Operational Amplifiers 1. Av =
3.5 4. In circuit shown in fig. P3.5.4, the input voltage vi is
vo =? vi
0.2 V. The output voltage vo is
400 kW
50 kW
40 kW
vi
150 kW
10 kW vi
vo
25 kW vo
R
Fig. P3.5.4
Fig. P3.5.1
(A) -10
(B) 10
(A) 6 V
(B) -6 V
(C) -11
(D) 11
(C) 8 V
(D) -8 V
2. Av =
5. For the circuit shown in fig. P3.5.5 gain is
vo =? vi
Av = vo vi = -10. The value of R is
400 kW
R
100 kW
40 kW
vi
100 kW
vo 60 kW
100 kW
vi
vo
Fig. P3.5.2
(A) -10
(B) 10
(C) 13.46
(D) -13.46
Fig. P3.5.5
3. The input to the circuit in fig. P3.5.3 is
(A) 600 kW
(B) 450 kW
(C) 4.5 MW
(D) 6 MW
vi = 2 sin wt mV. The current io is 6. For the op-amp circuit shown in fig. P3.5.6 the
10 kW vi
voltage gain Av = vo vi is
1 kW io
R
vo
R
R
4 kW vi
(B) -7 sin wt m A
(C) -5 sin wt m A
(D) 0
R
R vo
Fig. P3.5.3
(A) -2 sin wt m A
R
Fig. P3.5.6
www.nodia.co.in
183
Operational Amplifiers
(A) -8
3.5
(B) 8
(C) -10
20 kW
20 kW
+0.5 V
(D) 10
40 kW -1 V
7. For the op-amp shown in fig. P3.5.7 open loop
vo
60 kW +2 V
differential gain is Aod = 10 3. The output voltage vo for vi = 2 V is
Fig. P3.5.10 100 kW
vi
100 kW
(A) 2.67 V
(B) -2.67 V
(C) -6.67 V
(D) 6.67 V
vo
11. In the circuit of fig. P3.5.11 the voltage vi1 is (1 + 2 sin wt) mV and vi2 = -10 mV. The output voltage vo is
Fig. P3.5.7
20 kW
(A) -1.996
(B) -1.998
(C) -2.004
20 kW vi1
(D) -2.006
2 kW 1 kW vo
vi2
8. The op-amp of fig. P3.5.8 has a very poor open-loop
1 kW
voltage gain of 45 but is otherwise ideal. The closed-loop gain of amplifier is
Fig. P3.5.11
100 kW 2 kW vo
(A) -0.4(1 + sin wt) mV
(B) 0.4(1 + sin wt) mV
(C) 0.4(1 + 2 sin wt) mV
(D) -0.4(1 + 2 sin wt) mV
12. For the circuit in fig. P3.5.12 the output voltage is
vi
vo = 2.5 V in response to input voltage vi = 5 V. The
Fig. P3.5.8
finite open-loop differential gain of the op-amp is
(A) 20
(B) 4.5
(C) 4
(D) 5
vi
500 kW
9. For the circuit shown in fig. P3.5.9 the input voltage
Fig. P3.5.12
vi is 1.5 V. The current io is 10 kW vi
vo
1 kW
6 kW 8 kW io
(A) 5 ´ 10 4
(B) 250.5
(C) 2 ´ 10
(D) 501
4
13. vo = ?
vo
100 kW
5 kW 100 kW vo
20 kW
Fig. P3.5.9
+18 V 40 kW
(A) -1.5 mA
(B) 1.5 mA
(C) -0.75 mA
(D) 0.75 mA
+15 V
Fig. P3.5.13
10. In the circuit of fig. P3.5.10 the output voltage vo is
(A) 34 V
(B) -17 V
(C) 32 V
(D) -32 V
www.nodia.co.in
3.5
Operational Amplifiers
184
18. For the circuit shown in fig. P3.5.18 the true
14. vo = ?
relation is
100 kW 20 kW vo
60 kW +10 V
vo1
10 kW
20 kW
1 kW
+15 V
R
30 kW R vi
Fig. P3.5.14
(A) -5.5 V
(B) 4.58 V
(C) 5.5 V
(D) -4.58 V
15. Av =
Fig. P3.5.18
vo =? vi R
R
vo2
(A) vo1 = vo2
(B) vo1 = -vo2
(C) vo = 2 vo2
(D) 2 vo1 = vo2
R
19. vo = ?
