Numbering

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Numbering as PDF for free.

More details

  • Words: 6,292
  • Pages: 33
Ramanathan

Digitally signed by Ramanathan DN: cn=Ramanathan, c=IN, o=Commercial Taxed Dept Staff Training Institute,, ou=Computer Lecturer,, [email protected] Location: Commercial Taxes Staff Training Institute, Computer Lecturer,Ph:9442282076 Date: 2008.03.12 07:34:09 +05'30'

ð£ì‹ 2 ⇠º¬øèœ 2.1. ÜPºè‹ îó¾èO™ ðô õ¬è à‡´. â‡èœ, à¬ó, «îF, ðì‹, åL, åO‚裆C «ð£¡ø¬õ ܬõ. à¬óJ™ ⿈¶, â‡èœ ñŸÁ‹ CøŠ¹‚ °Pf´èœ Þ¼‚°‹. ðìˆF™ õ¬óðìƒèÀ‹, ¹¬èŠðìƒ èÀ‹ Ü샰‹. Þ¬ê, æ¬ê «ð£¡ø¬õ åLJ™ Ü샰‹. êôùŠðìƒèÀ‚è£ù îó¾èœ åO‚裆CJ™ Ü샰‹. Þ‰îˆ îó¾èœ â™ô£‹ èEŠªð£P‚°Š ¹K»‹ õ¬èJ™ Þ¼‚è «õ‡´‹. ÞõŸ¬ø èEŠªð£P Üô꾋, ªêò™ð£´èO™ ðò¡ð´ˆî¾‹ º®ò«õ‡´‹. îó¾è¬÷ 効¬ñ õ¬è, Þô‚è õ¬è âùŠ HK‚èô£‹. 効¬ñ õ¬èJ™ ñFŠ¹èœ ªî£ì˜„Cò£è, Þ¬ìªõO ⶾ‹ ޙô£ñ™ Þ¼‚°‹. åL, ªõŠð‹ ÞõŸP¡ Ü÷¾ މî õ¬èJ™ Þ¼‚°‹. Þô‚è õ¬èJ™ îó¾èO¡ ñFŠ¹ îQˆîQò£è Þ¼‚°‹. ÞõŸ¬ø Þ¼G¬ô â‡èO¡ õK¬êè÷£è‚ °PŠHìô£‹.  ê£î£óíñ£èŠ ðò¡ð´ˆ¶‹ èEŠªð£Pèœ Þˆî¬èò îó¾è¬÷«ò ¬èò£ÀAø¶. H† (Bit) ñŸÁ‹ ¬ð† (Byte) â¡Â‹ ªê£Ÿèœ Þô‚è õ¬è J™ º‚Aòñ£ù¬õ. ²N (0) ܙô¶ (1) â¡ð¶ å¼ H† âùŠ ð´‹. ↴ H†´èœ «ê˜‰î ªî£°F å¼ ¬ð†. èEŠªð£P å«ó êñòˆF™ âˆî¬ù H†´ˆ îó¾è¬÷ ¬èò£ÀAø¶, âšõ÷¾ ¬ð† îó¾è¬÷ G¬ùM™ ¬õ‚è º®»‹, õ¡ õ†®¡ ªè£œ÷÷¾ ∠î¬ù ¬ð†´èœ â¡ð¬õ â™ô£«ñ H†´èœ ñŸÁ‹ ¬ð†´è¬÷‚ ªè£‡´î£¡ Ü÷‚èŠð´A¡øù. ⴈ¶‚裆ì£è, å¼ èEŠ ªð£P 32-H† ªð¡®ò‹ ªêòL, 128 ªñ裬ð† G¬ùõè‹ (RAM) ñŸÁ‹ 40 A裬ð† õ¡õ†´ ªè£‡ì¶ âù‚ Ãøô£‹. ¬ñò„ ªêòôèˆF™ àœ÷ èEî ãóí„ ªêòôè‹ (Arithmetic Logic Unit -ALU) ⇠ªêò™ð£´è¬÷»‹, ãóí„ ªêò™ð£´ 軋 ªêŒAø¶. èEŠªð£P â‡è¬÷ Þ¼ õ¬èèO™ ¬èò£À Aø¶. º¿ â‡èœ (Integer) ñŸÁ‹ H¡ùƒèœ (Fraction). ÞF™ H¡ùƒèœ I‹ ¹œO º¬øJ™ ( Floating Point Representation) 25

¬õ‚èŠð´A¡øù. º¿ â‡è¬÷‚ ¬èò£œõ¶ âO¶. H¡ùƒ è¬÷‚ ¬èò£œõ¶ êŸÁ è®ù‹. Üîù£™ މî Þ¼ õ¬èèÀ‚ °‹ îQˆîQ ²ŸÁèœ «î¬õ. މî â‡èœ âŠð® ¬èò£÷Šð´A¡øù â¡ð¬î ÜP‰¶ ªè£œ÷ H†, ¬ð†´è¬÷Š ðŸP»‹, ⇠º¬øèœ ðŸP»‹ ÜP‰¶ ªè£œõ¶ ÜõCò‹.

2.2. H†´‹ ¬ð†´‹ å¼ â‡¬í âŠð®‚ °PŠH´A«ø£‹, Üî¡ ñFŠ¬ð ⊠𮂠èí‚A´A«ø£‹ â¡ð¬î‚ ÃÁ‹ ܬñŠ¹ ⇠º¬ø âùŠ ð´‹. ÞF™ ðô º¬øèœ àœ÷ù.  ê£î£óíñ£èŠ ðò¡ð´ˆ¶ õ¶ ðF¡ñG¬ô. (îêñ decimal) º¬ø âùŠð´‹. ãªù¡ø£™ Þ¶ ðˆ¶ â¡ð¬î Ü®Šð¬ìò£è‚ ªè£‡ì º¬ø. Þ¼G¬ô º¬øJ™ (binary) â‡èœ ¬õ‚èŠð†ì£™, èEŠ ªð£P ܬî M¬óõ£è‚ ¬èò£À‹. Üîù£™ Þ¼G¬ô º¬ø¬ò »‹, Ü¬î„ ê£˜‰î â‡E¬ô (octal), ðFù£ÁG¬ô (hexa decimal) º¬øè¬÷»‹ ÜP‰¶ ªè£œõ¶ ÜõCò‹. H†(Bit) â¡ð¶ ‘’BInary digiT” â¡ðî¡ °Á‚è‹. Þ¶ 0, 1 âù Þ¼ ñFŠ¹è¬÷ ñ†´«ñ ªðÁ‹. Þ¼G¬ô ⇠â¡ð¶ މî H†´èO¡ õK¬ê ܙô¶ êó‹. å¼ ¬ð† â¡ð¶ ↴ H†´èœ ªè£‡ì å¼ õK¬ê. 8 H†´è¬÷‚ ªè£‡´ 256 õK¬êè¬÷ à¼õ£‚èô£‹. ܬõ 0 ºî™ 255 õ¬ó àœ÷ â‡è¬÷, W«ö 裆ìŠð´õ¶ «ð£™ °PŠ ðî£è‚ ªè£œ÷ô£‹. 0 = 0000 0000 1 = 0000 0001 2 = 0000 0010 3 = 0000 0011 …………. …………. …………. 254 = 1111 1110 255 = 1111 1111

26

à¬óJ™ àœ÷ ݃Aô ⿈¶‚èœ, ðF¡ñ Þô‚èƒèœ ñŸ Á‹ CøŠ¹‚ °Pf´è¬÷»‹, å¼ ¬ð†¬ì‚ ªè£‡´ °PŠHì ô£‹. ÞîŸè£ù å¼ º¬ø ÝvA °Pf´ (American Standard Code for Information Interchange - ASCII). Þ¶ èEŠªð£PèO™ Þ¡Á ªð¼ñ÷¾ ðò¡ð´Aø¶. ÞF™ 0 ºî™ 127 õ¬óJ™ àœ÷ ñFŠ¹èœ ðò¡ ð´A¡øù. ݃Aô ⿈¶‚èO™ W›G¬ô ⿈¶‚èœ 26ä ÝvA °Pf´èœ 65 ºî™ 90 õ¬ó»‹, 0 ºî™ 9 õ¬ó àœ÷ Þô‚èƒèœ 48 ºî™ 57 õ¬ó»‹, °PŠH´A¡øù. Þ¬ìªõO‚ è£ù °Pf´ (Space) 32. G¬ùõèƒèO¡ ªè£œ÷÷¾ A«ô£ ¬ð†´èœ, ªñè£¬ð† ´èœ â¡ð¶ «ð£™ ÃøŠð´‹. ªñ†K‚ Ü÷¾ º¬øJ™ A«ô£ â¡ð¶ ÝJóˆ¬î‚ (1,000) °P‚°‹. Ýù£™, èEŠªð£Pˆ ¶¬øJ™ Þ¶ 1,024ä‚ (2 10 ) °P‚°‹.W›õ¼‹ ð†®ò™ ðô ªê£ŸèO¡ ñFŠ¬ð‚ 裆´Aø¶. ªðò˜

A«ô£ (Kilo) ªñè£ (Mega) Aè£ (Giga) ªìó£ (Tera) dì£ (Peta) â‚ú£ (Exa) n†ì£ (Zetta) «ò£†ì£ (Yotta)

°Á‚è‹

Ü÷¾ (¬ð†´èœ)

K

2^10*

M

2^20

G

2^30

T

2^40

P

2^50

E

2^60

Z

2^70

Y

2^80

*Þ󇮡 ðˆî£‹ ñ®Š¹ âùŠ ð®‚辋 å¼ 2GB (Aè£ ¬ð†´èœ) Ü÷¾ àœ÷ õ¡õ†®™ ªñ£ˆ î‹ 2,147,483,648 ¬ð†´è¬÷ «êI‚èô£‹. 𣶠ðô ªìó£ ¬ð†´èœ Ü÷¾ ªè£‡ì îèõ™ î÷ƒèœ àœ÷ù. n†ì£, «ò£†ì£ Ü÷¾èO™ ªðKò îèõ™ î÷ƒèœ ޡ‹ õóM™¬ô.

