Or

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Or as PDF for free.

More details

  • Words: 550
  • Pages: 3
1、 (1) (2)

機率的定義 Probability Definition 0 ≤ P(A) ≤ 1,for each event A of S. P(S)=1 (3) For any finite # K of mutually exclusive events defined on S.

 k  k P U Ai  = ∑ P( Ai )  i =1  i =1 (4)

If A1 , A2 , A3 ,…,is a denumerable sequence of mutually exclusive events defined on S,then

 ∞  ∞ P U Ai  = ∑ P( Ai )  i =1  i =1 二、p.d.f (Probability density function) (1) To be p.d.f the following condition has to be true. ∞



0

f x ( X ) dx =1





1 0 e −λx dx = λe −λx ( − ) | ∞ 0 = 0+ e =1



⇒ ∫0 λe −λx dx = λ∫0

λ



(2) u=E(X)= ∫0 xf x ( x ) d x = ∫0 xλe −λx dx ,let u=x,dv=λe-λxdx ⇒ du=dx,v= -e-λx ∞

−λx dx = 0+0+〔e-λx( =(-xe-λx) | ∞ 0 +∫ e 0

−1

λ

)〕 ∞ 0 =0+

1

λ

, u=

1

λ

利用了部份積分法: ∫udv = uv − ∫vdu (3) σ2=E(x2)-u2 =





0



x 2 f x ( x ) d x -u2 = ∫ x 2 λe −λx dx -u2 0

Let u=x2,dv=λe-λxdx ⇒ du=2xdx,v=-e-λx ∞



−λx dx -u2 = (0+0)+2 ∫ xe −λx dx -u2 =2 =(-x2e-λx) | ∞ 0 + ∫ 2 xe 0 0

2 −1

1

1

= σ2 λ λ2 三、擲兩個銅板三次的正反面: S={HHH,HHT,HTH,HTT,THH,THT,TTH,TTT} X(HHH)=3, X(HHT)=2, X(HTH)=2, X(HTT)=1, X(THH)=2, X(THT)=1, X(TTH)=1, and X(TTT)=0 The range space of X is Rx={0,1,2,3} =

2



Px(X=0) = X P x

1 3 3 1 , Px(X=1) = , Px(X=2) = , Px(X=3) = 8 8 8 8

0

1

2

3

1 8

3 8

3 8

1 8

1

- ( )2 λ λ 2

(1) u=mean = E(x) =

∑x

Px ( X i ) =0( 1 )+1( 3 )+2( 3 )+3( 1 )=1.5 8 8 8 8

i

i

2 2 (2) σ2 =Variance = E(X2)-u2 = ∑xi Px ( xi ) − u i

=02(

1 3 3 1 3 +12 + 9 −18 6 3 )+12( )+22( )+32( )-(1.5)2= = = 8 8 8 8 8 8 4

(3) σ=standard deviation= σ 2 =

3 3 = 4 2

四、擲一對公平的骰子,求它的點數機率(Px 有兩種寫法,請參考 Px(X=3)的寫法) E: Toss a pair of fair dice and observe the outcome in pairs. S: {(1,1)…(1,6),(2,1)…(2,6)… (6,1),(6,6)} Define X=the sun of the “up” faces. Rx={2,3,4,5,6,7,8,9,10,11,12} X{(1,1)}= 2 , X{(1,2)}= 3 , …,X{6,6}= 12 Px(X=2) = Px{(1,1)}=

1 36

Px(X=3) = Px{(1,2),(2,1)}=Px{(1,2)}+Px{(2,1)}= Px(X=4) =Px{(1,3),(3,1),(2,2)}=

2 36

3 36

Px(X=5) =Px{(1,4),(4,1),(2,3),(3,2)}=

4 36

Px(X=6) =Px{(1,5),(5,1),(2,4),(4,2),(3,3)}=

5 36

Px(X=7) =Px{(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)}= Px(X=8) =Px{(2,6),(6,2),(3,5),(5,3),(4,4)}= Px(X=9) =Px{(3,6),(6,3),(4,5),(5,4)}= Px(X=10) =Px{(4,6),(6,4),(5,5)}= Px(X=11) =Px{(5,6),(6,5)}= Px(X=12) =Px{(6,6)}= (1)

6 36

5 36

4 36

3 36

2 36

1 36

Tabular presentation 表格表示法 X 2 3 4 5 6

7

8

9

10

11

12

Px

1 36

2 36

3 36

4 36

5 36

6 36

(2)

Graphical presentation 圖形表示法 或請參考機率分配那頁 p.4 做圖

(3)

Mathematical presentation 數學表示法

X −1  3 6 , if x = 2,3,4,5,6,7 Px(X)=   1 3− X , if x = 7,8,9,1 0,1 1,1 2  3 6

5 36

4 36

3 36

2 36

1 36

Related Documents

Or
October 2019 36
Or
June 2020 11
Or
May 2020 18
Or
May 2020 22
Or
July 2020 15
Or
November 2019 31