Numerical Analysis

  • Uploaded by: Shahrul Nizam
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Numerical Analysis as PDF for free.

More details

  • Words: 897
  • Pages: 4
NUMERICAL ANALYSIS 1. Differentiation f ( x ) = g ′( x ) =

g (x ) − g (x − h ) h

2. Integration f ( x ) = ∫ g ( x )dx , initial f ( x )

f (x + h ) = f (x ) +

h [g (x ) + g (x + h )] 2

3. Solving non-linear equation , f ( x ) = 0 3.1. Bisection Method if f (a ) f (b ) < 0 , x ∈ [a, b] a+b c= 2 if f (a ) f (c ) < 0 , x ∈ [a, c ] or if f (c ) f (b ) < 0 , x ∈ [c, b]

3.2. Newton’s Method , 1 initial ( x n )

x n +1 = x n −

f (xn ) f ′( x n )

3.3. Secant Method , 2 initial (x n −1 , x n )

x n +1 = x n −

f ( x n )( x n − x n −1 ) f ( x n ) − f ( x n −1 )

4. Definite integration b

A = ∫ f (x )dx a

b−a h= n

4.1. Trapezoidal Method n −1 h⎡ ⎤ A = ⎢ f (a ) + 2∑ f (a + ih ) + f (b )⎥ 2⎣ i =1 ⎦ n = 1,2,3... e≤

(b − a )h 2 f ′′ − 12 b

f ′′ =

∫ f ′′(x )dx a

b−a

4.2. Simpson’s

f ′( x ) =

b a

b−a

1 Method 3

⎡ ⎤ n −1 n−2 h⎢ ⎥ A = ⎢ f (a ) + 4 ∑ f (a + ih ) + 2 ∑ f (a + ih ) + f (b )⎥ 3 i =1 i=2 ⎢ ⎥ i = odd i = even ⎣ ⎦ n = 2,4,6... e≤

(b − a )h 4 f (4 ) − 180 b

( ) ∫ f (x )dx

f (3 ) ( x )

4

f (4 ) =

a

b−a

4.3. Simpson’s

=

b a

b−a

3 Method 8

⎡ ⎤ n−2 n −3 n −1 h⎢ ⎥ A = ⎢ f (a ) + 3 ∑ f (a + ih ) + 3 ∑ f (a + ih ) + 2 ∑ f (a + ih ) + f (b )⎥ 3 i =1 i =3 i =2 ⎢ ⎥ i =1, 4 , 7.. i =3, 6 , 9... i = 2 , 5,8... ⎣ ⎦ n = 3,6,9... e≤

(b − a )h 4 f (4 ) − 80 b

( ) ∫ f (x )dx

f (3 ) ( x )

4

f (4 ) =

a

b−a

=

b−a

b a

5. Solving differential equation y ′( x ) = f ( x, y ) , initial y( x0 ) = y 0 5.1. Euler’s Method y ( xi + h ) = y ( xi ) + hf ( xi , y i ) 5.2. Runge-Kutta Method 1 y ( xi + h ) = y ( xi ) + (k1 + 2k 2 + 2k 3 + k 4 ) 6 k1 = hf ( xi , y i ) k ⎞ h ⎛ k 2 = hf ⎜ xi + , y i + 1 ⎟ 2 2⎠ ⎝ k ⎞ h ⎛ k 3 = hf ⎜ xi + , y i + 2 ⎟ 2 2⎠ ⎝ k 4 = hf ( xi + h, y i + k 3 ) 6. Interpolation polynomial 6.1. Discrete data , (xi , y i ) Minimized

∑ (P ( x ) − y ) i

2

i

For polynomial degree 2, P( x ) = a 0 + a1 x ⎡ n ⎢ ⎢⎣ ∑ x i

∑x ∑x

i 2

i

⎤ ⎡a0 ⎤ ⎡ ∑ yi ⎤ ⎥⎢ ⎥ = ⎢ ⎥ ⎥⎦ ⎣ a 1 ⎦ ⎣ ∑ x i y i ⎦

For polynomial degree 3, P ( x ) = a 0 + a1 x + a 2 x 2 ⎡ n ⎢ ⎢ ∑ xi 2 ⎢ ⎢⎣ ∑ x i

∑x ∑x ∑x

i 2

i

i

3

∑x ∑x ∑x

⎤ ⎡a ⎤ ⎡ y ⎤ ⎥⎢ 0 ⎥ ⎢ ∑ i ⎥ i ⎥ ⎢ a1 ⎥ = ⎢ ∑ x i y i ⎥ 4 ⎥ ⎢ a ⎥ ⎢⎣ ∑ x i 2 y i ⎥⎦ i ⎥⎣ 2 ⎦ ⎦ 2

i

3

6.2. Continues function, f ( x ) 1

Minimized

∫ (P(x ) − f (x ))

2

dx

−1

P( x ) = a 0 P0 ( x ) + a1 P1 ( x ) + a1 P1 ( x ) + ... , x ∈ [− 1,1]

P0 ( x ) = 1 P1 ( x ) = x

1 (3x 2 − 1) 2 1 P3 ( x ) = (5 x 3 − 3x ) 2 1 P4 ( x ) = (35 x 4 − 30 x 2 + 3) 8 1 P5 ( x ) = (63x 5 − 70 x 3 + 15 x ) 8 1 2k + 1 ak = f ( x )Pk ( x )dx 2 −∫1 P2 ( x ) =

Related Documents


More Documents from "Omed Ghareb"