2.3 ðF¡ñG¬ô ⇠º¬ø  ê£î£óíñ£èŠ ðò¡ð´ˆ¶‹ â‡èœ, ðˆF¡ Ü®Šð¬ìJ™ (radix) ܬñ‰î¬õ. Þ¶ 0 ºî™ 9 õ¬óJ™ àœ÷ ðˆ¶ Þô‚èƒè¬÷‚ ªè£‡ì¶. ðˆ¶ Ü™ô¶ Ü «ñ½‹ àœ÷ ñFŠð£ù¶ å¡Á‚° «ñŸð†ì Þô‚èƒè÷£™ °PŠHìŠð´ 27

Aø¶. ÞF™ å¼ Þô‚èˆF¡ ñFŠ¹, ܶ Þ¼‚°‹ Þìˆ¬îŠ ªð£¼ˆ¶ ñ£Áð´Aø¶. Þîù£™ Þ¶ ‘Þì‹ ê£˜‰î °Pf´’ (positional notation) âùŠð´‹. Þ‰î‚ °Pf´ މFò£M™î£¡ à¼õ£ ù¶. å¼ Þô‚è‹ õô¶ ð‚èˆFL¼‰¶ Í¡ø£õ¶ ÞìˆF™ Þ¼‰î£™, ܉î Þô‚般î ðˆF¡ Í¡ø£õ¶ ñ®Šð£™ ( power of 3) ªð¼‚è «õ‡´‹. 948 â¡ø ðF¡ñG¬ô â‡E¡ ñFŠ¬ð ޚõ£Á èí‚ Aì «õ‡´‹. ރ° Ü®Šð¬ì ⇠W›‚°Pfì£è‚ 裆ìŠð´ Aø¶. 94810 = 9 X 102 + 4 X 101 + 8 X 100

H¡ùƒè¬÷»‹ Þ¶«ð£ô«õ °PŠHìô£‹. ÞF™ ðF¡ñŠ ¹œO‚° (decimal point) õô¶¹ø‹ õ¼‹ Þô‚èƒèÀ‚° ñ®ŠH¡ ñFŠ¹ âF˜ñ¬øJ™ Þ¼‚°‹. ⴈ¶‚裆ì£è, 948.23 â¡ðî¡ ñFŠ¬ð ޚõ£Á èí‚Aì «õ‡´‹. 948.2310 = 9 X 102 + 4 X 101 + 8 X 100 + 2 X 10-1 + 3 X 10-2

ªð£¶õ£è, X = { .…x2x1x0 . x-1x-2x-3…. },

â¡Â‹ ðF¡ñ â‡E¡ ñFŠH¬ù X = Σ i xi10i

where i = ….2, 1, 0, -1, -2, ….

â¡Á èí‚Aì «õ‡´‹.

2.4 Þ¼G¬ô ⇺¬ø Þ¼G¬ô º¬øJ™ 0, 1 âù Þó‡´ Þô‚èƒèœ ñ†´«ñ àœ÷ù. ÞF™ Þó‡´ â¡ø ⇬í‚Ãì å¡Á‚° «ñŸð†ì Þô‚èƒè÷£™î£¡ °PŠHì «õ‡´‹. Þ‰î º¬ø‚° Þó‡´ î£¡ Ü®Šð¬ì (radix). Þ‰î º¬øJ™ å¼ â‡E¡ ñFŠ¹ Þì‹ ê£˜‰î °Pf†´ º¬øŠð®î£¡ èí‚AìŠð´Aø¶. ðF¡ñG¬ô º¬øJ™ ðˆ¶ â¡ð¬îŠ ðò¡ð´ˆFò¶ «ð£™, Þ‰î º¬øJ™ 2 ðòù£Aø¶. ⴈ¶‚裆ì£è 10111 2 â¡ø Þ¼G¬ô º¬ø ⇠2310 â¡Â‹ ðF¡ñ º¬ø ⇵‚°„ êñ‹. 101112 = 1 X 24 + 0 X 23 + 1 X 22 + 1 X 21 + 1 X 20 = 16 + 0 + 4 + 2 + 1 = 2310

28

Þ¼G¬ô º¬øJ™ â¿îŠð´‹ H¡ùƒè¬÷»‹, ðF¡ñ G¬ô º¬øJ™ °PŠH†ì¶ «ð£ô«õ ñFŠHìô£‹. ⴈ¶‚裆ì£è, 0.10112 = 1 X 2-1 + 0 X 2-2 + 1 X 2-3 + 1 X 2-4 = 0.5 + 0 + 0.125 + 0.0625 = 0.687510

2.5 ðFù£ÁG¬ô ⇠º¬ø ⇠º¬øèO™ Ü®Šð¬ì ⇠ÜFèñ£è Þ¼‰î£™, å¼ â‡¬í‚ °PŠHìˆ «î¬õò£ù Þô‚èƒèœ °¬øAø¶. ⴈ ¶‚裆ì£è 23 â¡ø ⇬í, ðF¡ñG¬ô º¬øJ™ Þó‡´ Þô‚èƒè÷£½‹, Þ¼G¬ô ⇠º¬øJ™ ã¿ Þô‚èƒè÷£½‹ °PŠH´A«ø£‹. ðFù£P¡ Ü®Šð¬ìJ™ â‡è¬÷ ⿶‹ «ð£¶ Þô‚è â‡E‚¬è Þ¡ùº‹ °¬ø»‹. ã¡ ðFù£Á? 24 = 16. Üîù£™î£¡. މî àø¾ âŠð® ⇠º¬ø¬ò èEŠªð£P‚° âO°Aø¶ âùŠ 𣘊«ð£‹. ðFù£ÁG¬ô ⇵‚° 16 Þô‚èƒèœ «î¬õ. ïñ‚°ˆ ªîK‰î¶ 0 ºî™ 9 õ¬ó ðˆ¶ Þô‚èƒè«÷. eF ÝÁ Þô‚èƒ èÀ‚° â¡ù ªêŒõ¶? A, B, C, D, E, F â¡ø °Pf´è¬÷ 10, 11, 12, 13, 14, 15 â¡Á ñFŠ¹è¬÷‚ °PŠH´õî£è‚ ªè£œ÷ «õ‡´‹. Þ‰î º¬øJ™ D â¡ð¶ 13 â¡ø ðF¡ñG¬ô â‡¬í‚ °P‚ °‹. 1016 â¡ð¶ ðFù£¬ø‚ °P‚°‹. 2C â¡ð¶ 4410ä‚ °P‚°‹. 2C16 = 2 X 161 + C X 160 = 32 + 12 = 4410

° H†´è÷£™ ðFù£Á êóƒè¬÷ à¼õ£‚è º®»‹. Þ¬õ 嚪õ£¡¬ø»‹ Þ¼G¬ô â‡è÷£èŠ 𣘈, 0 ºî™ F õ¬ó ðFù£Á â‡èœ A¬ì‚A¡øù. Üîù£™ 嚪õ£¼  H† ⇵‹ å¼ ðFù£ÁG¬ô ⇵‚°„ êñ‹. 0000 = 0 0001 = 1 0010 = 2 0011 = 3 0100 = 4 0101 = 5 0110 = 6 0111 = 7

1000 = 8 1001 = 9 1010 = A 1011 = B 1100 = C 1101 = D 1110 = E 1111 = F

29

Þ‰îˆ ªî£ì˜¹ Iè º‚Aòñ£ù¶. Þ¬î‚ ªè£‡´, å¼ Þ¼G¬ô º¬ø ⇬í, Iè âOî£è ðFù£ÁG¬ô â‡í£è ñ£Ÿøô£‹. Þ„ ªêŒò «õ‡®ò¶ ޚõ÷«õ. õô¶ ð‚èˆFL ¼‰¶ ¶õƒA ° ° H†´è÷£è„ «ê˜ˆ¶ ¬õ‚辋. Þì¶ ð‚è‹ °‚°‹ °¬øõ£ù Þô‚èƒèœ Þ¼‰î£™ «î¬õò£ù ²Nè¬÷ Þì¶ ð‚è‹ «ê˜ˆ¶‚ªè£œ÷ô£‹. ÞQ 嚪õ£¼ ° H†´ˆ ªî£°F¬ò»‹ å¼ ðFù£ÁG¬ô â‡í£è ñ£ŸP â¿î «õ‡´‹. ܚõ÷¾î£¡. ⴈ¶‚裆ì£è, 1100 1001 1101 = C9D16 C 9 D

ðFù£ÁG¬ô â‡E™ Þô‚èƒèœ °¬øõ£è Þ¼Šð¶‹, å¼ ¬ð†¬ì, êKò£è Þó‡´ Þô‚èƒè÷£è‚ °PŠð¶‹, ދº ¬øJ¡ CøŠ¹ˆ ñèœ. âOî£è Þ¼G¬ô º¬ø‚°„ ªê¡Á F¼‹¹õ¶ èEŠ¹è¬÷ M¬óõ£‚°‹.

