Numerik Nanda.docx

  • Uploaded by: EGD Polsri.16
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Numerik Nanda.docx as PDF for free.

More details

  • Words: 699
  • Pages: 6
NAMA:NANDA SASTAMA KELAS:2EGD NIM:061640411931 DOSEN:DR. YULIANTO.W MATEMATIKA NUMERIK

Selesaikan integral berikut dengan metode trafezoid dan metode simpson dengan n : 4 5

1. ∫2 𝑥 2 (√𝑥 − 2 ) 𝑏−𝑎 𝑛

h=

= 5-2/4 = 0,75

f(2) = 22 ( √2 − 2) = 0 f(2,75) = (2,75^3)*(2,75-2)^0,5 = 3,949386819 f(3,5) = (3,5^3)*(3,5-2)^0,5 =8,019507466 f(4,25) = (4,25^3)*(4,25-2)^0,5 =13,14239918 f(5) = (5^3)*(5-2)^0,5 = 19,36491673 X 2 2,75 3,5 4,25 5 -

f(x) = (x^3)*(x_2)^0,5 0 3,949386819 8,019507466 13,14239918 19,36491673

METODE TRAFEZOID : ℎ

L = ((2 )) *(𝑓0 + 2 * (𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1 ) + 𝑓𝑛 ) 0,3

L=(( 2 )) x(0+2*(3,949386819+8,019507466+13,14239918)+ 19,36491673) = 26,09531 -

METODE SIMPSON

-

L = (h/3)*(f0+4*( f1+f3+f4+f5+...fn-1.)+2*(f 2+f4+F6+f8....)+fn)

L = (0,3/3)*( 0+4*(3,949386819+13,14239918)+2*(8,019507466)+ 19,36491673) = 25,94277

2. f(x) = 3

∫ x^3 ∗ ln(2x + 1) 1

PENYELESAIAN: h = (b-a)/n = (3-1)/4 = 0,5 f(1) = (1^3)*(log(2*1+1)) = 0,477121255 f(1,5) = (1,5^3)*(log(2*1,5+1)) =2,031952471 f(2) = (2^3)*(log(2*2+1)) =5,591760035 f(2,5) = (2,5^3)*(log(2*2,5+1)) =12,15861329 f(3) = (3^3)*(log(2*3+1)) =22,81764708 X

f(x) = x^3*log(2x+1) 0,477121255 2,031952471 5,591760035 12,15861329 22,81764708

1 1,5 2 2,5 3 - METODE TRAFEZOID : ℎ

L = ((2 )) *(𝑓0 + 2 * (𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1 ) + 𝑓𝑛 ) L=(0,2/2)(x(0,477121255+2*(2,031952471+5,591760035+12,15861329))+ 22,81764708) = 15,71485 METODE SIMPSON L = (h/3)*(f0+4*( f1+f3+f4+f5+...fn-1.)+2*(f 2+f4+F6+f8....)+fn) L = (0,2/3)*( 2,031952471+12,15861329)+2*(5,591760035+)+22,81764708) = 15,20676

3. f(x) = 5

∫(3^2x + 1)/(3x + 2) 3

PENYELESAIAN : h = (b-a)/10 = (5-3)/4 = 0,5 f(3) = (3^2*(3)+1)/(3*(3)+2) = 2,545454545 f(3,5) = (3^2*(3,5)+1)/(3*(3,5)+2) = 2,6 f(4) = (3^2*(4)+1)/(3*(4)+2) =2,642857143 f(4,5) = (3^2*(4,5)+1)/(3*(4,5)+2) =2,677419355 f(5) = (3^2*(5)+1)/(3*(5)+2) = 2,705882353 X 3 3,5 4 4,5 5 -

f(x) = (3^2x+1)/(3x+2) 2,545454545 2,6 2,642857143 2,677419355 2,705882353 METODE TRAFEZOID : ℎ

L = ((2 )) *(𝑓0 + 2 * (𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1 ) + 𝑓𝑛 ) L=(0,2/2)(x(2,545454545+2*(2,6+2,642857143+2,677419355+)+2,705882353) = 5,272972 -

METODE SIMPSON L = (h/3)*(f0+4*( f1+f3+f4+f5+...fn-1.)+2*(f 2+f4+F6+f8....)+fn)

L = (0,2/3)*( 2,545454545+4*(2,6+2,677419355)+2*(2,642857143)+( 2,705882353) = 6,155407

Selesaikan integral berikut dengan metode trafezoid dan metode simpson dengan n : 10 4. f(x)=(x+1)^1,5/(2x+1)^0,5 Metode trapezoid dalam metode Trapezoid dan Simpson 1/3 ; n =10 metode trapezoid x 1 1,3 1,6 1,9 2,2 2,5 2,8 3,1 3,4 3,7 4 L 𝑏−𝑎

h=

10

=

f(x)=(x+1)^1,5/(2x+1)^0,5 1,632993162 1,838402084 2,04566906 2,254116604 2,463361149 2,673169155 2,88339026 3,093923256 3,304697511 3,515662235 3,726779962 8,025683363 4−1 10

