Optimized Curve Fitting

  • Uploaded by: rajesh
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Optimized Curve Fitting as PDF for free.

More details

  • Words: 5,635
  • Pages: 85
Optimized Curve Fitting

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

1

Case 1

 Tabulated data (interest table, steam table etc.) 

21/4/2006

Estimates are required at intermediate values from such tables

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

2

Case 2  Experimentation

Independent (predictor) variable X  Dependent (response) variable Y  Data available at discrete points or times  Estimates are required at points between the discrete values (as it is impractical or expensive to actually measure them) 

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

3

Case 3  Function substitution  A implicit (complicated) function or program is known  Results at all values are possible but time consuming



And further mathematical operations (integration, differentiation, maximum or minimum points ) is difficult

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

4

Case 4

 Hypothesis testing

Alternative mathematical models are given  Which is the best to use for a given situation 

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

5

Solution  Graphically represent data points

Develop a mathematical relation (curve fitting) which describe the relationship between variables  Draw the curve for the developed mathematical relation which best represent the given data points 

 Use the mathematical relation or the curve

to estimate the intermediate values and extrapolation  for further mathematical operations  for hypothesis testing 

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

6

Problem  Sketch a line that visually conforms to the data

points  And obtain the y value for x = 8

21/4/2006

i

1

2

3

4

5

x

2.10

6.22

7.17

10.5

13.7

y

2.90

3.83

5.98

5.71

7.74

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

7

Curve Fitting 10.00

8.00

8.00

6.00

6.00

y

y

10.00

4.00

4.00

2.00

2.00

0.00

0.00 0

2

4

6

8

10

12

14

16

0

2

4

6

x

8

10

12

14

16

10

12

14

16

x 10.00

8.00

8.00

6.00

6.00

y

y

10.00

4.00

4.00

2.00

2.00

0.00

0.00 0

2

4

6

8

10

12

14

16

0

2

x 21/4/2006

4

6

8 x

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

8

y

Curve Fitting

10.00 8.00 6.00 4.00 2.00 0.00 -2.00 0 -4.00

2

4

6

8

10

12

14

16

x

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

9

General observations  Curves are dependent on subjective view point  For the same data set, there should not be

different curves  There may be error in reading the values from the graph

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

10

Curve Fitting  Two methods - depending on error in data

Interpolation  

100

Precise data Force through each data point

80

Temperature (deg F)



120

60

40

20

0

Regression    

1

2

3

4

9

X values are accurate Y values are noisy (Experimental) Represent trend of the data Without matching individual points

8 7 6 5 4 3 2 1 0 0

2

4

6

8

10

12

14

x

21/4/2006

5

Time (s)

f(x)



0

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

11

16

Regression steps Y = A*exp(–X/X0)  Model selection  Describing Merit function for closeness-of-fit  Compute values of the parameter of the model  Interpretation of results & assessing goodness-

of-fit

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

12

Right Model selection  Understanding of basic principle of the problem  Model should represent the data trends

y = a0 + a1 x



Linear model



Polynomial model



Non-linear model





Exponential law



Power law



Logarithmic law



Gaussian law

Multiple variable

21/4/2006

y = b1x1 + b2x2 + ... + bnxn + c

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

13

Describing Merit Function  Method of least squares Outliers & Weighing function 9

y = a0 + a1 x

8

y5

7 Data points

y3

6

e3

y4

f(x)

5 e2

4 y1

Residual e = y - (a 0 + a 1x )

y2

3 Regression Model y = a 0 + a 1x

2 1 0 0

2

4

6

8

10

12

14

16

x

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

14

Computing parameter values Obtain the parameters (a0 & a1) that minimizes the sum of squares of error between the data points and the line

y = a0 + a1 x

Linear regression Polynomial regression Multiple regression

y = b1x1 + b2x2 + ... + bnxn + c

Exponential law Power law Logarithmic law Can be solved explicitly

Non-linear regression Gaussian law

Iteratively solved using Levenberg-Marquardt algorithm 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

15

Goodness-of-fit Visual inspection Random distribution of residual around data points Correlation Coefficient r2 Standard error of parameters Confidence interval Prediction interval

