Numerical

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Numerical as PDF for free.

More details

  • Words: 772
  • Pages: 4
NUMERICAL FORMULAE Iteration Newton Raphson method for refining an approximate root x0 of f (x) = 0 xn+1 = xn − Particular case to find Secant Method xn+1 = xn − f (xn )/

f (xn ) f 0 (xn )

√ N use xn+1 = 

1 2



f (xn ) − f (xn−1 ) xn − xn−1

xn +



Interpolation

∆fn = fn+1 − fn

,

∇fn = fn − fn−1

,

Gregory Newton Formula

δfn = fn+ 12 − fn− 21  1 µfn = fn+ 12 + fn− 12 2

  p(p − 1) 2 p fp = f0 + p∆f0 + ∆ f0 + ... + ∆r f0 2! r where p =

x − x0 h

Lagrange’s Formula for n points y=

n X

yi `i (x)

i=1

where `i (x) =

Πnj=1,j6=i (x − xj ) Πnj=1,j6=i (xi − xj )

1

N xn



.

Numerical differentiation Derivatives at a tabular point 1 1 µ δf0 − µ δ 3 f0 + µ δ 5 f0 − ... 6 30 1 4 1 6 2 2 00 h f0 = δ f0 − δ f0 + δ f0 − ... 12 90 1 2 1 3 1 1 0 hf0 = ∆f0 − ∆ f0 + ∆ f0 − ∆4 f0 + ∆5 f0 − ... 2 3 4 5 11 4 5 5 2 00 2 3 h f0 = ∆ f0 − ∆ f0 + ∆ f0 − ∆ f0 + ... 12 6 Numerical Integration hf00

=

Z

Trapezium Rule

where

fi = f (x0 + ih), E = −

x0 +h

f (x)dx '

x0

h (f0 + f1 ) + E 2

h3 00 f (a), x0 < a < x0 + h 12

Composite Trapezium Rule Z

x0 +nh

x0

f (x)dx '

h h2 h4 000 {f0 + 2f1 + 2f2 + ...2fn−1 + fn } − (fn0 − f00 ) + (f − f0000 )... 2 12 720 n where f00 = f 0 (x0 ), fn0 = f 0 (x0 + nh), etc Z

Simpson’s Rule

where

E=−

x0 +2h

f (x)dx '

x0

h5 (4) f (a) 90

h (f0 + 4f1 + f2 ) + E 3

x0 < a < x0 + 2h.

Composite Simpson’s Rule (n even) Z

x0 +nh

x0

where

f (x)dx '

h (f0 + 4f1 + 2f2 + 4f3 + 2f4 + ... + 2fn−2 + 4fn−1 + fn ) + E 3

E=−

2

nh5 (4) f (a). 180

x0 < a < x0 + nh

Gauss order 1. (Midpoint) Z

1

f (x)dx = 2f (0) + E

−1

where

E=

2 00 f (a). 3

−1
Gauss order 2. Z

    1 1 f (x)dx = f − √ +f √ +E 3 3 −1 1

where

E=

1 0v f (a). 135

−1
Differential Equations To solve y 0 = f (x, y) given initial condition y0 at x0 , xn = x0 + nh. Euler’s forward method yn+1 = yn + hf (xn , yn )

n = 0, 1, 2, ...

Euler’s backward method yn+1 = yn + hf (xn+1 , yn+1 )

n = 0, 1, 2, ...

Heun’s method (Runge Kutta order 2) yn+1 = yn +

h (f (xn , yn ) + f (xn + h, yn + hf (xn , yn ))). 2

Runge Kutta order 4. yn+1 = yn +

h (K1 + 2K2 + 2K3 + K4 ) 6

where K1

=

K2

=

K3

=

K4

=

f (xn , yn )   hK1 h f xn + , yn + 2 2   hK2 h f xn + , yn + 2 2 f (xn + h, yn + hK3 )

3

Chebyshev Polynomials   Tn (x) = cos n(cos−1 x) To (x) = 1

T1 (x) = x

  sin n(cos−1 x) Tn0 (x) √ Un−1 (x) = = n 1 − x2 Tm (Tn (x)) = Tmn (x). Tn+1 (x) = 2xTn (x) − Tn−1 (x) Z

Un+1 (x) = Tn (x)dx

2xUn (x) − Un−1 (x)   1 Tn+1 (x) Tn−1 (x) = − + constant, 2 n+1 n−1

f (x) =

where

n≥2

1 a0 T0 (x) + a1 T1 (x)...aj Tj (x) + ... 2

aj =

2 π

Z

π

f (cos θ) cos jθdθ 0

R and f (x)dx = constant +A1 T1 (x) + A2 T2 (x) + ...Aj Tj (x) + ... where Aj = (aj−1 − aj+1 )/2j j≥1

4

j≥0

Related Documents

Numerical
December 2019 24
Numerical
October 2019 21
Numerical
May 2020 7
Numerical
November 2019 26
Numerical Exam
June 2020 2