R vo
R
10 kW 10 kW
vi vo +6 V 48 kW
Fig. P3.5.15
(A) 5
(B) -5
(C) 6
(D) -6
5 kW
6 kW
Fig. P3.5.19
Statement for Q.16–17:
(A)
4 V 3
(B) -
2 V 3
(C)
2 V 3
(D) -
4 V 3
The circuit is as shown in fig. P3.5.16–17.
vo
50 kW
20. vo = ?
1 kW
vi
3 kW
Fig. P3.5.16–17
(B) -1
(C) ¥
(D) 50
vo
12 V
16. The ideal closed-loop voltage gain is (A) 1
4 kW
2 kW R 1 kW
Fig. P3.5.20
17. If open-loop gain is Aod = 999, then closed-loop gain is (A) -0.999
(B) 0.999
(A) -12 V
(B) 12 V
(C) 1.001
(D) -1.001
(C) -18 V
(D) 18 V
www.nodia.co.in
185
Operational Amplifiers
21. vo = ?
3.5
25. Avd = 8 kW
vo =? ( v1 - v2 )
4 kW v1
vo 0.1 mA
+
2 kW
2V
6 kW 2 kW 4 kW
vo
Fig. P3.5.21
(A) -30V
(B) 18V
(C) -18V
(D) 28V
-
v2
22. vo = ? 10 kW
Fig. 3.5.25
vo 0.1 mA
20 kW 5V
(A) 8
(B) -6
(C) 6
(D) -8
26. vo = ?
Fig. P3.5.22
vo
(A) 4 V
(B) -4 V
(C) 5 V
(D) -5 V
23. io = ?
1 3 kW
2 kW
3 kW 4 kW
3 kW
io 12 V
2
6V
2m A 6 kW
Fig. 3.5.26 Fig. P3.5.23
(A) 12 mA
(B) 8.5 mA
(C) 6 mA
(D) 7.5 mA
(A) 6 V
(B) -6 V
(C) -10 V
(D) 10 V
27. Av =
24. vo = ?
vo =? vi vi
6 kW
2 kW 1 kW vo
vo
2.5 V
3 kW 8 kW 6 kW
1 kW
4 kW
Fig. P3.5.27
Fig. P3.5.24
(A) -7.5 V
(B) 7.5 V
(A) 15.8
(B) -10
(C) 8 V
(D) -8 V
(C) -17.4
(D) -8
www.nodia.co.in
3.5
Operational Amplifiers
28. For the circuit shown in fig. P3.5.28 the input
186
31. io = ?
resistance is
6 kW
io
2 kW vo
6A 2 kW 4 kW is
Fig. S3.5.31 2 kW 10 kW
(A) -18 A
(B) 18 A
(C) -36 A
(D) 36 A
Statement for Q.32–33:
Fig. P3.5.28
(A) 38 kW
(B) 17 kW
(C) 25 kW
(D) 47 kW
Consider the circuit shown below
29. In the circuit of fig. P3.5.29 the op-amp slew rate is SR = 0.5 V ms. If the amplitude of input signal is 0.02
vi
3 kW
D1
6 kW
D2
2 kW vo
V, then the maximum frequency that may be used is 240 kW vi
10 kW
Fig. P3.5.32–33 vo
32. If vi = 2 V, then output vo is
Fig. P3.5.29
(A) 4 V
(B) -4 V
(C) 3 V
(D) -3 V
33. If vi = -2 V, then output vo is (A) 0.55 ´ 106 rad/s
(B) 0.55 rad/s
(C) 1.1 ´ 106 rad/s
(D) 1.1 rad/s
(A) -6 V
(B) 6 V
(C) -3 V
(D) 3 V
34. vo( t) = ? 30. In the circuit of fig. P3.5.30 the input offset voltage and input offset current are Vio = 4 mV and I io = 150 8 mF
nA. The total output offset voltage is 500 kW vi
5u(t) mA
250 W
vo 50 W
1 kW
5 kW vo
Fig. P3.5.34
(A) e
5 kW
Fig. P3.5.30
(A) 479 mV
(B) 234 mV
(C) 168 mV
(D) 116 mV
(C) e
-
t 10
-
t 1 .6
-
u( t) V
(B) -e
u( t) V
(D) -e
t 10
-
t 1 .6
u( t) V u( t) V
35. The circuit shown in fig. P3.5.35 is at steady state before the switch opens at t = 0. The voltage vC ( t) for t > 0 is www.nodia.co.in
187
Operational Amplifiers
3.5
vss
t=0
10 kW X
20 kW
R
vs
vo
20 kW 20 kW + 4 mF
5V
vC
Fig. P3.5.38
-
(C) (A) 10 - 5 e -12 .5t V (C) 5 + 5 e
-
t 12 .5
(B) 5 + 5 e -12 .5t V (D) 10 - 5 e
V
(B) -vs vss
(A) vs vss
Fig. P3.5.35
-
t 12 .5
vs vss
(D)