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

16

Interpretation of results  Curve fitting provides a correlation between the

variables  It means that ‘X predicts Y’ not ‘X causes Y ‘  Parameter values must also make sense

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

17

Linear Regression Model selection Assume linear model Merit Function

y = a0 + a1 x

sum of square of residual error

yi = a0 + a1xi + ei

=



7 Data points

y4

e2

4 y1

i= 1

3

n

2

i= 1

e3

5

ei2

∑ ( yi

y3

6

f(x)

n

y5

8

yi − a0 − a1xi

ei = Sr =

9

− a0 − a1xi )

2

Residual e = y - (a 0 + a 1x )

y2

Regression Model y = a 0 + a 1x

1 0 0

2

4

6

8

10

12

14

x

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

18

16

Linear Regression  Parameter computation Find the values of a0 and a1 that minimize Sr Minimize Sr by equating derivatives WRT a0 and a1 to zero,  First a0 ∂S r ∂ n 2 ( ) = y − a − a x ∑ i 0 1 i  ∂a0 ∂a0  i=1 n ∂ [] 2 = ∑ i=1 ∂ a0 ∂  = ∑ 2[]  []  i=1  ∂ a0  n

=

n

∑ 2[ y i=1

= 0 21/4/2006

i

− a0 − a1 xi ]( − 1 )

 Finally n n  na0 +  ∑ xi  a1 = ∑ yi i=1  i=1

a0 + x a1 = y Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

19

Linear Regression  Second a1

∂S r ∂ n 2 ( ) = y − a − a x ∑ i 0 1 i  ∂a1 ∂a1  i=1 n ∂ [] 2 = ∑ i=1 ∂a1 ∂  []  = ∑ 2[]  i=1  ∂a1  n

=

n

∑ 2[ y i=1

= 0

21/4/2006

i

− a0 − a1 xi ]( − xi )

 Finally

n n   n 2  ∑ xi  a0 +  ∑ xi  a1 = ∑ xi yi i=1  i=1  i=1 Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

20

Linear Regression  Equations

 Solution

n n  na0 +  ∑ xi  a1 = ∑ yi i=1  i=1

n n   n 2  ∑ xi  a0 +  ∑ xi  a1 = ∑ xi yi i=1  i=1  i=1

21/4/2006

n 2 1 n n 1 n ∑ yi ∑ xi − ∑ xi ∑ xi yi n i=1 i=1 n i=1 i=1 a0 = n 2 1  n 2 ∑ xi −  ∑ xi  n i=1  i=1 n

n 1 n ∑ xi yi − ∑ xi ∑ yi n i=1 i=1 i= 1 a1 = n 2 1  n 2 ∑ xi −  ∑ xi  n i=1  i=1

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

21

Linear Regression  Sum of squared values  Variances & covariance

a1 a0 21/4/2006

a1

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

22

Example i

xi

yi

1 2 3 4 5 Sum

2.10 6.22 7.17 10.50 13.70 39.69

2.90 3.83 5.98 5.71 7.74 26.16

n 2 1 n n 1 n ∑ yi ∑ xi − ∑ xi ∑ xi yi n i=1 i=1 n i=1 i=1 a0 = n 2 1  n 2 ∑ xi −  ∑ xi  n  i=1  i=1 n

n 1 n ∑ xi yi − ∑ xi ∑ yi n i=1 i=1 i= 1 a1 = n 2 1  n 2 ∑ xi −  ∑ xi  n  i=1  i=1 21/4/2006

xi

2

xi yi

4.41 38.69 51.41 110.25 187.69 392.45

6.09 23.82 42.88 59.96 106.04 238.78

yi

2

8.41 14.67 35.76 32.60 59.91 151.35

5

∑ xi = 39.69

i =1 5 2 ∑ xi = 392.3201 i =1 5 ∑ yi = 26.16 i =1 5 ∑ xi yi = 238.7416 i =1

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

23

Example 5

1 1 (26.16)(392.3) − (39.69)(238.7) 5 i =1 a0 = 5 = 2.038 1 5 2 392.3 − [ 39.69] 2 ∑ xi = 392.3201 5 i =1 1 238 . 7 − (39.69)(26.16) 5 5 a1 = = 0.4023 ∑ yi = 26.16 1 i =1 392.3 − [ 39.69] 2 5 5 ∑ xi yi = 238.7416

