probability density function) (1) To be p.d.f the following condition has to be true. ∞
∫
0
f x ( X ) dx =1
∞
∞
1 0 e −λx dx = λe −λx ( − ) | ∞ 0 = 0+ e =1
∞
⇒ ∫0 λe −λx dx = λ∫0
λ
∞
(2) u=E(X)= ∫0 xf x ( x ) d x = ∫0 xλe −λx dx ,let u=x,dv=λe-λxdx ⇒ du=dx,v= -e-λx ∞
−λx dx = 0+0+〔e-λx( =(-xe-λx) | ∞ 0 +∫ e 0
−1
λ
)〕 ∞ 0 =0+
1
λ
, u=
1
λ
利用了部份積分法: ∫udv = uv − ∫vdu (3) σ2=E(x2)-u2 =
∞
∫
0
∞
x 2 f x ( x ) d x -u2 = ∫ x 2 λe −λx dx -u2 0
Let u=x2,dv=λe-λxdx ⇒ du=2xdx,v=-e-λx ∞
∞
−λx dx -u2 = (0+0)+2 ∫ xe −λx dx -u2 =2 =(-x2e-λx) | ∞ 0 + ∫ 2 xe 0 0
2 −1
1
1
= σ2 λ λ2 三、擲兩個銅板三次的正反面: S={HHH,HHT,HTH,HTT,THH,THT,TTH,TTT} X(HHH)=3, X(HHT)=2, X(HTH)=2, X(HTT)=1, X(THH)=2, X(THT)=1, X(TTH)=1, and X(TTT)=0 The range space of X is Rx={0,1,2,3} =
2
=
Px(X=0) = X P x
1 3 3 1 , Px(X=1) = , Px(X=2) = , Px(X=3) = 8 8 8 8
0
1
2
3
1 8
3 8
3 8
1 8
1
- ( )2 λ λ 2
(1) u=mean = E(x) =
∑x
Px ( X i ) =0( 1 )+1( 3 )+2( 3 )+3( 1 )=1.5 8 8 8 8
i
i
2 2 (2) σ2 =Variance = E(X2)-u2 = ∑xi Px ( xi ) − u i
=02(
1 3 3 1 3 +12 + 9 −18 6 3 )+12( )+22( )+32( )-(1.5)2= = = 8 8 8 8 8 8 4
(3) σ=standard deviation= σ 2 =
3 3 = 4 2
四、擲一對公平的骰子,求它的點數機率(Px 有兩種寫法,請參考 Px(X=3)的寫法) E: Toss a pair of fair dice and observe the outcome in pairs. S: {(1,1)…(1,6),(2,1)…(2,6)… (6,1),(6,6)} Define X=the sun of the “up” faces. Rx={2,3,4,5,6,7,8,9,10,11,12} X{(1,1)}= 2 , X{(1,2)}= 3 , …,X{6,6}= 12 Px(X=2) = Px{(1,1)}=
1 36
Px(X=3) = Px{(1,2),(2,1)}=Px{(1,2)}+Px{(2,1)}= Px(X=4) =Px{(1,3),(3,1),(2,2)}=
2 36
3 36
Px(X=5) =Px{(1,4),(4,1),(2,3),(3,2)}=
4 36
Px(X=6) =Px{(1,5),(5,1),(2,4),(4,2),(3,3)}=
5 36
Px(X=7) =Px{(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)}= Px(X=8) =Px{(2,6),(6,2),(3,5),(5,3),(4,4)}= Px(X=9) =Px{(3,6),(6,3),(4,5),(5,4)}= Px(X=10) =Px{(4,6),(6,4),(5,5)}= Px(X=11) =Px{(5,6),(6,5)}= Px(X=12) =Px{(6,6)}= (1)
6 36
5 36
4 36
3 36
2 36
1 36
Tabular presentation 表格表示法 X 2 3 4 5 6
7
8
9
10
11
12
Px
1 36
2 36
3 36
4 36
5 36
6 36
(2)
Graphical presentation 圖形表示法 或請參考機率分配那頁 p.4 做圖
(3)
Mathematical presentation 數學表示法
X −1 3 6 , if x = 2,3,4,5,6,7 Px(X)= 1 3− X , if x = 7,8,9,1 0,1 1,1 2 3 6
5 36
4 36
3 36
2 36
1 36