vs vss
39. If the input to the ideal comparator shown in fig.
V
P3.5.39 is a sinusoidal signal of 8 V (peak to peak)
36. The LED in the circuit of fig. P3.5.36 will be on if vi
without any DC component, then the output of the comparator has a duty cycle of
is Input
10 kW +10 V
Output
470W 10 kW
Vref = 2 V
vi
Fig. P3.5.39
Fig. P3.5.36
(A) > 10 V
(B) < 10 V
(C) > 5 V
(D) < 5 V
37. In the circuit of fig. P3.5.37 the CMRR of the op-amp is 60 dB. The magnitude of the vo is
(A)
1 2
(B)
1 3
(C)
1 6
(D)
1 12
40. In the op-amp circuit given in fig. P3.5.40 the load current iL is R1
2V
R1 vs
100 kW R
R
1 kW
R
R
R2
vo
1 kW
IL
R2 RL
100 kW
Fig. P3.5.40 Fig. P3.5.37
(A) 1 mV
(B) 100 mV
(C) 200 mV
(D) 2 mV
38. The analog multiplier X of fig. P.3.5.38 has the characteristics vp = v1 v2 . The output of this circuit is
(A) -
vs R2
(B)
vs R2
(C) -
vs RL
(D)
vs RL
41. In the circuit of fig. P3.5.41 output voltage is |vo| = 1
V for a certain set of w, R, an C. The |vo| will be 2 V if
www.nodia.co.in
3.5
Operational Amplifiers
R1
(A)
R1 vi = sin wt V
(C)
vo
188
1 mF 2p 1 2p 6
(B) 2p mF mF
(D) 2 p 6 mF
R C
45. In the circuit shown in fig. P3.5.45 the op-amp is ideal. If bF = 60, then the total current supplied by the
Fig. P3.5.41
15 V source is
(A) w is doubled
(B) w is halved
(C) R is doubled
(D) None of the above
+15 V
47 kW
42. In the filter circuit of fig. P3.5.42. the 3 dB cutoff frequency is 50 nF
6 kW vo
3 kW
vo
Vz = 5 V
100 W
vi
Fig. P3.5.42
Fig. P3.5.45
(A) 10 kHz
(B) 1.59 kHz
(C) 354 Hz
(D) 689 Hz
(A) 123.1 mA
(B) 98.3 mA
(C) 49.4 mA
(D) 168 mA
43. The phase shift oscillator of fig. P3.5.43 operate at f = 80 kHz. The value of resistance RF is
46. In the circuit in fig. P3.5.46 both transistor Q1 and Q2 are identical. The output voltage at T = 300 K is
RF 100 pF
100 pF
R
100 pF
R
R1 vo
R
R2
v1
v2
333 kW
Fig. P3.5.43
(A) 148 kW
(B) 236 kW
20 kW
(C) 438 kW
(D) 814 kW
20 kW
44. The value of C required for sinusoidal oscillation of
vo
333 kW
frequency 1 kHz in the circuit of fig. P3.5.44 is 2.1 kW
1 kW
Fig. P3.5.46
C 1 kW
1 kW
Fig. P3.5.44
C
æv R ö (A) 2 log10 çç 2 1 ÷÷ è v1 R2 ø
æv R ö (B) log10 çç 2 1 ÷÷ è v1 R2 ø
æv R ö (C) 2.303 log10 çç 2 1 ÷÷ è v1 R2 ø
æv R ö (D) 4.605 log10 çç 2 1 ÷÷ è v1 R2 ø
47. In the op-amp series regulator circuit of fig. P8.3.47 Vz = 6.2 V, VBE = 0.7 V and b = 60. The output voltage vo is www.nodia.co.in
189
Operational Amplifiers
vo
+36 V
3.5
Gain of second stage Av2 = -
1 kW
150 = -6 25
Total gain Av = Av1 Av2 = 30, vo = 30 ´ 0.2 = 6 V 30 kW
5. (B) Let vx be the node voltage vx v v - vo + x + x =0 R 100 100 10 kW