2.6

ðF¡ñG¬ô - Þ¼G¬ô ñ£Ÿø‹

Þ¼G¬ô ⇬í ðF¡ñG¬ô‚° ñ£ŸÁõ¶ âO¶. ãŸè ù«õ 𣘈îð® 嚪õ£¼ Þô‚般 «î¬õò£ù Þ󇮡 Ü´‚裙 ªð¼‚A„ «ê˜‚è «õ‡´‹. ðF¡ñG¬ô ⇬í Þ¼G¬ô â‡í£è ñ£Ÿø Þó‡´ õNèœ àœ÷ù. 2.6.1 ªî£ì˜‰¶ Þó‡ì£™ õ°ˆî™ å¼ ðF¡ñG¬ô ⇬í Þó‡ì£™ õ°ˆî£™, eF 0 ܙ ô¶ 1 âù õ¼‹. õ°ˆ¶ õ¼‹ ß¾è¬÷ F¼‹ðˆF¼‹ð õ°ˆî£™, eFèœ õK¬êò£è õ¼‹. ÞõŸ¬ø õôI¼‰¶ Þìñ£è Ü´‚A ù£™ «î¬õò£ù Þ¼G¬ô ⇠A¬ì‚°‹. M â¡ø ⇬í Þó‡ 죙 õ°ˆî£™ r1 â¡ð¶ eFò£è¾‹, M â¡ð¶ ßõ£è¾‹ õ¼A¡ øù â¡«ð£‹. ÞF™ r1 â¡ð¶ 0 ܙô¶ 1 Ýè Þ¼‚°‹. Üî£õ¶, M = 2 * M1 + r1 r1 = 0 ܙô¶ 1 Ü´ˆ¶ M1 ä Þó‡ì£™ õ°ˆî£™, eF r2 âù¾‹, M¬ì M2 âù¾‹ Þ¼‚膴‹. Üî£õ¶ M1 = 2 * M 2 + r 2 r2 = 0 ܙô¶1 Üîù£™ M = 2 (2 * M2 + r2) + r1 = 22M2 + r2 * 21 + r1* 20

30

Ü´ˆ¶ M2 ¬õ Þó‡ì£™ õ°‚辋. M¬ì M3 , eF r3 ⡫𣋠Üî£õ¶ M2 = 2 * M3 + r3 Üîù£™ M = 2 (2 * (2 * M3 + r3) + r2) + r1

= 22(2 * M3 + r3) + r2 * 21 + r1* 20 = 23 M3 + r3 * 22 + r2 * 21 + r1* 20

Þ‰î„ ªêò™ð£´ F¼‹ðˆ F¼‹ð„ ªêò™ð´ˆî «õ‡´‹. M¬ì 0 âù õ¼‹ õ¬ó. M = 1 * 2k + rk * 2k-1 + …. + r3 * 22 + r2 * 21 + r1* 20

ⴈ¶‚裆´ 23 10 â¡ð¬î Þ¼G¬ô º¬ø‚° ñ£ŸÁè. ß¾ eF 23/2 11 1 (LSB)  11/2 5/2 2/2 1/2

5 2 1 0

1 1 0 1 (MSB)

â™âvH ( LSB - Least Significant Bit) â¡ð¶ CÁ ñFŠ¹ H† â¡ð¬î»‹, â‹âvH (MSB - Most Significant Bit) â¡ð¶ ªð¼ ñFŠ¹ H† â¡ð¬î»‹ °P‚°‹. ªè£´ˆî ⇬í Þ¼G¬ôº¬ø â‡í£è ñ£Ÿø, މî eFè¬÷ WN¼‰¶ «ñô£è ⴈ¶, ÞìI¼‰¶ õôñ£è â¿î¾‹. 2310 = 101112

މî Þ¼G¬ô â‡E™ âˆî¬ù Þô‚èƒèœ Þ¼‚°‹? ªè£´ˆî ⇬íMì‚ Ã´îô£è Þ¼‚°‹ð®, Þ󇮡 CPò ñ®Š¬ð‚ 致H®‚è «õ‡´‹. ܈î¬ù Þô‚èƒèœ Þ¼‚°‹. ⴈ¶‚裆ì£è, 23 â¡ø â‡E™ 5 Þô‚èƒèœ Þ¼‚°‹. 16 < 23 < 32 24 < 23 < 25

Þ‰î º¬øJ™, å¼ â‡¬í Þ¼G¬ô º¬øJ™ â¿î£ñ «ô«ò, ÜF™ âˆî¬ù Þô‚èƒèœ Þ¼‚A¡øù â¡ð¬î‚ è‡ ìPòô£‹. ⴈ¶‚裆ì£è 36ä ⴈ¶‚ªè£œ«õ£‹. ރ°, 32 < 36 < 64 25 < 36 < 26

31

Ýè«õ, 36Þ¡ Þ¼G¬ô â‡E™ 6 H†´èœ Þ¼‚°‹. 2.6.2 Þ󇮡 ñ®Š¹èO¡ Ã†ì™ å¼ ðF¡ñG¬ô â‡, ≪î‰î Þ󇮡 ñ®Š¹èO¡ Æ´ˆªî£¬è â¡ð¬î‚ 致H®Šðî¡ Íô‹, «î¬õò£ù Þô‚ èƒè¬÷Š ªðøô£‹. ⴈ¶‚裆ì£è, 36ä ⴈ¶‚ªè£œ«õ£‹. Ü. މî ⇬íMì„ CPòî£è ܙô¶ êññ£è Þ¼‚ °‹ð®, Þ󇮡 ñ®Š¬ð‚ 致H®‚辋. 3610 > 3210

Ý. Üîù£™ 32‚è£ù ÞìˆF™ 1 âù ¬õ‚辋. ܈¶ ì¡, ªè£´ˆî â‡EL¼‰¶, މî Þ󇮡 ñ®Š¬ð‚ èN‚辋. 36 - 32 = 4 Þ. 32‚° Ü´ˆî Þ󇮡 ñ®Šð£ù 16, eF¬ò (4) Mì ÜFè‹. Üîù£™ 16ä 4™ Þ¼‰¶ èN‚è º®ò£¶. Üîù£™, 16‚è£ù ÞìˆF™ 0 âù ¬õ‚辋. à. 16‚° Ü´ˆî Þ󇮡 ñ®Šð£ù 8, eF¬ò (4) Mì ÜFè‹. Üîù£™ 8ä 4ޙ Þ¼‰¶ èN‚è º®ò£¶. Üîù£™, 8‚è£ù ÞìˆF™ 0 âù ¬õ‚辋. á. Ü´ˆî Þ󇮡 ñ®ŠH¡ ñFŠ¹ 4. Þ¬î eFJ™ (4) Þ¼‰¶ èN‚è º®»‹. eF 0. Üîù£™ 4Þ¡ ÞìˆF™ 1 âù ¬õ‚辋. â. eF 0 â¡ð, ñŸø â™ô£ Þ󇮡 ñFŠ¹è÷£ù 2 ( = 2 ), 1 ( = 2 0 ) â¡ø Þ¼ ÞìƒèO½‹ 0 âù ¬õ‚辋. âù«õ, 1

36 = 1001002

ñŸÁ‹ ñ®Š¹è¬÷ ޚõ£Á â¿îô£‹. 32 16 1 32 16 1 0 32 16 1 0

8 4 2 1 8 0 8 0

32

4 2 1 1 4 2 1 1 0 0

36 – 32 = 4 4–4= 0 3610 = 1001002

ⴈ¶‚裆´: 91 10 ä Þ󇮡 ñ®Š¹è¬÷Š ðò¡ð´ˆF Þ¼G¬ô ⇠í£è ñ£ŸÁè. 91䂰 êññ£ù ܙô¶ CPòî£ù Þ󇮡 ªðKò ñ®Š¹ 64, 64 32 16 8 4 2 1 1 91-64 = 27 64 32 16 8 4 2 1 1 0 1 91-(64+16) = 11

