Opportunities From Science And Technology 4

  • Uploaded by: Daisy
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Opportunities From Science And Technology 4 as PDF for free.

More details

  • Words: 1,555
  • Pages: 17
Transformative Biomass Energy Benefits:  Technical Opportunities & Challenges Lee R. Lynd

Thayer School of Engineering & Department of Biology Dartmouth College, Hanover, New Hampshire, USA

Plenary Roundtable on Opportunities from Science & Technology Meeting of the National Council for Science & Environment January 26, 2006 Washington DC

  1

 

Transformative Biomass Energy Benefits: What Could be Achieved? Mature process & production technology, supported by results of the  Role of Biomass in America’s Energy Future (RBAEF) project Process technology features

Production of ethanol with coproducts (diesel, gasoline, power, feed, chemicals)  High quality fuels competitive with conventional fuels from oil at < $30/barrel  Energy value of products ~ 3/4 feedstock energy 

Feedstock production

High productivity (tons/acre) Enhanced soil­fertility Very high nutrient capture efficiency, recycle of N perhaps other elements

Systemic attributes (life­cycle basis)

Near­zero net greenhouse gas emissions Fossil fuel displacement:fossil energy inputs > 10:1  

2

 

Responsiveness to Societal Challenges Security Large reductions in oil importation The dominant energy security challenge for the coming decades A magnet for conflict (Richard Lugar & James Woolsey)

Sustainability Radical reduction of transportation sector greenhouse gases  Substantial improvements in the sustainability of agriculture 

Rural economy

Increased demand/value for farm products 

Substantially alleviate the chronic problem of agricultural overcapacity that has affli U.S. agriculture for a century  Improvements of historic proportions in the economic health of rural communities

  3

 

Transformative Biomass Energy Benefits ­ Not Just I Think So RBAEF project “Considers & supports the possibility of biomass fuels being a primary transport energy storage medium ­ not a bit player, not only a transition option Environmental community ­ from ambivalent to champion “Cellulosic ethanol is at least as likely as hydrogen to be an energy carrier  of choice for a sustainable transportation sector.” (NRDC, UCS) Rocky Mountain Institute/Amory Lovins Biofuels prominently featured in “Winning the Oil End Game” 25 x 25 group Clearest statement to date by the farm community of the possibility &  desirability of large­scale energy production DOE “Billion tons” report Detailed report documenting large­scale biomass availability Energy Future Coalition Supports major biofuels push (R&D & deployment)   4

 

Transformative Biomass Energy Benefits ­ What do we Need to Do? Science & Technology

Societal & Policy

Conversion Technology Overcoming the recalcitrance of cellulosic biomass Biological Non­biological Product diversification

Commercial Application Ascend learning curve

High­efficiency integrated processing facilities   

Feedstock production

New crops & cropping systems Feedstock storage & delivery systems Integration with processing

Addressed in this talk  

5

Vehicles 

Increase MPG

Keep availability of FFVs ahead of  biomass fuel availability

Consensus & Willingness to Act   

Sustainability & energy security Biomass energy

Biomass  Processing Research Frontiers Feedstock Production (Sunlight     Biomass) Productivity Site range Logistics Low inputs

Aqueous AFEX Fundamentals   6

Product Diversification    Reactive        Products intermediates Metabolic Engineering (product­ focused)

Corn (well­established, low cost) Overcoming the recalcitrance          of cellulosic biomass Not a major research frontier Cellulose (not well­established)

Enzymatic Large costGasification      Acid Hydrolysis Major research frontier Hydrolysis

Pretreatment Dilute acid

Feedstock Activation* Biomass       Reactive                   intermediates

Utilization of  all sugars

Low­cost Hydrolysis

Dedicated cellulase production Hydrolysis   reactor  design & operation

Catalysis (especially aqueous)

Low­cost cellulase production   

Better cellulases

Separation    CBP/Microbial cellulose utilization Recombinant Strategy

Native Strategy

Focusing Our Attention The cost of processing, not feedstock, is the key factor impeding  cost­competitiveness                   Feedstock                  

