Numerical On Dft.pdf

  • Uploaded by: jiraya t
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Numerical On Dft.pdf as PDF for free.

More details

  • Words: 1,935
  • Pages: 24
NUMERICAL ON DFT Dr Malaya Kumar Hota (Prof., SENSE, VIT University)

Circular Convolution Example Determine the circular convolution of the following two sequences:





x1 (n)  1, 2,3,1 

and





x2 (n)  4,3, 2, 2 

Solution: Using Matrix method

1 2  3  1

1 1 2 3

3 1 1 2

2   4  4  3  6  4  17  3   3  8  3  2  6  19    1   2 12  6  2  2  22       1   2  4  9  4  2  19 

DR. MALAYA KUMAR HOTA (PROF., SENSE)

2

Circular Convolution By means of DFT and IDFT By means of DFT and IDFT, determine the sequence x3(n) corresponding to the circular convolution of the following two sequences





x1 (n)  2,1, 2,1 

and





x2 (n)  1, 2,3, 4 

Solution: Using DFT & IDFT method

 2 1  x41     2   1 

1   2 x42     3   4

W40  0 W4 W4   0 W4 W 0  4

W40 W40 W40  1 1 1 1  W41 W42 W43  1  j  1 j    2 4 6 1  1 W4 W4 W4  1  1   3 6 9 1 j  1  j  W4 W4 W4  

DR. MALAYA KUMAR HOTA (PROF., SENSE)

3

Circular Convolution By means of DFT and IDFT  10   2  j 2   X 42  W4 x42    2     2  j 2 

6 0 X 41  W4 x41     2   0





X1 (k )  6,0, 2,0 





X 2 (k )  10,  2  j 2,  2,  2  j 2

and



X 3 (k )  X 1 (k ). X 2 (k )





 60, 0,  4, 0 

DR. MALAYA KUMAR HOTA (PROF., SENSE)

4

Circular Convolution By means of DFT and IDFT  60  0 X 43     4    0

14  16  1  1  x43  W 4 X 43  W 4 X 43    14  N 4   16 





x3 (n)  14,16,14,16 

DR. MALAYA KUMAR HOTA (PROF., SENSE)

5

Linear Convolution Output through Circular Convolution By padding the sequences x(n) and h(n) with a sufficient number of zeros forces the circular convolution to yield the same output as linear convolution.

y(n)  x(n)  h(n) If the input or excitation x(n) is of length L and the inpulse response h(n) is of length M, then the oupput y(n) will be of length N=(L+M-1). Pad x(n) with (M-1) zeros and h(n) with (L-1) zeros.

Perform the circular convolution to yield the same output as linear convolution. DR. MALAYA KUMAR HOTA (PROF., SENSE)

6

Use of DFT in Linear Filtering Circular convolution is of no use if our objective is to determine the output of a linear filter to a given input sequences. In this case we use linear convolution.

Input x(n)

FIR Filter

Output y(n)

y(n)  x(n)  h(n) Impulse response h(n)

DR. MALAYA KUMAR HOTA (PROF., SENSE)

7

Use of DFT in Linear Filtering Example: By means of DFT and IDFT, determine the response of the FIR

 

filter with impulse response h(n)  1,2,3 

Solution: Response of the FIR filter,

 

to the input sequence x(n)  1,2,2,1 

.

y(n)  x(n)  h(n)

Length of y(n), N = 3+4-1 = 6. If





x(n)  1, 2, 2,1,0,0 

and

then response of the FIR filter,





h(n)  1, 2,3, 0, 0, 0 

y(n)  x(n)  h(n)

DR. MALAYA KUMAR HOTA (PROF., SENSE)

8

Use of DFT in Linear Filtering Steps: (i) Compute DFT of x(n) to obtain X(k). (ii) Compute DFT of h(n) to obtain H(k). (iii) Y(k)= X(k). H(k)

(iv) Compute IDFT of Y(k) to obtain y(n). NOTE: The efficient computation of the DFT via the fast Fourier transform (FFT) algorithm is usually performed for a length N that is a power of 2. For simplicity we compute eight point DFT i.e., N=8. This computation yields the result,





y(n)  1, 4,9,11,8,3, 0, 0 

The last two values are zero because we used an eight point DFT & IDFT, when, in fact, the minimum number of points required is six. DR. MALAYA KUMAR HOTA (PROF., SENSE)

9

Example Find the DFT of

x ( n)  a n 0  n  N  1 N 1

X (k )   x(n)e  j 2 kn / N

0  k  N 1

n 0

N 1

N 1

n 0

n 0

  a n e j 2 kn / N    ae  j 2 k / N  1  a N e j 2 kN / N 1 aN    j 2 k / N 1  ae 1  ae  j 2 k / N

n

e j 2 k  cos (2 k )  j sin(2 k )  1

DR. MALAYA KUMAR HOTA (PROF., SENSE)