32 > 27 â¡ð, 32‚è£ù H†¬ì 0 âù ¬õ‚辋. < 27 â¡ð, 16‚è£ù H†¬ì 1 âù ¬õ‚辋. âù«õ,

16

64 32 16 8 4 2 1 1

0

1 1

91-(64+16+8) = 3

64 32 16 8 4 2 1 1

0

1 1 0 1

91-(64+16+8+2) = 1

64 32 16 8 4 2 1 1

Ýè«õ

0

1 1 0 1 1 91-(64+16+8+2+1) = 0 9110 = 10110112

2.7 ðF¡ñ G¬ô H¡ù‹ Þ¼G¬ô‚° ñ£Ÿø‹ 1/2, 1/4, 1/8 «ð£¡ø H¡ùƒè¬÷ Þ¼G¬ô â‡èÀ‚°ˆ ¶™Lòñ£è ñ£Ÿøô£‹. ñ®Š¹èO¡ Ã†ì™ º¬øJ™ Þ¬î„ ªêŒò º®»‹. 0.510 = 1 * 2-1 = 0.12 0.2510 = 0 * 2-1 + 1 * 2-2 = 0.012 0.12510 = 0 * 2-1 + 0 * 2-2 + 1 * 2-3 = 0.0012

5/8 = 4/8 + 1/8 = 1/2 + 1/8 â¡ð 5/8 = 1 * 2-1 + 0 * 2-2 + 1 * 2-3 = 0.1012

Þ󇮡 ñ®Š¹èO¡ Æ´ˆ ªî£¬èò£è ޙô£î H¡ 33

ùƒè¬÷ Þ¼G¬ô ⇠º¬øJ™ ¶™Lòñ£è‚ °PŠHì º®ò£¶. ⴈ¶‚裆ì£è, 0.2 10 . ދñ£FK â‡è¬÷ˆ «î¬õò£ù Ü÷¾ ¶™Lòñ£è‚ °PŠHì º®»‹. Þ, ªî£ì˜‰¶ Þ󇮙 ªð¼‚ °‹ º¬ø¬ò‚ è¬ìŠH®‚è «õ‡´‹. Þ‰î º¬øJ™ àœ÷ ð®G¬ôèœ. ®

H¡ùŠ ð°F¬ò Þó‡ì£™ ªð¼‚辋. M¬ìJ¡ º¿ ⇠ð°F¬ò‚ °Pˆ¶‚ ªè£œ÷¾‹. Þ¶ 0 ܙô¶ 1 âù Þ¼‚°‹.

®

M¬ìJ¡ º¿ ⇠ð°F¬ò M†´M쾋. ð°F¬ò e‡´‹ Þó‡ì£™ ªð¼‚辋.

H¡ùŠ

Þ‰îŠ ð®¬ò, H¡ùŠ ð°F 0 â¡Á Ý°‹ õ¬ó ªêŒò ¾‹. ܙô¶ õ¼‹ H¡ùŠ ð°F F¼‹ð õóˆ ªî£ìƒAò¶‹ GÁˆî¾‹. A¬ìˆî º¿ ⇠ð°FèO¡ êó‹, ܉î H¡ùˆ¬î‚ °P‚°‹ Þ¼G¬ô º¬ø ⇠ݰ‹. ⴈ¶‚裆´:

º¿â‡ ð°F 0.2 * 2 = 0.4 0.4 * 2 = 0.8 0.8 * 2 = 1.6 0.6 * 2 = 1.2

0 0 1 1

0.2 * 2 = 0.4

0

(H¡ùŠ ð°F F¼‹ð õ¼Aø¶) º¿ ⇠ð°Fè¬÷ «ñL¼‰¶ Wö£èŠ 𮈶, ÜõŸ¬ø ÞìI¼‰¶ õôñ£è, H¡ùŠ ¹œO‚° õô¶ ¹ø‹ â¿î¾‹. âù«õ, 0.210 = 0.00110011…2

2.8

ðF¡ñ G¬ô ðFù£Á G¬ô ñ£Ÿø‹

å¼ â‡¬í ðF¡ñ G¬ôJL¼‰¶ ðFù£Á G¬ô‚° ñ£Ÿ Áõ¶, Þ¼G¬ô ñ£Ÿø‹ «ð£ô«õ. ñ®Š¹èO¡ Ã†ì™ º¬ø CÁ â‡èÀ‚° âOî£è Þ¼‚°‹. Ýù£™ ªðKò â‡èÀ‚° è®ùñ£è Þ¼‚°‹. Üîù£™ F¼‹ðˆ F¼‹ð ðFù£ø£™ õ°ˆî™ 34

â¡ø º¬ø«ò â™ô£ â‡èÀ‚°‹ Cø‰î¶. ðFù£P¡ âˆîù£ õ¶ ñ®ŠH™ CPò¶, ªè£´ˆî ⇬íMìŠ ªðKò«î£, ܈ î¬ù Þô‚èƒèœ ܉î â‡E¡ ðFù£Á G¬ôJ™ Þ¼‚°‹. ⴈ¶‚裆ì£è 948 â¡ð¶ ðFù£Á G¬ô â‡í£è â¿îŠð´‹ «ð£¶, Í¡Á Þô‚èƒèœ ªè£‡®¼‚°‹. (163 = 4096) > 948 > (162 = 256) 162 161 160 3

Ýè«õ,

948 – (3 * 256) = 180

162 3

161 160 B

948 – (3 * 256 + 11 * 16) = 4

162 3

161 160 B 4

948 – (3 * 256 + 11 * 16 + 4) = 0

94810 = 3B416

F¼‹ðˆ F¼‹ð ðFù£ø£™ õ°ˆî™ º¬øJ™ àœ÷ ð® G¬ôèœ W›õ¼ñ£Á: ªè£´ˆî ⇬í 16 ݙ õ°ˆ¶, eF¬ò‚ èí‚Aì ¾‹. 0 ºî™ 15 õ¬ó àœ÷ މî eF¬ò å¼ ðFù£Á G¬ô Þô‚èñ£è‚ °PŠH쾋. ® ß¾ ²Nò£°‹ õ¬ó ߬õ ޚõ£Á õ°ˆ¶, eFJL¼‰¶ ðFù£ÁG¬ô Þô‚èƒè¬÷Š ªðø¾‹. ®

ⴈ¶‚裆´:

ªêò™ 948 / 16 =

ß¾ 59

59 / 16 = 3 3 / 16 = 0 94810 = 3B416

2.9.

â‡E¬ô º¬ø

eF 4 (LSB)



11 (B) 3 (MSB)

â‡E¬ô º¬ø‚° Ü®Šð¬ì 8. ދ º¬øJ™ 0 ºî™ 7 õ¬ó àœ÷ ↴ Þô‚èƒèœ ñ†´«ñ ðò¡ð´ˆîŠð´‹. å¼ â‡E¬ô ⇬í ðF¡ñ G¬ô â‡í£è ñ£Ÿø, 嚪õ£¼ Þô‚般 ܉î ÞìˆFŸ«èŸø ↮¡ ñ®Šð£™ ªð¼‚A, 35

M¬ìè¬÷‚ Ã†ì «õ‡´‹. ⴈ¶‚裆´:

7118 â¡ø â‡E¡ ðF¡ñ º¬ø ñFŠ¹ â¡ù? 7 * 82 + 1 * 81 + 1 * 80 = 45710

å¼ â‡¬í F¼‹ðˆ F¼‹ð â†ì£™ õ°ˆ¶, ðF¡ñ º¬ø JL¼‰¶ â‡E¬ô º¬ø‚° ñ£Ÿøô£‹. ÜîŸè£ù ð®G¬ôèœ; ®

ðF¡ñ ⇬í â†ì£™ õ°ˆ¶, eF¬ò‚ °Pˆ¶‚ ªè£œ÷¾‹. eF å¼ â‡E¬ô â‡í£è ( 0 ºî™ 7 õ¬ó ) Þ¼‚°‹.

ß¾ ²Nò£è Ý°‹õ¬ó F¼‹ðˆ F¼‹ð ßM¬ù â†ì£™ õ°‚辋. 6410 â¡ðî¡ â‡E¬ô õ®õ‹ â¡ù?