Representative Price

Low­Cost Cellulosic Residues  Cellulosic Energy Crops 

0 to $30/dd ton  $35 to $50/dd ton 

Crude Oil Corn (kernels)

$35 to $70/bbl $2.50/bu

   $/GJ    0 to 1.7  2 to 2.9 6.1 to 12.2 5.0

Whether accomplished by enzymatic hydrolysis, acid hydrolysis, gasification, or pyrolysis, conversion of cellulosic biomass to reactive intermediates:  • Represents the largest cost among process steps • Is the least technologically mature • Has the greatest potential for R&D­driven improvement   7

 

Evolution of Biomass Processing Featuring Enzymatic Hydrolysis Biologically­ Mediated  Event Cellulase  production

Processing Strategy  (each box represents a bioreactor ­ not to scale)

SSF

SHF

O2

O2

SSCF

   CBP

O2

Cellulose  hydrolysis Hexose  fermentation Pentose  fermentation

_____________  SHF: Separate hydrolysis & fermentation                     CBP: Consolidated bioprocessing   SSF: Simultaneous saccharification & fermentation SSCF: Simultaneous saccharification & co­fermentation   8

 

Cost of Biological Conversion (¢/gal EtOH)

Cost Comparison: SSCF with Advanced Cellulase vs CBP 0.21 18.8

0.18

Lost Yield 5.59

0.15 0.12 0.09

9.85 8.98 5.59

0.00

1.85

2.27 1.02

0.06 0.03

3.90

1.63 0.83 1.80

Cellulase Production

Utilities Raw materials Capital & related

5.69

7.49

4.23 1.71 0.68 1.84

SSCF

Total

CBP

Plant scale, 5,000 tpd; Hydrolysis conversion, 95%; Fermentation yield, 95%; Ethanol concentration, 50 g/L; Temp, 37oC Cellulase costs based on Wooley et al., 1999.

SSCF costs from RBAEF process models, 7 day reaction time Lynd et. al., Curr. Opin. Biotechnol., 2005

Substituting CBP for SSCF with advanced cellulase: > 4­fold reduction in cost of biological processing > 2­fold reduction in the cost of processing overall   9

 

Highly­Efficient Integrated Processing (mature technology, one scenario) 

WWT Sludge 1%

Biogas 13% 0.3%

BIOLOGICAL   Ag Inputs  (Farming, feedstock transport) ~ 5 %  10

22%

35%

19%

GT

FT Synthesis

26% Residue

14%

1%

0.1%

Gas Cleanup

Liquid 16%

0.1%

POX

Solids 25%

1%

Gasification

Cooling/Heat Loss

Other Utilities

7%

4%

21%

0.6%

9%

54%

Drier

2%

96%

Ethanol

WWT

6%

97%

Distillation

100%

CBP

8%

HRSG

Steam 10%

Pretreatment

Feed Handling

100%

THERMOCHEMICAL

Power 3.6%

2%

NH3 1% Feedstock

1.6%

0.8%

Steam Turbine

0.2%

0.1%

Power 5%

FT Gasoline 6% FT Diesel  10%

Scenario Comparison: Fuel price variable, power price constant, 5,000 tpd  2002 2003 ($24/bbl) ($29/bbl) ($0.81/gal) ($0.98/gal)

2004 ($37/bbl) ($1.27/gal)

2005? ($50/bbl) ($1.58/gal)

Internal Rate of Return (%)

70% 65% 60% 55% 50% 45%

EtOH/Rankine EtOH/GTCC EtOH/FT/GTCC EtOH/FT (1X)/CH4 EtOH/FT (w/recycle)/CH4 EtOH/H2 EtOH/Protein/Rankine EtOH/Protein/GTCC EtOH/Protein/FT EtOH/SA/Rankine FT/GTCC DME/GTCC H2/GTCC Rankine GTCC

40% 35% 30% 25% 20% 15% 10% 5% 0% $5  

11

$6

$7

$8

$9

$10 $11 $12 $13 $14

$15

  Fuel Price ($/GJ gasoline equiv.)