∑ xi = 39.69

i =1

y = 2.038 + 0.4023x 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

24

Another Approach

[[Z]

[Z ] * { A} = {Y } T

]

{ A} = [[Z ]

21/4/2006

{

* [Z ] * { A} = [Z ] * {Y } T

* [Z ]

T

] * {[Z] −1

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

T

* {Y }

}

} 25

Example 1 2 3 4 5

y = a0 + a1 x 2.10a1 + a0 = 2.90 6.22a1 + a0 = 3.83 7.17a1 + a0 = 5.98 10.50a1 + a0 = 5.71 13.70a1 + a0 = 7.74 21/4/2006

xi

yi

2.10 6.22 7.17 10.50 13.70

2.90 3.83 5.98 5.71 7.74

2.10 6.22  7.17  10.50 13.70 

1 2.90  3.83  1   a 1   1  *   = 5.98   a 0    1 5.71  7.74  1   

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

26

Example 2.10 6.22 2.10 6.22 7.17 10.50 13.70    1  * 7.17 1 1 1 1   10.50  13.70 

392.45 39.69 

1 2.90  3.83  1   a1  2.10 6.22 7.17 10.50 13.70   1*  =   * 5.98  a 1 1 1 1 1   5.71  1  0    7.74  1   

39.69  a1  238.78  *  =   5  a0  26.16 

a1  0.012922 a  =   0  - 0.10257

- 0.10257  238.78  *  1.014232  26.16 

a1  0.4022    = 2.0395   a0 

y = 2.038 + 0.4023x 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

27

Goodness-of-fit - I Visual inspection: Linear trend matching 10 8 y

6 4 2 0 0

2

4

6

8

10

12

14

16

x

y = 2.038 + 0.4023x 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

28

Goodness-of-fit - I Predicted values and e xi 2.10 6.22 7.17 10.50 13.70

yi

y

e = yi − y

2.90 3.83 5.98 5.71 7.74

2.88 4.54 4.92 6.26 7.55

0.02 -0.71 1.06 -0.55 0.19

y = 2.038 + 0.4023 x

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

29

Goodness-of-fit - I Visual inspection y

2.90 3.83 5.98 5.71 7.74

2.88 4.54 4.92 6.26 7.55

y = 2.038 + 0.4023 x

e = y i 8− y y predicted

yi

+18.5%

6 -17.5%

4 2 0 0

2

4

6

8

y m easured

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

30

Goodness-of-fit - II y

2.90 3.83 5.98 5.71 7.74

2.88 4.54 4.92 6.26 7.55

y = 2.038 + 0.4023x

Can be used to compare the mathematical models 21/4/2006

e = y i8 − y y predicted

yi

6

y = 0.8644x + 0.7097 R2 = 0.8644

4 2 0 0

2

4

6

8

y m easured

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

31

Goodness-of-fit - III Residual Analysis  If a fitted equation is representative of the data then its

residuals should not form a pattern when residuals are plotted against values of experimental variables or the fitted values.  Sometimes, a normal probability plot is used to see if the residuals form a pattern (the normal distribution is representative of random variation). These procedures allow us to investigate outliers, test assumptions, and fits.

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

32

Goodness-of-fit - III Residual Analysis

Residual plot shows a pattern, indicating that fitted equation is not representative of the data. 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

33

Goodness-of-fit - III Residual Plot: e vs y 1.5 1.0 e

0.5 0.0 -0.5 -1.0 0

1

2

3

4

5

6

7

8

y

There is no pattern, showing random distribution of e and indicating that fitted equation is representative of the data. 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

34

y

Goodness-of-fit - IV 9 8 7 6 5 4 3 2 1 0

St=SSyy

Sr=SSE SSR

0

2

4

6

8

10

12

14

16

Error reduction due to describing the data in terms of straight line rather than as an average value Sum of squares of residuals due to regression

SSR = St − Sr

x

Maximum possible residual Total sum of square of residuals between data point and the mean n

Syy = St = 21/4/2006

∑ i =1

(y i − y )2

Unexplained residual after linear reg. Sum of square of residuals between data point and the predicted y from the linear model