®

64/8 8/8 1/8

ß¾

eF

8 1 0

0 (LSB)  0 1 (MSB)

âù«õ, 6410 = 1008

2.10 ñ¬ø‚°Pf´ ªðŸø â‡èœ å¼ â‡ âF˜ñ¬ø ñ¬ø‚°Pf´ ⶾ‹ ޙô£î ð†êˆF™, Üî¬ù Þ¼G¬ô â‡í£è âOF™ ñ£Ÿøô£‹ âù ãŸèù«õ 𣘈«î£‹. Ýù£™ âF˜ñ¬ø â‡è¬÷»‹ èEŠªð£P ¬èò£÷ «õ‡´‹. ê£î£óíñ£è މî â‡èO™ âF˜ñ¬ø‚ °Pf´ - Ýè Þ¼‚°‹. èEŠªð£P‚° 0, 1 îMó «õÁ ⶾ‹ ªîKò£¶. Üîù£™, å¼ Þ¼G¬ô â‡E™ Þì¶ æó‹ àœ÷ å¼ H†®¬ù ñ¬ø‚° Pfì£è¾‹ ðò¡ð´ˆF‚ªè£œ÷ô£‹. 0 â¡ø£™ «ï˜ñ¬ø. 1 â¡ ø£™ âF˜ñ¬ø. 2.10.1 ñ¬ø‚°Pf´ + Ü÷¾ âù‚ °PŠH´î™ å¼ º¿ ⇬í ñ¬ø‚°Pf†´ì¡ °PŠHì âO¬ñ ò£ù õN, Þì¶ ð‚è H†¬ì, âF˜ñ¬ø ⇵‚° 1 âù ¬õŠ ð¶î£¡. ªñ£ˆî‹ n H†´èœ Þ¼‰î£™, ÜF™ eF n - 1 H†´èœ 36

܉î â‡E¡ Ü÷¬õ‚ °P‚°‹. ð´ˆFù£™,

° H†´è¬÷Š ðò¡

0100 = +4 1100 = -4

Þ‰î º¬øJ™ Cô êƒèìƒèœ àœ÷ù. Þ¼ õ¬èèO™ °PŠHìô£‹.

ºîô£õî£è, ²N¬ò

0000 = +010 1000 = -010

Þîù£™, å¼ â‡ ²Nò£ âùŠ 𣘂°‹«ð£¶, Þó‡´ Mîƒ èO½‹ êKð£˜‚è «õ‡´‹. «ñ½‹ ñ¬ø‚°Pf†¬ìˆ îQò£è ¾‹, â‡E¡ îQ ñFŠ¬ðˆ îQò£è¾‹ ¬èò£÷ «õ‡´‹. ÞîŸè£è I¡ ²ŸÁ ܬñˆî£™ ªêô¾ ÜFèñ£°‹. âù«õ, Þ¬î Mì„ Cø‰î º¬ø Þ¼‚Aøî£ âùŠ ð£˜‚èŠ ð†ì¶. Þ󇮡 GóŠ¹ º¬ø â¡ð¶ މî Þ¼ C‚è™èÀ‚°‹ b˜õ£è ܬñ‰î¶. 2.10.2.

Þ󇮡 GóŠ¹ º¬ø

ñ¬ø‚°Pf†¬ì Þ´õ¶ì¡ GŸè£ñ™ Ü´ˆ¶ å¼ ªêò™ 𣆬컋 ªêŒî£™, å¼ º¿ ⇠މî õ¬è‚ °Pf†´‚° ñ£Á‹. å¼ âF˜ñ¬ø ⇬í Þ󇮡 GóŠ¹ º¬ø‚° ñ£Ÿø å¼ õN Þ¶. Ü. Þ¼ G¬ô â‡E™ àœ÷ â™ô£ H†´è¬÷»‹, ø£™ 0 âù¾‹, 0 â¡ø£™ 1 âù¾‹ ñ£Ÿø¾‹.

1 â¡

Ý. M¬ì»ì¡ 塬ø‚ Æ쾋. å¼ â‡ «ï˜ñ¬ø â¡ø£™, Üî¬ù ܊ð®«ò â¿Fù£™ («î¬õò£ù Ü÷¾ H†´ èO™) ܶ«õ Þ󇮡 GóŠ¹ º¬ø Ý°‹. Þ󇮡 GóŠ¹ º¬ø êKò£è «õ¬ôªêŒò å¼ Ü®Šð¬ìˆ «î¬õ àœ÷¶. â™ô£ â‡è¬÷»‹ å¼ °PŠH†ì c÷‹ àœ÷ Þ¼G¬ô â‡è÷£èˆî£¡ ¬õˆ¶‚ªè£œ÷ «õ‡´‹. «î¬õŠð ´‹«ð£¶, Þì¶ ð‚èˆF™ ²Nè¬÷„ «ê˜ˆ¶‚ªè£œ÷«õ‡´‹. Þ¬î ܉î â‡E¡ e¶  «ñ«ô ªê£¡ù ªêò™ð£´è¬÷„ ªêŒõ º¡ªêŒò «õ‡´‹. Þ‰î„ ªêò™ð£´èÀ‚°Š Hø° ªêŒò‚Ã죶. Þ¶ º‚Aò‹. 37

å¼ èEŠªð£PJ™ â‡èœ 8 H†´èO™ °PŠHìŠð´ A¡øù â¡«ð£‹. 2310 â¡ø ⇬í Þ¼ G¬ô º¬ø‚° ñ£Ÿø «õ‡´‹ â¡«ð£‹. Þ¬î„ ªêŒõî£è G¬ùˆ¶ Cô˜ W«ö °PŠ H†ì¶«ð£™ îõø£è„ ªêŒõ¶‡´. îõø£ù õN 23Þ¡ Þ¼G¬ô õ®õ‹ => 10111. â™ô£ Þô‚èƒè¬÷»‹ ñ£Ÿø¾‹ => 01000 塬ø‚ Æ쾋 => 01001 ²Nèœ «ê˜ˆ¶ 8 Þô‚èƒè÷£è ñ£Ÿø¾‹ => 00001001 => +9

êKò£ù õN 23Þ¡ Þ¼G¬ô õ®õ‹ 10111 ²Nèœ «ê˜ˆ¶ 8 H†´è÷£è ñ£Ÿø¾‹ => 00010111 â™ô£ Þô‚èƒè¬÷»‹ ñ£Ÿø¾‹ => 11101000 塬ø‚ Æ쾋 => 11101001 => -23 2.10.3. Þ󇮡 GóŠ¹ º¬ø‚° ñ£Ÿø Þ¡ªù£¼ âOò õN ð® 1. Þ‰î„ ªêò™ð£´ âF˜ñ¬ø â‡èÀ‚° ñ†´‹î£¡. 嚪õ£¼ Þô‚般 ºî™ 1ä ܬ컋 õ¬ó, ܬ «ê˜ˆ¶, õô¶ ¹øˆF™ Þ¼‰¶ Þì¶ ð‚èñ£è ⴈ¶ ܊ð®«ò â¿î «õ‡´‹. ð® 2. Hø° õ¼‹ Þô‚èƒèœ 嚪õ£¡¬ø»‹, ²N¬ò å¡Á âù¾‹, 塬ø ²N âù¾‹ ñ£ŸP ܬñ‚辋. Þ‰î º¬ø‚ °‹ â‡E¡ c÷‹ ºîL«ô«ò êK ªêŒòŠð†®¼‚è «õ‡´‹. ⴈ¶‚裆´ 1.

-4 â¡ð¬î, 4 Þô‚è ܬñŠH™, ñ£ŸÁè.

Þ󇮡 GóŠ¹ º¬ø‚°

4Þ¡ Þ¼G¬ô õ®õ‹, ° Þô‚èƒèO™ =>

0100

ð® å¡P™ àœ÷ð®, ºî™ å¡Á º®ò, ܊ð®«ò â¿î ¾‹ => 100 ð® Þ󇮙 àœ÷ð®, ñŸø Þô‚èƒè¬÷, ñ£ŸP â¿î¾‹ => 1100 => -4 38

ⴈ¶‚裆´ 2

-23ä ↴H† ܬñŠH™, Þ󇮡 G󊹺¬ø‚° ñ£ŸÁè. -23Þ¡ Þ¼ G¬ô õ®õ‹, ↴ Þô‚èƒèO™ => 0001 0111 ð® å¡P¡ð®

=> 1

ð® Þ󇮡ð®

=> 1110 1001 => -23

2.10.4. å¼ â‡¬í ñ¬ø‚°Pf´ àœ÷ ܙô¶ ޙô£î â‡í£èŠ ð£˜ˆî™ å¼ Þ¼G¬ô Þô‚èƒèO¡ ªî£°F¬ò, ê£î£óí Þ¼ G¬ô º¬øJ™ å¼ ñ¬ø‚ °Pf´ ޙô£î â‡í£èŠ 𣘂èô£‹. ܙô¶ ܬî«ò ñ¬ø‚°Pf´ àœ÷ Þ󇮡 GóŠ¹ º¬ø â‡í£è¾‹ 𣘂èô£‹. âŠð®Š 𣘂A«ø£‹ â¡ð¬îŠ ªð£¼ˆ¶ ܉î â‡E¡ ñFŠ¹ ñ£Áð´‹. ⴈ¶‚裆ì£è, 1110 0110 ⡠‹ ªî£°F¬òŠ 𣘊«ð£‹. Þ¶ ñ¬ø‚°Pf´ ޙô£î Þ¼G¬ô ⇠â¡ø£™, Üî¡ ñFŠ¹ 230. 111001102 = 23010

Þ¬î, Þ󇮡 GóŠ¹ º¬øJ™ àœ÷ â‡í£èŠ 𣘈  Üî¡ ñFŠ¹ -26 10. å¼ â‡ â‰î ܬñŠH™ àœ÷¶ â¡ð¶ Iè º‚Aò‹. ܬñŠ¬ðŠ ªð£¼ˆ¶ ñFŠ¹ ñ£Áð´õ, â‡èO¡ Þô‚èƒ è¬÷ ñ†´‹ 𣘈¶ ÜõŸ¬ø ñFŠHì º®ò£¶. ⴈ¶‚裆ì£è, x

= 1001,

y

= 0011 â¡«ð£‹,

y

ä Mì x ªðKî£?