10

Find the N-point DFT x ( n)   ( n) N 1

X (k )   x(n)e  j 2kn / N

k  0,1,2,......., ( N  1)

n 0

N 1

   (n)e  j 2kn / N  1.e  j 2k ( 0) / N n 0

1 DFT  (n)  1 N

DR. MALAYA KUMAR HOTA (PROF., SENSE)

11

Find the N-point DFT x(n)   (n  n0 ) N 1

X (k )   x(n)e  j 2kn / N

,

0  n0  N  1

k  0,1,2,......., ( N  1)

n 0

N 1

   (n  n0 )e  j 2kn / N  1.e  j 2k ( n0 ) / N n 0

 e  j 2k ( n0 ) / N  WNkn0

DR. MALAYA KUMAR HOTA (PROF., SENSE)

12

Find the IDFT X (k )   (k ) 1 x ( n)  N

N 1

j 2kn / N X ( k ) e 

n  0,1,2,......., ( N  1)

k 0

1 N 1 1 j 2kn / N    (k )e  .1.e j 2 ( 0) n / N N k 0 N 1  N

DR. MALAYA KUMAR HOTA (PROF., SENSE)

13

Note Point 1 DFT    (k ) N N DFT 1  N (k ) N

N 1

N 1

n 0

n 0

 j 2kn / N  j 2kn / N 1 . e  e  N ( k )   DFT e j 2k0 n / N   N (k  k0 ) N

N 1

N 1

n 0

n 0

j 2k 0 n / N  j 2kn / N  j 2 ( k  k 0 ) n / N e . e  e  N ( k  k 0 )  

DR. MALAYA KUMAR HOTA (PROF., SENSE)

14

Example Find the DFT of

x(n)  e j (2 / N ) K0n N 1

X (k )   x(n)e  j 2 kn / N

0  n  N 1 0  k  N 1

n 0

N 1  j 2 k n 0  j 2 kn / N N

 e

e

n 0

N 1

  e  j 2 ( k  k0 ) n / N  N . (k  k0 ) n 0

DR. MALAYA KUMAR HOTA (PROF., SENSE)

15

Example Find the DFT of  2  x(n)  cos  K0n   N 

0  n  N 1

 2  x(n)  cos  K0n  0  n  N 1 N   1  j 2N K0 n  j 2N K0 n   e e  2 

Using linearity and time shifting property,

1 X (k )   N .  (k  k0 )  N  N .  (k  k0 )  N  2 DR. MALAYA KUMAR HOTA (PROF., SENSE)

16

Example Find the DFT of  2  x(n)  sin  K0 n   N 

0  n  N 1

 2  x(n)  sin  K0n  0  n  N 1  N  1  j 2N K0n  j 2N K0n   e e  2j  

Using linearity and time shifting property,

X (k ) 

1  N .  (k  k0 )  N  N .  (k  k0 )  N  2j DR. MALAYA KUMAR HOTA (PROF., SENSE)

17

Example If X(k) is the DFT of the sequence x(n), determine N point DFTs of xc(n) and xs(n) in terms of X(k).

2k0 n xc (n)  x(n) cos N

,

0  n  N 1

2k0 n xs (n)  x(n) sin N

,

0  n  N 1

18

Solution 2k0 n xc (n)  x(n) cos N 2k 0 n j  j 2Nk0 n  1 N  x ( n ) e e  2  

1 X c (k )  X ((k  k0 )) N  X ((k  k0 )) N  2

19

Solution 2k0 n xs (n)  x(n) sin N 2k 0 n j  j 2Nk0 n  1 N  x ( n ) e e  2j  

1 X ((k  k0 )) N  X ((k  k0 )) N  X c (k )  2j

20

Example For the sequence x1(n) and x2(n), determine N point circular convolution and circular correlation.

2n x1 (n)  cos N

2n x2 (n)  sin N

21

Solution 2n 2n j  j   2n 1 N N x1 (n)  cos  e e  N 2 

N X 1 (k )   ((k  1)) N   ((k  1)) N  2 2n 2n j  2n 1  jN N x2 (n)  sin  e e  N 2j  

N  ((k  1)) N   ((k  1)) N  X 2 (k )  2j 22

Solution X 3 (k )  X 1 (k ). X 2 (k ) N2  ((k  1)) N   ((k  1)) N   4j

Convolution

N 2n x3 (n)  sin 2 N

23

Solution Rx1x2 (k )  X 1 (k ). X 2 (k ) *

N2  ((k  1)) N   ((k  1)) N   4j

Correlation

N 2n rx1x2 (n)  sin 2 N

24

Related Documents

Numerical On Dft.pdf
June 2020 2
Numerical
December 2019 24
Numerical
October 2019 21
Numerical
May 2020 7
Numerical
November 2019 26
Numerical Exam
June 2020 2

More Documents from "Bank"