SSE = Sr =

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

n

∑ i =1

(yi − a0 − a1xi )2 35

Goodness-of-fit - IV Coefficient of Determination Fraction of total variation (residual) in y that is accounted for by the fitted equation sum of squares of residual due to regression 2 r = total sum of squares of residual

St − Sr r = St 2

For perfect fit, Sr=0



r2=1

For no improvement, Sr=St

⇒ r2=0

The magnitude of r2 is a measure of the relative strength of the linear association between x and y. 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

36

Goodness-of-fit – IV Correlation coefficient, r, assigns a signed number between -1 and 1 that is a measure of the strength of the relationship between the variables. r = 0 means there is no relationship between the variables r = 1 there is a perfect positive relationship between the variables; thus, the independent variable, y can be exactly predicted from the independent variable x, by the equation of a straight line. r = -1 there is a perfect negative relationship between the variables; again the independent variable y can be exactly predicted from the independent variable x, by the equation of a straight line. 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

37

Goodness-of-fit - IV The values of r are never exactly 1 or -1 Positive r If x gets larger, y also increases.

Negative r The variables are inversely related. As x get larger, y decreases or as x decreases, y increases.

Just because r is close to 1 does not mean that fit is necessarily good To confirm, always inspect a plot of the data along with the regression line 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

38

Goodness-of-fit - IV

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

39

Goodness-of-fit - IV Spread of dependent variable

Around the mean of dependent variable y = 5.232 10 8 y

6 4 2 0 0

2

4

6

8

10

12

14

16

x

Total sum of square of residuals Standard deviation between data point and the mean variation

Syy = St = 21/4/2006

n

∑ (y i =1

i

− y)

2

St sy = n −1

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

Coeff of

c.v . =

Sy y 40

Goodness-of-fit - IV Spread of dependent variable Around the mean of dependent variable 1 2 3 4 5 Sum

y

yi

yi − y

2.9 3.83 5.98 5.71 7.74 26.16 5.232

-2.33 -1.40 0.75 0.48 2.51 St Sy

(y i − y ) 2 5.44 1.97 0.56 0.23 6.29 14.48 1.90

CV

Total sum of square of residuals Sample standard deviation sy between data point and the mean

St = 21/4/2006

n

∑ (y i =1

i

− y)

2

Coefficient of variation Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

0.364 St = n −1

c.v . =

Sy y

41

Goodness-of-fit - IV Spread of dependent variable Around the linear regression 10 8 y

6 4 2 0 0

2

4

6

8

10

12

14

16

x

Total sum of square of residuals between measured y and the y calculated with the linear model

SSE = Sr = 21/4/2006

n

∑ (y i =1

i

− a0 − a1xi )

Standard error of estimate

2

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

sy / x

Sr = n −2 42

Goodness-of-fit - IV Spread of dependent variable Around the linear regression yi

y

2.90 3.83 5.98 5.71 7.74

2.88 4.54 4.92 6.26 7.55

e = y i − y (y i − y ) 2 0.02 -0.71 1.06 -0.55 0.19 Sr S y/x

Total sum of square of residuals between measured y and the y calculated with the linear model

Sr =

n

∑ (y i =1

21/4/2006

i

− a0 − a1xi )

2

0.00 0.51 1.12 0.31 0.04 1.96 0.81

Standard error of estimate

sy / x

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

Sr = n −2 43

Goodness-of-fit - IV St = 14.48 Sr = 1.96

Coefficient of Determination St − Sr r = St 2

=0.864

Correlation Coefficient r = 0.93

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

44

Goodness of fit V Standard error of estimate

sy / x

Sr = n −2

= 0.81

Standard error in a0 and a1 a0

= 0.81492

a1

= 0.09198 cv(a0) = 0.81492/ 2.038 = 0.40 cv(a1) = 0.09198/ 0.4023 = 0.23

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

45

Goodness of fit VI If measurements are normally distributed The range y + S y to y − S y will encompass approximately 68% of the measurement The range y + 2S y to y − 2S y will encompass approximately 95% of the measurement It is possible to define an interval within which measurement is likely to fall with certain confidence (probability)

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

46

Goodness of fit VI Confidence Interval Range around estimated parameters within which the true value of parameter is expected to lie with a given probability The probability that the true mean of y, µ, falls within the bound from L to U is 1-α. where α is significance level