Þî¡ M¬ì ܬõ â‰î º¬øJ™ â¿îŠð†´œ÷ù â¡ð ¬îŠ ªð£¼ˆî¶. Þ󇴋 ñ¬ø‚°Pf´ ޙô£î â‡èœ â¡ ø£™, x = 9, y = 3. Üîù£™ x > y. Þ󇴋, Þ󇮡 GóŠ¹ º¬øJ™ Þ¼‰î£™, x å¼ âF˜ ñ¬ø â‡, y å¼ «ï˜ñ¬ø â‡. Üîù£™ y > x. 39

2.10.5. â‡èO¡ i„² ° H† â‡è¬÷ ⴈ¶‚ ªè£‡ì£™, ñ¬ø‚°Pf´ ޙ¬ôªò¡ø£™, ܬõ 0 ºî™ 15 õ¬ó àœ÷ â‡è¬÷‚ °P‚ °‹. 嚪õ£¼ H†´‹ Þó‡´ ñFŠ¹è¬÷Š ªðø º®»‹ â¡ð , ° H†´è÷£™ 2 x 2 x 2 x 2 = 16 MîˆF™ â‡è¬÷ ༠õ£‚躮»‹. n H† Þ¼‰î£™ 2n â‡è¬÷ à¼õ£‚èô£‹. Þî ù£™ 0 ºî™ 2n-1 õ¬ó àœ÷ â‡è¬÷‚ °PŠHì º®»‹. å¼ â‡ ñ¬ø‚ °Pf†´ì¡ Þ󇮡 º¬øJ™ Þ¼Šð î£è ¬õˆ¶‚ªè£‡ì£™, ªñ£ˆî‹ àœ÷ 2n â‡èO™ ð£F «ï˜ñ ¬øò£è¾‹, eF ²N ñŸÁ‹ âF˜ñ¬øò£è¾‹ Þ¼‚°‹. Þ¶ 0 n ºî™ 2 -1 õ¬óJ™ àœ÷ «ï˜ñ¬ø â‡è¬÷»‹, -1 ºî™ 2n-1 õ¬ó àœ÷ âF˜ñ¬ø â‡è¬÷»‹ °P‚°‹.

2.11 Þ¼G¬ô º¬ø ⇠èEî‹ Þô‚è õ¬èJ™ èEŠªð£P ªêò™ð´Aø¶. Þ¶ ⇠è¬÷ Þ¼G¬ô º¬øJ™ ¬èò£œAø¶. ñ¬ø‚°Pf´ àœ÷ ñŸ Á‹ ޙô£î Þ¼G¬ô â‡è÷£è‚ ªè£‡´ ªêò™ð´Aø¶. ÞîŸ è£ù ⇠èEî Ü®Šð¬ìè¬÷ ރ° 𣘊«ð£‹. 2.11.1 Þ¼G¬ô‚ Ã†ì™ - ñ¬ø‚°Pf´ ޙô£î â‡èœ â‰î Ü®Šð¬ìJ½‹ àœ÷ Þ¼ Þô‚èƒè¬÷‚ Æ®ù£™, õ¼‹ M¬ì¬ò Cô êñòƒèO™ å¼ Þô‚èˆî£™ °PŠHì º® ò£¶. Þó‡´ Þô‚èƒèœ «î¬õŠð´‹. ⴈ¶‚裆ì£è, 9 + 7 = 16. ÞF™ 6 â¡ð¶ Ã†ì™ (sum) â¡Á‹, 1 â¡ð¶ Ü´ˆî Þìˆ FŸ° ⴈ¶„ ªê™õ, ªê™â‡ (carry) â¡Á‹ ܬö‚èŠð´ A¡øù Þ¼G¬ô â‡E™ Ã†ì™ â¡ð¶‹, ªê™â‡ â¡ð¶‹, 0 ܙô¶ 1 â¡Á Þ¼‚°‹. ⴈ¶‚裆ì£è, 0+0=0 0 0+1=0 1



ªê™â‡H†

Æì™H†

1+1=1 0



ªê™â‡H†

40

Æì™H†

Ã†ì™ H† õ¼‹ M¬ì¬ò Þó‡´ H†´èO™ â¿Fù£™, °¬ø‰î ñFŠ¹œ÷ H† Ã†ì™ H†ì£è¾‹, ÜFè ñFŠ¹œ÷ H† ªê™â‡ H†ì£è¾‹ Þ¼‚°‹. ⴈ¶‚裆´ 1

1100介



ªê™â‡H†

1011 介 Æ쾋 1100 1011 ———— 10111  ————

Æì™H† ⴈ¶‚裆´ 2

10111 + 10110 â¡ð¬î‚ èí‚A´è. 111 10111 10110 ————— 101101 —————

Carry bits

Þó‡´ â‡è¬÷‚ Æ´‹«ð£¶, ºî™ ⇠ÆìŠð´‹ ⇠âù¾‹, Þó‡ì£‹ ⇠Æ´‹ ⇠(addend) âù¾‹ ܬö‚èŠð´Aø¶.

(Augend)

2.11.2. Þ¼G¬ô‚ Ã†ì™ - ñ¬ø‚°Pf´ àœ÷ â‡èœ ñ¬ø‚°Pf´ àœ÷ â‡è¬÷‚ Æ´‹«ð£¶, Þó‡´ â‡ èÀ‹ å«ó c÷ˆF™ Þ¼‚è «õ‡´‹ â¡ð¶ º‚Aò‹. ÞF™ ÜFè ñFŠ¹œ÷ H† ñ¬ø‚°Pfì£èŠ ðò¡ð´Aø¶ â¡ð¶ ïñ‚ °ˆ ªîK»‹. ⴈ¶‚裆´ 1

2 + 5 â¡ø Æì¬ô Þ¼G¬ô ñ¬ø‚°Pf´ àœ÷ ⇠è÷£è‚ ªè£‡´ ªêŒò¾‹. 41

+2 0010 +5 0101 —— ————— +7 0111  —— ————— Ü÷¾ H†´èœ ñ¬ø‚°Pf†´ H†

õ¼‹ M¬ì «ï˜ñ¬øJ™ Þ¼‰¶ ªè£´‚èŠð´‹ Þô‚èƒèÀ‚° Iè£î â‡í£è Þ¼‰î£™, ܶ êKò£ù M¬ì¬ò‚ ªè£´‚°‹. ⴈ¶‚裆´ 2: Þ󇮡 GóŠ¹ º¬øJ™ Æì™

° H† ܬñŠH™, Þ󇮡 GóŠ¹ º¬øJ™ -7介 5介 Æ쾋. ºîL™ -7ä Þ󇮡 GóŠ¹ º¬ø‚° ñ£ŸÁ«õ£‹. Þ¼G¬ô º¬øJ™ 7, 0111 â™ô£ H†´è¬÷»‹ ñ£Ÿø¾‹ 1000 塬ø‚ Æ쾋 1001 1 0 0 1 (-7) 0 1 0 1 (5) ———

1 1 1 0 (-2)

———

õ¼‹ M¬ì»‹ Þ󇮡 GóŠ¹ º¬øJ™ àœ÷¶. Cô êñòƒèO™, â‡èO¡ °PŠH†ì c÷ˆ¬îMì, M¬ì J¡ c÷‹ ÜFèñ£°‹. ܊«ð£¶ ܉î ÜFèŠð® H†®¬ù M†´ M†ì£™, êKò£ù M¬ì A¬ì‚°‹! Þ¶ ⊫ð£¶? Þó‡´ â‡èÀ‹ ªõš«õÁ ñ¬ø‚°Pf´èÀì¡ Þ¼‚ °‹«ð£¶ Þ¶ êKò£°‹. ⴈ¶‚裆´ 3: 4 H† ܬñŠH™ Þ󇮡 G󊹺¬øJ™ -4介 +4介 Æ쾋 1100 (Þ󇮡 0 1 0 0 (+4) —————— 1 0000 =0 ——————

GóŠ¹ º¬øJ™ -4)

