Optical Coherence Tomography Andrew Gomez Daniel Kim Jiwon Lee Kenny Tao
Theory of OCT Reference Reflector
ER =
Ei i 2 kz R e 2
Es =
zR
[
Ei rs ( z s ) ⊗ ei 2 kzs 2
Ei = s ( k , ω )ei ( kz −ωt ) Light Source
Z=0
k = 2π / λ
ω = 2π ν
Sample
zS1 zS2
Beamsplitter (50/50)
]
rS ( z s )
rS ( z s ) = rS 1δ ( z S − z S 1 ) + rS 2δ ( z S − z S 2 ) + ...
Ei 2
zS1
{
Sample Reflections
zS2
Es =
iD = ρ ER + ES
1 2 3
[
Ei rs ( z s ) ⊗ e i 2 kz s 2
]
2
Detector
Schematic of a Michelson interferometer used in OCT.
Exemplary model for a sample comprising a series of discrete reflectors.
Izatt, Joseph A. Theory of Optical Tomography, 2006
Discrete Reflectors ER =
I D (k , ω ) = ρ E R + E S
2
Ei rR e i 2 kz R 2
Es =
= ρ ( E R + E S )( E R + E S )
Ei 2
(r
S1
)
e i 2 kz S 1 + rS 2 e i 2 kz S 2 + ...
∗
i ( kz −ωt ) For z=0 at beamsplitter andEi = s (k , ω )e
s (k , ω ) i ( 2 kz R −ωt ) s(k , ω ) I D (k , ω ) = ρ rR e + rS 1e i ( 2 kzS 1 −ωt ) + rS 2 e i ( 2 kzS 2 −ωt ) + ... 2 2
(
)
2
S (k ) S (k ) ( RS1 + RS 2 + ...) " DC Terms" I D (k ) = ρ RR + 2 2 S (k ) + ρ rR rS 1 e i 2 k ( z R − z S 1 ) + e −i 2 k ( z R − z S 1 ) + rR rS 2 e i 2 k ( z R − z S 2 ) + e −i 2 k ( z R − z S 2 ) + ... 2
[ [
(
)
) ]
(
S (k ) + ρ rS 1rS 2 e i 2 k ( z S 1 − z S 2 ) + e −i 2 k ( z S 1 − z S 2 ) + ... 2 RS 1 = rS1
2
) ]
(
" Auto - correlation Terms" S (k ) = s(k , ω
2
" Cross - correlation Terms"
Fourier Domain OCT 1.0 0.5 0
γ(z)
S(k)
1 ∆k π F
lc
∆k 0
0 2
2
F γ ( z ) = e − z ∆k ←→ S (k ) =
1 ∆k π
e
( k − k0 ) − ∆k
lc =
2 ln(2) 2 ln(2) λ0 2 = ∆k π ∆λ
k0
2
1 F [δ ( z + z 0 ) + δ ( z − z 0 )] ←→ cos kz 0 2 F x( z ) ⊗ y ( z ) ←→ X (k )Y (k )
iD ( z ) =
ρ γ ( z) [ RR + RS1 + RS 2 + ...] " DC Terms" 2 2 ρ + [ γ ( z ) ⊗ [ rR rS 1 ( δ ( z ± 2( z R − z S 1 )) ) + rR rS 2 ( δ ( z ± 2( z R − z S 2 )) ) + ...] ] " Cross - correlationTerms" 2 ρ γ (z) + ⊗ [ rS 1rS 2 ( δ ( z ± 2( z S 1 − z S 2 )) ) + ...] " Auto - correlationTerms" 2 2
Results iD ( z ) =
ρ [γ ( z )[ RR + RS1 + RS 2 + ...] ] 4 ρ + [ rR rS 1 ( γ [2( z R − z S 1 )] + γ [−2( z R − z S 1 )]) + rR rS 2 ( γ [2( z R − z S 1 )] + γ [−2( z R − z S 1 )]) + ...] 2 ρ + [ rS 1rS 2 ( γ [2( z S 1 − z S 2 )] + γ [−2( z S 1 − z S 2 )]) ] 4 rS ( z s ) Example field reflectivity function Delta function reflectors
0
zR
zS1
zS
zS2
iD (z ) “A-Scan” DC term
AutoCorrelation terms
Cross-correlation terms
2(zR-zS2) 2(zR-zS1)
0
Mirror image artifacts
-2(zR-zS1) -2(zR-zS2)
z
Experimental Setup
First Experiment: Low-Coherence Interferometry
Second Experiment: Optical Coherence Tomography
Light Source
Fiber Coupler (50/50 Beamsplitter)
Reference Reflector & Detector Array (1-D CCD Camera)
Microscope
-Dichroic Mirror -Sample Stage
Methods
Experiment 1: Low-Coherence Interferometry
Purpose to obtain spectral interferogram data to measure center wavenumber ko, standard deviation ∆k and the power reflectivity of the slide surface
Low Coherence Interferometry
Procedure
Adjust reference arm micrometer such that there are no interference patterns across the spectrum. Turn micrometer known distance till a fringe pattern similar to the one shown in the theory writeup is observed (Fig 1). Calibrate spectrogram plot to be able to calculate power reflectivity of slide surface. Obtain spectrogram (Fig 2) of reference arm only by blocking light from reaching the microscope. Use to measure ko and ∆k. The value of ko is where the spectrum is at maximum and ∆k is the difference in wavenumber between maximum and 1/e of maximum. Turn on Fourier processing to observe A-scan plot.
I D (k ) Single Reflector
rS1
I D (k ) Multiple Reflectors
π z R − z S1
[1 + RS 1 ] 2 0
k0
k
k0
k
Figure 1 1.0 0.5 0
γ(z)
S(k)
1 ∆k π
lc
0
F
∆k 0
Figure 2
k0
Methods
Experiment II: Optical Coherence Tomography
Purpose to take two and three dimensional images of internal biological tissue microstructure.
Optical Coherence Tomography
Procedure
Take B-scan of IR card using “DC removal” and dual-axis scanning mirror. Repeat for fingertip. Obtain 3D image by setting “scan pattern” to “rectangular volume”. This allows 100 sequential B-scans to be taken. Stop scan and select “volume image” to obtain 3D rendering of data. Try using with a coin. Experiment using the 3D rendering program “3DView” on acquired data.
LCI Results – Single Reflector
z R − z S1
z R − z S 1 = 110 µm average wavenumber period = 33.327 pixels resolution = 8.57 ⋅10-4 k/pixel
LCI Results – Reference Arm k 0 = 4.799rad/μm Δk = 0.179rad/μm Rs1 = 9.481 ⋅10 −3
k 0 = 4.799rad/μm Δk = 0.179rad/μm Rs1 = 9.481 ⋅10
−3
λ0 = 1.309 μm Δλ = 0.08128 μm lc = 9.302 μm
LCI Results – A-scan
FWHM = 0.6 pixels resolution = 13.1μm/pixel lc = 7.86μm
OCT Results – B-scan
0.2mm
OCT Results – B-scan Complex conjugate artifacts Sweat glands 0.2mm
OCT Results – 3D Scan