L = ai − S (ai )tα / 2,n −1 U = ai + S (ai )tα / 2,n −1

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

47

Regression Plot

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

48

Polynomial Regression • Minimize the residual between the data points

and the curve -- least-squares regression Linear

yi = a0 + a1xi

Quadratic

yi = a0 + a1 xi + a2 xi2

Cubic

yi = a0 + a1 xi + a2 xi2 + a3 xi3

General

yi = a0 + a1 xi + a2 xi2 + a3 xi3 +  + am xim

Must find values of a0 , a1, a2, … am 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

49

Polynomial Regression  Residual

ei = yi − (a0 + a1 xi + a2 xi2 + a3 xi3 +  + am xim )

Sum of squared residuals n 2 n S r = ∑ ei = ∑ [ y − (a0 + a1x + a2 x 2 + a3 x 3 +  + am x m )]2 i=1 i=1

• Minimize by taking derivatives

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

50

Polynomial Regression  Normal Equations   n  n  ∑x  i=1 i  n  ∑ xi2  i=1   n m  ∑ xi i=1

21/4/2006

n

n

i=1

2 x ∑ i i=1 n 3 ∑ xi i=1 n 4 x ∑ i i=1

n

n

∑ xi

i=1 n

2

∑ xi

i=1 n

3 x ∑ i



m +1 ∑ xi i=1



m+ 2

∑ xi

i=1

    

m  ∑ xi  i=1   a0  n m +1 ∑ xi   a1    i=1  n m+ 2  a2    ∑ xi i=1   

 n   ∑ yi   ni=1   ∑x y   i=1 i i  =  n 2   ∑ xi yi   i=1    a     m n n m  2m  ∑ xi   ∑ xi yi   i=1  i=1 n

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

51

Polynomial Regression  Solution

[[Z]

[Z ] * { A} = {Y } T

]

{ A} = [[Z ]

21/4/2006

{

* [Z ] * { A} = [Z ] * {Y } T

* [Z ]

T

] * {[Z] −1

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

T

* {Y }

}

} 52

Example x

0

1.0

1.5

2.3

2.5

4.0

5.1

6.0

6.5

7.0

8.1

9.0

y

0.2

0.8

2.5

2.5

3.5

4.3

3.0

5.0

3.5

2.4

1.3

2.0

x

9.3

11.0 11.3 12.1 13.1 14.0 15.5 16.0 17.5 17.8 19.0 20.0

y

-0.3

-1.3

-3.0

-4.0   n  n  ∑x  i=1 i n 2  ∑ xi i=1 n 3  ∑ xi i=1

-4.9 n

∑ xi

i=1 n

2

∑ xi

i=1 n

3

∑ xi

i=1 n

4

∑ xi

i=1

-4.0 n

2

∑ xi

i=1 n

3

∑ xi

i=1 n

4

∑ xi

i=1 n

5

∑ xi

i=1

-5.2

-3.0

-3.5

-1.6

-1.4

-0.1

n  n  3 ∑ xi   ∑ yi  i=1   ni=1  a n   0 4  ∑x y  ∑ xi   a  i i   i=1  1  =  i=1  n 2  n 5 a2   ∑ xi yi  ∑ xi    i=1   a3  i=1  n n  6 3  x yi  ∑ xi  ∑ i   i=1  i=1 

229.6 3060.2 46342.8   a0   24  − 1.30   229.6  − 316.9  3060.2 46342.8 752835.2   a1     =   752835.2 12780147.7  a2   3060.2 46342.8  − 6037.2  46342.8 752835.2 12780147.7 223518116.8  a  − 9943.36   3    21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

53

Example  a0   − 0.3593 a   2.3051   1 =   a 2  − 0.3532 a   0.0121     3

Regression Equation y = - 0.359 + 2.305x - 0.353x2 + 0.012x3

6

4

f(x)

2

0

-2

-4

-6 0

21/4/2006

5

10

15

Anuj Jain, Astt Prof, AMD, x MNNIT, Allahabad

20

25

54

Exponential function  If relationship is an exponential function bx

y = ae

To make it linear, take logarithm of both sides

ln (y) = ln (a) + bx Now it’s a linear relation between ln(y) and x Linear regression gives