42

ÞF™, ÜFèŠð® H† à¼õ£Aø¶. Þó‡´ â‡èÀ‹ ªõš «õÁ ñ¬ø‚°Pf´èÀì¡ Þ¼Šð, ܬî M†´Mìô£‹. õô¶ ¹ø‹ àœ÷ ° H†´èœ êKò£ù M¬ì¬ò‚ ªè£´‚°‹. ÜFèŠð® H†´‚è£ù MF å«ó ñ¬ø‚°Pf´ àœ÷ Þ¼ â‡è¬÷‚ Æ´‹«ð£¶ õ¼‹ M¬ì «õÁ ñ¬ø‚°Pf´ àœ÷î£è õ‰î£™, ܊«ð£¶ ÜFèŠð® à¼õ£A Þ¼‚°‹. ÞF™ õ¼‹ M¬ì îõø£è Þ¼‚°‹. ãªù¡ø£™, މî ÞìˆF™, õ¼‹ M¬ì¬ò, ªè£´ˆî Þô‚èƒè ÷£™ °PŠHì º®õF™¬ô. ⴈ¶‚裆´ 4

-7介 -5介, 4 H† ܬñŠH™, Þ󇮡 GóŠ¹ º¬ø J™ Æ쾋. (Þ󇮡

1 0 0 1 1 0 1 1  —————— 1 0 1 0 0 ——————

GóŠ¹ º¬øJ™

(Þ󇮡 GóŠ¹ º¬øJ™

-7) -5)

(=4) îõø£ù M¬ì

ރ° Þ󇴫ñ âF˜ñ¬ø â‡èœ. õ¼‹ M¬ì (0100) «ï˜ñ¬øJ™ àœ÷¶. (ãªù¡ø£™ ° Þô‚è ܬñŠH™ ° H†´èœ ñ†´«ñ â´‚è «õ‡´‹). Þîù£™, ÜFèŠð® H† à¼õ£Aø¶. M¬ì îõø£Aø¶. 2.11.3 Þ¼G¬ô èNˆî™ èN‚°‹ ªêò™ð£†®Ÿ° Þó‡´ â‡èœ «î¬õ. â‰î â‡EL¼‰¶ èN‚A«ø£«ñ£ ܶ èN𴋠⇠(minuend) âùŠð ´‹. â‰î â‡¬í‚ èN‚A«ø£«ñ£ ܶ èN‚°‹ ⇠(substratend) âùŠð´‹. Cô Þ¼G¬ô º¬ø â‡èO¡ èNˆî™ W«ö ªè£´‚èŠð† ´œ÷ù. 0–0 1–0 1–1 10 – 1

= = = =

0 1 0 1

43

²NJL¼‰¶ 塬ø‚ èN‚°‹«ð£¶, Ü Ü´ˆî ÜFè ñFŠ¹ H†®L¼‰¶ å¡Á èì¡ õ£ƒèŠð´Aø¶. ܉î ÞìˆF™ å¡Á Þ¼‰î£™ èì¡ ªè£´ˆî Hø°, ܉î Þì‹ ²N âù Ý°‹. ܉î ÞìˆF™ ãŸèù«õ ²N Þ¼‰î£™, Ü‹ Þ춹øñ£è àœ÷ ºî™ å¡P¬ù‚ èì¡ õ£ƒè «õ‡´‹. ܉î Þì‹ ÞŠ «ð£¶ ²N âù Ý°‹. Ü õô¶ ¹ø‹ Ü´ˆî ÞìˆFL¼‰¶, ð£¬îò Þì‹ õ¬ó àœ÷ ²Nèœ, å¡Á âù Ý°‹. ⴈ¶‚裆´ 1

èN‚辋 : 1101 – 1010 01



1101 -1010

èì¡ õ£ƒ° (èN𴋠â‡) (èN‚°‹ â‡)

————— 0011 —————

Þó‡ì£õ¶ °¬ø¾ ñFŠ¹ Þì H†®™ àœ÷ å¡P¬ù‚ èN‚°‹«ð£¶, ܉î ÞìˆF™, èN𴋠â‡E™ 0 àœ÷¶. Üî ù£™, Ü Þì¶ð‚è‹ àœ÷ Í¡ø£õ¶ ÞìˆF™ Þ¼‰¶ å¡ ¬ø‚ èì¡ õ£ƒ°A«ø£‹. Üî¡ Þ숶 ñFŠð£ù 10ޙ Þ¼‰¶ 塬ø‚ èN‚è, eF 1 âù ÝAø¶. Üî£õ¶ 10 - 1 = 1. «ñ½‹ Í¡ø£õ¶ Þì‹ 0 â¡Á ÝAø¶. ⴈ¶‚裆´ 2

èN‚辋 : 1000 – 101 011 1000 -101 ——— 0011 ———

èì¡ õ£ƒAò Hø° ñ£Pò èN𴋠⇠0 1 1 10 1 0 1

(èN‚°‹ â‡)

 èNˆî½‚°Š H¡ eF

èNˆî¬ô Þ¡ªù£¼ MîˆF½‹ ªêŒòô£‹. èN‚°‹ ⇠E¡ âF˜ñ¬ø¬ò, Þ󇮡 GóŠ¹ º¬øJ™ â¿F, ܬî èN ð´‹ â‡µì¡ Ã†ìô£‹. 44

(+2) - (+7) â¡ð¬î (+2) + (-7) âù â¿îô£‹ ܙôõ£? ܶ «ñ«ô ªê£¡ù¶. ⴈ¶‚裆´ 3:

4 H† ܬñŠH™ (+2) - (+7) â¡ø èNˆî¬ô„ ªêŒò¾‹ 0 0 1 0 (+2) 0 1 1 1 (+7) 1 0 0 1

(Þ󇮡 GóŠ¹ º¬øJ™ -7)

0 0 1 0 (2) + 1 0 0 1 (-7) —————— 1 0 1 1 (-5) —————— ⴈ¶‚裆´ 4:

4 H† ܬñŠH™ èN‚辋

(-6) - (+4)

ºî™ â‡

-6

1 0 1 0

èN‚°‹ â‡

-4

1 1 0 0

Þ󇮡 GóŠ¹ º¬øJ™ Æì™

————

1 0 1 1 0

————

ރ° ÆìŠð´‹ Þ󇴫ñ âF˜ñ¬ø. M¬ì (° H† ´è¬÷ ñ†´‹ ⴈ) «ï˜ñ¬øJ™ õ¼Aø¶. ރ° ÜFèŠ ð® H† õ‰¶œ÷¬î‚ èõQ‚辋. ÜFèŠð® H†´‚è£ù MF J¡ð® މî M¬ì îõø£ù¶. -10 â¡ð¬î 4 H†®™ °PŠHì º®ò£¶ â¡ð¶î£¡ îõø£ù M¬ì‚°‚ è£óí‹. èNˆî™ â¡ð¶ âF˜ñ¬ø â‡¬í‚ Ã†´õ¶î£¡. Þî ù£™ èEŠªð£PJ™ Æì¬ô„ ªêŒò ²ŸÁ (circuit) Þ¼‚°‹. èNˆî½‚°‹ ܬî«ò ðò¡ð´ˆF‚ªè£œ÷ô£‹.

2.12 ÌLò¡ èEî‹ ü£˜x ̙ (George Boole) â¡Â‹ ݃A«ôòó£™ «î£ŸÁ M‚èŠð†ì èEî‹ Þ¶. èEŠªð£PJ™ Þ¼G¬ô º¬øJ™ èEŠ¹ 45

è¬÷„ ªêŒòˆ «î¬õò£ù ²ŸÁè¬÷ (circuit) õ®õ¬ñŠðF¡ Ü®Š ð¬ìˆ õ‹ މî ÌLò¡ èEî‹î£¡. Þ¶ å¼ ²ŸP¡ àœk†®Ÿ°‹, ªõOf†®Ÿ°‹ àœ÷ ªî£ì˜H¬ù‚ Ãø àî¾ Aø¶. Þ‰î‚ èEîˆF™ ñ£P (variable), ñ£PL (constant), ꣘¹ ñŸÁ‹ Þò‚Aèœ (operators) à‡´. ރ° 0, 1 ܙô¶ ªñŒ, ªð£Œ âù Þó‡´ ñ£PLèœ ñ†´«ñ àœ÷ù. å¼ ÌL ò¡ ñ£P â¡ð¶ މî Þó‡´ ñFŠ¹èO™ 塬øŠ ªðÁ‹. ñ£P ñŸÁ‹ ñ£PLè¬÷ ެ킰‹ Í¡Á Þò‚Aèœ àœ÷ù. ܬõ, AND, OR ñŸÁ‹ NOT. Þ¬õ º¬ø«ò ‘’ܶ¾‹ Þ¶¾‹’’, ‘’Ü™ ô¶’’, ñŸÁ‹ ‘’Þ™¬ô’’ â¡ø ªð£¼œð´‹ ªêò™è¬÷„ ªêŒ»‹. ÞõŸ¬ø º¬ø«ò ¹œO, Ã†ì™ °P, Üð£v†óçH °P ܙô¶ «ñ™ «è£´ (over bar) â¡ðõŸø£™ °PŠHìô£‹. (function)