æ 2 + 100 ö vo = vx ç ÷ R ø è
Þ
0 - vi 0 - vx R + = 0 Þ vx = vi , 100 R 100 100 ö vo R æ =ç2 + ÷ = -10 vi R ø 100 è
Þ
Fig. P3.5.47
(A) 35.8 V
(B) 24.8 V
(C) 29.8 V
(D) None of the above
2 R + 100 = -1000 , R = 450 kW 6. (A)
*******
0 - vi 0 - v1 + = 0, v1 = -vi R R R
R
v1 R
Solutions
vi
R
v2 R
R vo
1. (A) This is inverting amplifier 400 R Av = - F = = - 10 40 R1
Fig. S3.5.6
2. (A) The noninverting terminal is at ground level. Thus inverting terminal is also at virtual ground. There will not be any current in 60 kW. 400 Av = = - 10 40 3. (B) vo = -
10 (2 sin wt) mV = - 20 sin wt mV 1
v1 - 0 v1 - v2 v1 + + = 0, 3v1 = v2 , v2 = -3vi R R R v2 - v1 v2 v2 - vo + + =0 R R R vo -3vi + vi - 3vi - 3vi = vo Þ = -8 vi 7. (A) i1 =
vi - v1 100 k
10 kW i2
vi
100 kW
i1
1 kW io ii
iL
100 kW
vi
vo
i1
v1
vo
4 kW
Fig. S3.5.7 Fig. S3.5.3
i2 =
v iL = o = -5 sin wt m A 4k 2 sin wt = 2 sin wt m A i1 = ii = 1k
Þ
io = iL - i1 = -5 sin wt - 2 sin wt = - 7 sin wt m A 4. (A) Gain of first stage Av1 = -
v1 - vo , i1 = i2 , v1 - vo = vi - v1 100 k
50 = -5 10
2 v1 - vo = vi , vo = - Aod v1 v 2v v1 = - o = o - vo = vi Aod Aod 1 vo = vi æ 2 ö çç 1 + ÷ Aod ÷ø è
www.nodia.co.in
Þ
vo = -
2 = -1996 . (1 + 2 ´ 10 -3)
3.5
Operational Amplifiers
8. (B) A closed loop gain ACL =
vo Aod = vi 1 + Aod b
2k b= = 0.2 8k + 2k ACL =
45 = 4.5 1 + ( 45)(0.2)
9. (C) i1 =
15 . = 0.25 mA, i1 = i2 6k i2
10 kW vi
190
15. (A) v+ = vi = vlet v1 be the node voltage of T network v- v- - v1 + =0 Þ v1 = 2 v- = 2 vi R R v1 - v- v1 v - vo + + 1 = 0 Þ 3v1 = v- + vo , R R R vo 6vi = vi + vo Þ =5 vi vo =1 vi
16. (A) v+ = vi , v- = vi = vo ,
6 kW 8 kW io
i1
iL
vo
5 kW
Fig. S3.5.9
17. (B) v+ = vi , v- = vo Aod ( vi - vo) = vo Aod = 999 vo Aod 999 = = = 0.999 vi 1 + Aod 1 + 999
vo = -10 ki2 = -2.5 V, i2 + io = iL 2.5 , io = -0.75 mA 0.25m + io = 5k
18. (B) At second stage input to both op-amp circuit is
10. (B) This is summing amplifier
Av = 1. Lower op-amp circuit is inverting amplifier R having gain Av = - = -1. Therefore vo1 = -vo2 . R
1 2 ö æ 0.5 vo = -80ç + ÷ = -2.67 V è 20 40 60 ø 20 11. (B) Output of first op-amp vo1 = vi1 2 = -10(1 + 2 sin wt) mV
same. The upper op-amp circuit is buffer having gain
19. (A) v+ =
6´ 6 2 = V, 48 + 6 3
10 ö 4 æ vo = ç 1 + ÷ v+ = V 10 ø 3 è
20. (A) Applying KVL to loop,
The second stage is summing amplifier æ -10 (1 + 2 sin wt) 10 ö vo = -20 ç ÷ mV 1 1 ø è = 0.4(1 + sin wt) mV 12. (B) v+ =
vo
R 1 kW
18 ´ 40 15 ´ 20 + = 17 V 20 + 40 20 + 40
i2
Fig. S3.5.20
12 = 3ki1 + 2 ki1
Þ
i1 = 2.4 mA , io = i1 = 2.4 mA