$0.04/kWh $0.20/lb protein 40/60 D/E 7.5% loan rate

Scenario Comparison: Fuel price variable, power price constant, 5,000 tpd  2002 2003 ($24/bbl) ($29/bbl) ($0.81/gal) ($0.98/gal)

Internal Rate of Return (%)

70% 65% 60% 55% 50% 45%

2004 ($37/bbl) ($1.27/gal)

2005? ($50/bbl) ($1.58/gal)

ls) e u ing xf s a s m e ol ( roc n p a TC eth o + i l B ano h t e Bi o

40% 35% 30% 25% 20% 15%

uels TC F

10% 5%

Power

0% $5   12

$6

$7

$8

$9

$10 $11 $12 $13 $14

$15

  Fuel Price ($/GJ gasoline equiv.)

$0.04/kWh $0.20/lb protein 40/60 D/E 7.5% loan rate

New Crops & Cropping Systems   Land use is usually either held constant or extrapolated in analyses of the role of  biomass energy production. However, demand for cellulosic feedstocks due to cost­competitive processing  technology would very likely result in large changes. Feed protein/feedstock coproduction Winter cover crops Agricultural residue removal, enhanced by appropriate crop rotations New crops developed for bioenergy, integration into agriculture Increase production on under­utilized land (e.g. hay, pasture) Feedlot pretreatment to make calories more accessible

Reimagining agriculture to accommodate large scale energy production   We have barely scratched the surface in terms of both vision & realization  

  13

 

Let’s Think Big  

Miscanthus, One Season’s Growth   Courtesy Steve Long, University of Illinois 14

 

Integrating Feedstock Production & Processing Observations

The most attractive mature configurations for biomass processing feature  biological conversion followed by gasification Gasification features a reducing chemical environment in which nitrogen ­ originating  from biomass feedstocks, microbial cells, or enzymes ­ exists primarily as ammonia  N­recovery already practiced industrially ­ SASOL recovers most of the nitrogen  present in coal as ammonia 

This suggests Energy

X

Fertilizer

Field

Processing  Facility

Biomass

With nitrogen recovery

  15

 

Non­Nitrogenous  Products (e.g. fuels, power,  chemicals)

Reimagining Biomass­Based Mobility Chains as if Sustainability &  Energy Security Challenges Were Important to Solve    CRP Land  (30 MM)

U.S. Cropland  (400 MM)

Status quo

33 gal Geq/ton, current mpg, no ag. integration, 5 tons/acre*yr 1,088

Advanced  processing

90 gal Geq/ton

Efficient  vehicles (2.5x)

160

Agricultural integration I. Soy ­> switchgrass         or large biomass soy

86

II. Corn stover (72%)

45

LDV HDV

Early­cut switchgrass produces more feed protein/acre than soy; similar benefits from “large biomass soy”  Feasibility of stover utilization enhanced by rotation  Winter cover crops, other residues, increased productivity of food crops, increased production on under­utilized land…

III. Other

0

16

400

200 400 600 800 1,000 New Land Required (million acres)

1,200

These values do NOT capture benefits from increased crop productivity due to     new crops, cropping practices & rotations ­ likely > VMT increase

Approaches to Energy Planning & Analysis 1. Bury our heads in the sand.  Pretend that energy challenges are not real or will go away.   2. Extrapolate current trends.   3. Hope for a miracle (e.g. Hoffert et al., Science, 2002).   • Acknowledge the importance of sustainable and secure energy supplies  • Dismiss foreseeable options as inadequate to provide for the world’s energy needs  • Call for “disruptive” advances in entirely new technologies whose performance      cannot be foreseen.  4. Innovate & change.   • Define sustainable futures based on mature but foreseeable technologies  in combination with an assumed willingness of society to change in ways that increase  resource utilization efficiency • Work back from such futures to articulate transition paths beginning where we are now  

#1 and #2 do not offer solutions to sustainability and security challenges. #3 should be pursued but is too risky to rely on. #4 is the most sensible choice if it is assumed that challenges associated with      sustainability and security are important to solve. 17

Related Documents


More Documents from "vishwanath"