=0,3

f(1)=(1+1)1,5/(2*1+1)0,5=1,632993162 f(1,3)=(1,3+1)1,5/(2*1,3+1)0,5=1,838402084 f(1,6)=(1,6+1)1,5/(2*1,6+1)0,5=2,04566906 𝐿=

ℎ × (𝑓0 + 2 × (𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1 ) + 𝑓𝑛 ) 2

𝐿=

0,3 × (1,632993162 + 2 × (1,838402084 + 2,04566906 + ⋯ + 3,515662235) 2 + 3,726779962) = 8,025683363

Metode simpson x 1 1,3 1,6 1,9 2,2 2,5 2,8 3,1 3,4 3,7 4 L

f(x)=(x+1)^1,5/(2x+1)^0,5 1,632993162 1,838402084 2,04566906 2,254116604 2,463361149 2,673169155 2,88339026 3,093923256 3,304697511 3,515662235 3,726779962 8,025510242

h=

𝑏−𝑎 10

=

4−1 10

= 0,3

f(1)=(1+1)1,5/(2*1+1)0,5=1,632993162 f(1,3)=(1,3+1)1,5/(2*1,3+1)0,5=1,838402084 f(1,6)=(1,6+1)1,5/(2*1,6+1)0,5=2,04566906 =

ℎ × (𝑓0 + 4 × (𝑓1 + 𝑓3 + ⋯ + 𝑓𝑔𝑎𝑛𝑗𝑖𝑙 ) + 2 × (𝑓2 + 𝑓4 + ⋯ + 𝑓𝑔𝑒𝑛𝑎𝑝 ) + 𝑓𝑛 ) 3

𝐿=

0,3 × (1,632993162 + 4 × (2,568965517 + ⋯ + 3,515662235) + 2 × (2,04566906 + ⋯ 3 + 3,304697511) + 3,726779962) = 8,025510242

5. F(X)=(2X+1)*3^X+2 Metode trapezoid dalam metode Trapezoid dan Simpson 1/3 ; n =10 Metode trapezoid X

F(X)=(2X+1)*3^X+2 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

11 14,70645558 19,69103954 26,35809377 35,23350066 47 62,54252367 83,00633896 109,8715581 145,0485463 191 128,8916113

L 𝑏−𝑎

h= 10 =

3−1 10

= 0,2

f(1)=(2*1+1)*31+2=11 f(1,2)=(2*1,2+1)*31,2+2=14,70645558 f(1,4)=(2*1,4+1)*31,4+2=19,69103954 𝐿=

ℎ × (𝑓0 + 2 × (𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛−1 ) + 𝑓𝑛 ) 2

𝐿=

0,2 × (11 + 2 × (14,70645558 + 19,69103954 + ⋯ + 145,0485463) + 191) 2 = 128,8916113

Metode snimpson X

F(X)=(2X+1)*3^X+2 1 1,2 1,4 1,6 1,8 2 2,2 2,4 2,6 2,8 3

11 14,70645558 19,69103954 26,35809377 35,23350066 47 62,54252367 83,00633896 109,8715581 145,0485463 191 128,0769988

L 𝑏−𝑎

h= 10 =

3−1 10

= 0,2

f(1)=(2*1+1)*31+2=11 f(1,2)=(2*1,2+1)*31,2+2=14,70645558 f(1,4)=(2*1,4+1)*31,4+2=19,69103954 =

ℎ × (𝑓0 + 4 × (𝑓1 + 𝑓3 + ⋯ + 𝑓𝑔𝑎𝑛𝑗𝑖𝑙 ) + 2 × (𝑓2 + 𝑓4 + ⋯ + 𝑓𝑔𝑒𝑛𝑎𝑝 ) + 𝑓𝑛 ) 3

𝐿=

0,2 × (11 + 4 × (14,70645558 + ⋯ + 145,0485463) + 2 × (19,69103954 + ⋯ 3 + 109,8715581) + 191) = 128,0769988

Related Documents

Komputasi Numerik
June 2020 5
Metode Numerik
June 2020 23
Numerik Baru.xlsx
December 2019 15
Numerik Nanda.docx
November 2019 12

More Documents from "Fajrin Siddiq"

Tugas Berita.docx
November 2019 21
Kunci.docx
November 2019 23
Tugas Komputasi.docx
May 2020 14
Rei.docx
November 2019 17
Pertanyaan.docx
November 2019 2
Cover Ppt Instrumen.docx
November 2019 4