i2 = -i1 = -2.4 mA vo = i2 (1k) = -2.4 V
v+ v - 10 v+ - 15 + + + =0 30 60 20 1 3 11 v+ = + = 6 4 12
vo = va - io( 4k) = -2.4 - (2.4)( 4) = -12 V
100 ö 11 æ vo = v+ ç 1 + (1 + 5) = 5.5 V ÷= 20 ø 12 è
vo + 8 = -2, vo = -30 V 3
14. (C)
io
2 kW
vi A v , vo = od i 500 + 1 501
100 k ö æ vo = ç 1 + ÷v+ = 34 V 100 k ø è
4 kW
i1
12 V
(2.5)(501) = Aod (5), Aod = 250.5 13. (A) v+ =
va
3 kW
21. (A) v1 =
www.nodia.co.in
vo( 4) 12( 8) , v+ = -2 V, v+ = v+ 4+8 4+8
191
Operational Amplifiers
22. (A) v+ = 5 V = v- ,
v+ - vo = 0.1 mA 10 k
v- = v+ , 2 kis = 4 ki1
12 = 3 mA 4k
i ö æ vs = 2 kis + 10 kç is + s ÷ Þ 2ø è i2
i1
2 mA
iL
vo
w £ Fig. S3.5.23
500 ö æ = ç1 + ÷ 4m = 404 mV 5 ø è Due to I io, vo = RF I io = (500 k)(150n) = 75 mV
vo = 7.5 V
Þ
Total offset voltage vo = 404 + 75 = 479 mV
25. (C) v1 + = v1 = v1 - , v2 + = v2 = v2 -
-vo v , io = - 6 + o 6k 3k -6( 6 k) io = - 6 + = -18 A. 3k
31. (A) 6 =
Current through 2 kW resistor v - v2 v - v2 i = 1 = 1 2k 2k ( v - v2 ) vo = i( 6 k + 2 k + 4 k) = 1 (12 k) 2k vo = 6 = Avd v1 - v2
32. (B) If vi > 0, then vo < 0, D1 blocks and D2 conducts Av = -
26. (C) v2 + = v2 - = 0 V, current through 6 V source i=
0.5 / m SR . ´ 106 rad/s = = 11 0.48 vom
æ R ö 30. (A) The offset due to Vio is vo = çç 1 + 1 ÷÷Vio R1 ø è
i2 = 3 + 2 = 5 mA, vo = -(5)( 3) = -15 V -15 , io = 7.5 mA i2 = io + iL , 5 = io + 6 vo ( 4) = 2.5 8+4
vs = 17k = Rin is
The maximum output voltage vom = 24 ´ 0.02 = 0.48 V
6 kW
24. (B)v+ = 2.5 V = v- ,
is 2
½R ½ 240 k 29. (C) Closed loop gain A =½ F½ = = 24 ½ R1½ 10 k
io 12 V
is = 2 i1
i2 = is + i1 , vs = 2 kis + 10 k( is + i1 ), i1 =
3 kW 4 kW
Þ
vs = 2 kis + 10 ki2
v+ - vo = 1 , 5 - vo = 1 , vo = 4 V 23. (D) v+ = v- = 0, i1 =
3.5
6 = 2 mA, vo = -2m( 3k + 2 k) = -10 V 3k
vo(1) vo v (2) vo(1) = , v- = i + 1+ 3 4 2+1 2+1 v v 2v v v+ = v- , o = o + i , o = -8 vi 4 3 3
27. (D) v+ =
6k = -2 3k
Þ
vo = ( -2)(2) = -4 V
33. (D) If vi < 0, then vo > 0, D2 blocks and D1 conduct Av = -
3k . )=3 V = -15 . , vo = ( -2)( -15 2k
34. (A) Voltage follower vo = v- = v+ v+ (0 + ) = 5m(250 ||1000) = 1 V, v+ ( ¥) = 0 t = 8m(1000 + 250) = 10 s 35. (A) vc (0 - ) = 5 V = vc (0 + ) = 5 V
28. (B) Since op-amp is ideal
For t > 0 the equivalent circuit is shown in fig. S3.5.35 20 kW
i1 10 V
4 kW is
4 mF
+ vC –
is 2 kW
i2 10 kW
Fig. S3.5.28
Fig. S3.5.35
t = 20 k ´ 4m = 0.08 s vc = 10 + (5 - 10) e www.nodia.co.in
-
t 0 .08
= 10 - 5 e -12 .5t V for t > 0
3.5
Operational Amplifiers
36. (C) v- =
192
Thus when w and R is changed, the transfer function
(10)(10 k) =5 V 10 k + 10 k
is unchanged.