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

55

Exponential function  Greater weights to small y values  Better to minimize weighted function

Linear regression gives

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

56

Exponential function

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

57

Power Function  If relationship is a power function

y = ax

b

To make linear, take logarithm of both sides

ln (y) = ln (a) + b ln (x) Now it’s a linear relation between ln(y) and ln(x)

ln(a) 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

58

Power Function x

y

X=Log(x) Y=Log(y)

1.2

2.1

0.18

0.74

2.8

11.5

1.03

2.44

4.3

28.1

1.46

3.34

5.4

41.9

1.69

3.74

6.8

72.3

1.92

4.28

7.9

91.4

2.07

4.52

2.5

100 90

2

80 70 Y=Log(y)

y

60 50

1.5

1

40 30

0.5

20 10

0

0

0

0

1

2

3

4

5

6

7

8

0.1

0.2

9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X=Log(x)

x

x vs y 21/4/2006

X=Log(x) vs Y=log(y) Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

59

1

Power Function Using the X’s and Y’s, not the original x’s and y’s   n  n  ∑ Xi i=1

  n  ∑ Xi   ∑ Yi  a i=1    =  i=1  n 2  B  n    X Y ∑ Xi  ∑ i i   i=1  i=1 n

 6 8.34  a  19.1  8.34 14.0   B  = 31.4      21/4/2006

5

5

∑ X i = ∑ ln (xi ) = 8.34

i =1 i =1 5 2 5 2 ∑ X i = ∑ ln (xi ) = 14.0 i =1 i =1 5 5 ∑ Yi = ∑ ln (yi ) = 19.1 i =1 i =1 5 5 ∑ X iYi = ∑ ln (xi ) ln (yi ) = 31.4 i =1 i =1

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

60

Power Function Example – Carbon Adsorption q = pollutant mass sorbed per carbon mass C = concentration of pollutant in solution, K = coefficient n = measure of the energy of the reaction

q = K ( c)

21/4/2006

n

log10 q = log10 K + n log10 c

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

61

Power Function Logarithmic axes: logK3 = 1.8733, K = 101.6733 = 74.696, n = 0.2289 2.5

Y=Log(q)

2

1.5

log10 q = log10 K + n log10 c

1

0.5

0 0

0.5

1

1.5

2

2.5

3

X=Log(c) 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

62

Power Function Arithmetic axes: K = 74.702, and n = 0.2289 350

300

250

q

200

q = K ( c) n

150

100

50

0 0 21/4/2006

100

200

300

400

C Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

500

600 63

Nonlinear Relation Define for initial guess of λs Obtain dλ s needed to reduce dβ s to zero

In concise matrix form ATdβ = (ATA)dλ dλ =(ATA)-1(ATdβ ) 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

64

Nonlinear Relation Gaussian function

In matrix form

ATdβ = (ATA)dλ dλ =(ATA)-1(ATdβ ) 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

65

Nonlinear Relation (A, x0, σ) Initial guess (0.8, 15, 4) Converged values (1.03, 20.14, 4.86) Actual values (1, 20, 5)

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

66

Software  Although method involves sophisticated

mathematics,  a typical software requires initialization of model and parameters and pressing a button to provide the results with the statistical values  No software can pick a model- it can only help in differentiating between models  Better programs allow users to specify their own function

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

67

EXCEL functions  ToolsData AnalysisRegression FORM

Input X range  Input Y range  Labels (column heading)  Constant is zero  Confidence level  Output range  Residuals & standardized residual  Residual plots  Line fit plot  Normal probability plot 

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

68

EXCEL functions SUMMARY OUTPUT

Regression Statistics Multiple R 0.929710151 R Square 0.864360965 Adjusted R Square 0.819147953 Standard Error 0.809178231 Observations 5 ANOVA df Regression Residual Total

1 3 4

SS 12.51757177 1.964308227 14.48188

Coefficients Standard Error 2.039476493 0.814915963 0.402182352 0.091982912

Intercept X Variable 1

MS F Significance F 12.51757177 19.11752687 0.022132988 0.654769409

t Stat P-value 2.502683204 0.087499474 4.372359417 0.022132988

RESIDUAL OUTPUT Observation 1 2 3 4 5 21/4/2006

Lower 95% -0.553952235 0.109451398 0

Upper 95% Lower 95.0% Upper 95.0% 4.632905221 -0.553952235 4.632905221 0.694913305 0.109451398 0.694913305 4.078952986