When v+ > 5 V, output will be positive and LED will be 42. (B) Let R1 = 3 kW , R2 = 6 kW , C = 50 nF
on. Hence (C) is correct.
vi v - vo + i =0 R2 æ 1 ö R1 ||ç ÷ è sC ø
R R 37. (B) v+ = (2) = 1 V, v- = (2) = 1 V, vd = 0 2R 2R v + vR VCM VCM = + = 1, vo = F 1 CMRR 2 100 1 CMRR = 60 dB = 10 3 , vo = = 100 mV 1 10 3
éR ù vi ê 2 (1 + sR1 C) + 1ú = vo ë R1 û vi [R2 + R1 + sR1 R2 C ] = vo R1
38. (C) v+ = 0 = v- ,
vo R + R1 = 2 vi R1
Let output of analog multiplier be vp . vp vs =Þ vs = -vp , vp = vss vo R R v vs = -vss vo , vo = - s vss
Þ
39. (B) When vi > 2 V, output is positive. When vi < 2 V,
=
V
2V 2p
p
t
5p 6
6
vs - v- v- - vo = R1 R1
v+ v v - vo + + + + =0 R2 RL R2
v+ = -
Þ
1 ( 80 k)(2 p 6 )(100 p)
RF = 29 R
5p p TON 1 Duty cycle = = 6 6 = 2p T 3
Þ 0 = vs +
1 1 = = 159 . kHz 2 p( 3k ||6 k)50n 2 p(2 k)50n
Þ R=
Fig. S3.5.39
æ R 2 v- = vs + çç 2 + 2 RL è
1 2 p( R1 || R2 ) C
43. (B) The oscillation frequency is 1 1 f = Þ 80 k = 2 p 6 RC 2 p 6 R(100 p)
4V
40.(A)
Þ
= 8.12 kW
RF = ( 8.12 k)(29) = 236 kW
44. (A) This is Wien-bridge oscillator. The ratio R2 2.1k = = 2.1 is greater than 2. So there will be R1 1k oscillation
2 v1 = vs + vo
R2
Þ
æ R vo = çç 2 + 2 RL è
ö ÷÷ v+ ø
R1
ö ÷÷ v+ , v- = v+ ø R
R2 v+ RL
RL vs , R2
é sR1 R2 C ù ê1 + R + R ú ë 1 2 û
vo æ R ö = çç 1 + 2 ÷÷(1 + s( R1 || R2 ) C) vi è R1 ø
f3dB =
output is negative.
v v vi + i = o æ ö R2 R2 R1 çç ÷÷ è 1 + sR1 C ø
Þ
iL =
R
v+ , RL
iL = -
vs R2
| H( jw)| =
Frequency = 1 + ( wR 2 C) 2 1 + ( wRC) 2
C
Fig. S3.5.44
41. (D) This is a all pass circuit vo 1 - jwRC , = H ( jw) = vi 1 + jwRC
C
=1
C=
1 mF 2p
www.nodia.co.in
1 2pRC
Þ
1 ´ 10 3 =
1 2 p(1k) C
193
Operational Amplifiers
45. (C) v+ = 5 V = v- = vE , The input current to the op-amp is zero. i+15V = iZ + iC = iZ + a F iE =
15 - 5 60 æ 5 ö + ç ÷ = 49.4 mA 47 k 61 è 100 ø
46. (B) vo =
333 ( vo1 - vo2 ) 20
æi vo1 = -vBE1 - Vt ln çç c1 è is
ö æi ÷÷, vo2 = -vBE 2 - Vt ln çç c 2 ø è is
æi vo1 - vo2 = -Vt ln çç c1 è ic 2
ö ÷÷ ø
ic1 =
v1 , R1
ic 2 =
ö æi ÷÷ = Vt ln çç c 2 ø è ic1
ö ÷÷ ø
v2 R2
æv R ö vo1 - vo2 = Vt ln çç 2 1 ÷÷, Vt = 0.0259 V è R2 v1 ø vo =
æv R ö 333 333 ( vo1 - vo2 ) = (0.0259) ln çç 2 1 ÷÷ 20 20 è v1 R2 ø
æv R ö æv R ö = 0.4329 lnçç 2 1 ÷÷ = 0.4329(2.3026) log10 çç 2 1 ÷÷ v R è 1 2ø è v1 R2 ø æv R ö = log10 çç 2 1 ÷÷ è v1 R2 ø 47. (B) v+ = v- , vZ =
10 vo v = o 10 + 30 4
vo = 4 vz = 6.2 ´ 4 = 24.8 V ************
www.nodia.co.in
3.5