PROBABILITY OUTPUT Predicted Y 2.884059431 4.54105072 4.923123954 6.262391185 7.54937471

Residuals Standard Residuals 0.015940569 0.022747255 -0.71105072 -1.014672192 1.056876046 1.508166301 -0.552391185 -0.788264407 0.19062529 0.272023044

Percentile

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

Y 10 30 50 70 90

2.9 3.83 5.71 5.98 7.74 69

EXCEL functions Residuals

X Variable 1 Residual Plot 2 1 0 -1 0

2

4

6

8

10

12

14

16

X Variable 1

X Variable 1 Line Fit Plot

Y

10

Y

5

Predicted Y

0 0

2

4

6

8

10

12

14

16

X Variable 1

Normal Probability Plot

Y

10 5 0 0

20

40

60

80

100

Sample Percentile

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

70

EXCEL functions  INTERCEPT(Xdata, Ydata) intercept with y axis of       

best fit straight line SLOPE(Xdata, Ydata) intercept with y axis of best fit straight line LINEST(Xdata, Ydata, stats) best fit straight line TREND(Xdata, Ydata, newXdata,const)y values along the linear trend LOGEST(Xdata, Ydata, stats) best fit exponential line CORREL(array1, array2) correlation coefficient PEARSON(array1, array2) P correlation coefficient RSQ(array1, array2) square of P correlation coefficient

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

71

EXCEL functions  DEVSQ(array) sum of squares of data points     

about the sample mean STEYX(Xdata, Ydata) standard error of predicted y for each x in regression TINV(probability, dofl) student’s t-distribution CONFIDENCE(alpha, std dev, size) confidence interval for population mean CHITEST(actual range, expected range) test for independence FTEST(array1, array2) variance in arrays are not significantly different

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

72

Example 1

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

73

Example 1

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

74

Example 2  Mh   A CA D C ρ s

S.No.

  

 v   g DC 2 ci

  

a3

 dp     DC 

a4

Correlation

1.

 Mh   A CA D C ρ s

2.

 Mh   A CA D C ρ s

3.

21/4/2006

 m  = a 1  s  ma 

a2

  

SSE

 ms = 0.0129 m  a

  v  =0.0014 gD C  

 Mh   A CA D C ρ s

2 Ci

  

 dp = 0.04 D  C

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

  

0.70

0.0003105

  

0.24

0.0011567

−0.36

0.0009327

  

75

Example 2

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

76

Example 2 S.No.

1.

2.

Correlation

 Mh   A CA D C ρ s

 ms  0 . 013  = Mh    ma A D ρ  CA C s   Mh   A CA D C ρ s

21/4/2006

  = 0.00096 m s m   a

  

m 0.00069 s  ma

SSE

  

  

2  v Ci   g DC

1.00

0.70

 dp     DC 

1.02

 v   g DC

  

2 Ci

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

0.54

0.00001030

0.004

0.00031046

  

  

0.54

−0.055

 dp    0.00000892  DC  77

Example 2

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

78

Example 2 S.No .

Parameter s in Eq. (5.4)

Value of the parameter

Standard error of the parameter

Coefficient of variation of the parameter (%)

1.

a1

9.5739E-4

0.5185E-4

5.416

2.

a2

1.0046

0.0142

1.412

3.

a3

0.5365

0.0105

1.958

R2 = 0.987

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

79

Example 3

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

80

Example 3

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

81

Example 3

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

82

Example 3

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

83

Thanks

21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

84

Example Often it is difficult to determine which model is best simply by looking at the scatter plot. In these cases, one should find the regression equations for the most appropriate 2 or 3 models and then plot the data and graph each of the regression models in the same viewing window. Decide which model is the best fit by determining which one contains more of the data points. 21/4/2006

Anuj Jain, Astt Prof, AMD, MNNIT, Allahabad

85

Related Documents


More Documents from "Patricia de Leon"

The Edge - Issue 1
November 2019 26
Operation Topac
October 2019 22
Fn1590870-p-wh5046
August 2019 32