ⴈ¶‚裆´ A

AND

B

=A.B

A

OR

B

=A+B

NOT

A

= A’

(or Aa)

ÌLò¡ ñ£Pèœ, ñ£PLèœ ñŸÁ‹ Þò‚Aè¬÷‚ ªè£‡´ â¿îŠð´‹ ªî£ì˜, ÌLò¡ ªî£ì˜ (Boolean expression) âùŠð´‹. ñŸÁ‹ OR Þò‚AèÀ‚° Þ¼ M¬ù ãŸHèœ (operand) «î¬õ. Þ󇴋 1 â¡ø ñFŠ¹ ªè£‡®¼‰î£™ ñ†´«ñ, AND â¡ø Þò‚A 1 â¡ø M¬ì¬ò‚ ªè£´‚°‹. ñŸø êñòƒè O™ 0 â¡ø M¬ì¬ò‚ ªè£´‚°‹. AND

ãî£õ¶ å¡P¡ ñFŠ¹ 1 â¡ø£«ô«ò OR Þò‚A 1 â¡ø M¬ì ªè£´‚°‹. Þ󇴫ñ 0 â¡ø£™ M¬ì»‹ 0. ‘Þ™¬ô’ (OR) â¡Â‹ Þò‚A å«ó å¼ M¬ù ãŸHJ¡ e¶î£¡ ªêò™ð´‹. ܉î M¬ù ãŸHJ¡ ñFŠ¬ð ñ£ŸP‚ ªè£´‚ °‹. 1 â¡ø£™ 0 âù¾‹, 0 â¡ø£™ 1 âù¾‹ ñ£ŸP M´‹. މî Í¡Á Þò‚AèO¡ ªêò™ð£´è¬÷»‹ õ¬óòÁ‚°‹ ð†®ò¬ô âOî£èˆ îò£K‚èô£‹. ܶ ªñŒŠð†®ò™ (Truth Table) âùŠð´‹. 46

2.12.1. ÌLò¡ Þò‚Aèœ AND

Þò‚A

Þò‚A ê£î£óí ªð¼‚è™ «ð£¡ø¶. Þ¼ M¬ù ãŸH èÀ‹ ªñŒ(1) â¡ø£™ ñ†´‹ ªñŒ(1) â¡ø M¬ì¬ò‚ ªè£´‚ °‹. ÞîŸè£ù ªñŒŠ ð†®ò™ W«ö õ¼ñ£Á. ރ° A, B â¡ Y â¡ð¶ M¬ì. ð¬õ M¬ù ãŸHèœ. AND

A 0 0 1 1

B 0 1 0 1

Y 0 0 0 1

މî Þ¼ ñ£Pè¬÷‚ ªè£‡ì ÌLò¡ ªî£ì¬ó Y=AB OR

âù â¿î¾‹.

Þò‚A

Þò‚Aò£ù¶, ãî£õ¶ å¼ M¬ùãŸH ªñŒ(1) â¡ø£½‹ M¬ì¬ò ªñŒ (1) â¡Á ªè£´‚°‹. ÞîŸè£ù ªñŒŠ ð†®ò™ OR

A

B

Y

0 0 1 1

0 1 0 1

0 1 1 1

ރ°‹ A, B â¡ð¬õ M¬ù ãŸHèœ.

Y

â¡ð¶ M¬ì.

Þ¼ ñ£Pè¬÷‚ ªè£‡ì މî ÌLò¡ ªî£ì¬ó Y = A + B âù â¿îô£‹. NOT

Þò‚A

މî Þò‚A å¼ M¬ù ãŸHJ¡ e¶ ñ†´‹ ªêò™ð´‹. Üî¡ ñFŠH¬ù ñ£ŸP ªõOJ´‹. ރ° A â¡ð¶ M¬ù ãŸH. Y â¡ð¶ M¬ì. A 0 1

Y 1 0

މî Þò‚AJ¡ ªêò™ð£†®¬ù, Y = Aa âù‚ °PŠHìô£‹. 47

ⴈ¶‚裆´:

â¡Á‹ ÌLò¡ êñ¡ð£†¬ìŠ 𣘂èô£‹. A ⡠𶠪ñŒ (1), ܙô¶ Bb.C â¡ð¶ ªñŒò£è Þ¼‰î£™ D J¡ ñFŠ¹ 1 âù Ý°‹. ñŸø â™ô£ êñòƒèO½‹ 0 âù Ý°‹. ރ° Bb.C â¡ ð¶, B = 0, C = 1 âù Þ¼‰î£™ ñ†´«ñ 1 âù Ý°‹. Ýè, A= 1 âù Þ¼‰î£™, ܙô¶, A = 0, B = 0, C = 1 âù Þ¼‰î£™ D = 1 âù Ý°‹. D = A + (Bb.C)

NAND

Þò‚A

NAND â¡ð¶ AND ñŸÁ‹ NOT â¡ðî¡ ªî£°Š¹. ºîL™ Þò‚A ªêò™ð†´ ªõOJ´‹ M¬ì¬ò, NOT Þò‚A ñ£ŸP ªõOJ´‹. Þ¬î AND

Y = Ac.BC

âù‚ °PŠHìô£‹. Þî¡ ªñŒŠð†®ò™ A 0 0 1 1

B 0 1 0 1

Y 1 1 1 0

A NAND B = NOT (A AND B)

NOR Þò‚A NOR â¡ð¶ OR ñŸÁ‹ NOT Þò‚èˆF¡ ªî£°Š¹. ºîL™ OR Þò‚A ªêò™ð†´ ªõOJ´‹ M¬ì¬ò, NOT Þò‚A ñ£ŸP‚ ªè£´‚°‹. Þî¡ ªêò™ð£´‹, ªñŒŠð†®ò½‹ W«ö õ¼ñ£Á. Y = A+B A 0 0 1 1

B 0 1 0 1

Y 1 0 0 0

A NOR B = NOT (A OR B)

2.12.2. ÌLò¡ èEî MFèœ ÌLò¡ èEîˆ¬îŠ ðò¡ð´ˆF ÌLò¡ ªî£ì¬ó âO¬ñŠ ð´ˆîô£‹. Þîù£™, à¼õ£‚èŠð´‹ I¡ùµ„ ²ŸÁèO™ àœ÷ 48

ð£èƒèO¡ â‡E‚¬è °¬ø»‹. I¡ùµ„ ²ŸÁèœ ðŸP «õÁ å¼ ð£ìˆF™ 𣘊«ð£‹. ރ° ÌLò¡ ªî£ì¬ó âO¬ñŠ 𴈶 õ¬îŠ 𣘊«ð£‹.

ÌLò¡ êñ¡ð£´èœ ñ£ŸÁ MFèœ ñ£ŸÁî™ â¡ø£™ 1 â¡ð¬î 0 â¡Á‹, 0 â¡ð¬î 1 â¡Á‹ ñ£ŸÁõ‹. «îŸø‹ 1 :

A=0

â¡ø£™, Aa = 1.

«îŸø‹ 2 :

A=1

â¡ø£™ Aa = 0

«îŸø‹ 3 : AND

AJ¡

ñ£ŸøˆF¡ ñ£Ÿø‹ A.

Abd= A

Þò‚AJ¡ Ü®Šð¬ì °íƒèœ «îŸø‹ 4 : A=0

M“ 0. A=1

M“ 1.

A.1=A

âù¾‹, Ü´ˆî M¬ù ãŸH 1 âù¾‹ Þ¼‰î£™ õ¼‹ âù¾‹, Ü´ˆî M¬ù ãŸH 1 âù¾‹ Þ¼‰î£™ õ¼‹

Üîù£™, M¬ì ⊫𣶋 A ¾‚°„ êññ£è Þ¼‚°‹. «îŸø‹ 5 :

A.0=0

å¼ M¬ù ãŸH 0 âù Þ¼Šð, A â¶õ£è Þ¼‰î£½‹, M¬ì 0. «îŸø‹ 6 :

A. A = A

àœO´‹ A ¾‚°„ êññ£ù M¬ì«ò ªõOõ¼‹. «îŸø‹ 7 : A

A.Acñ= 0

¾‚° â‰î ñFŠ¹ Þ¼‰î£½‹, M¬ì 0.

OR Þò‚AJ¡ Ü®Šð¬ì‚ °íƒèœ

«îŸø‹ 8 : A + 1 = 1 AJ¡

ñFŠ¹ â¶õ£è Þ¼‰î£½‹, å¼ M¬ù ãŸH 1 â¡ð , M¬ì 1 âù õ¼‹. 49

«îŸø‹ 9 : A+0 =A ރ° M¬ìJ¡ ñFŠ¹ AJ¡ ñFŠð£è Þ¼‚°‹. «îŸø‹ 10 : A+A = A ރ° M¬ìJ¡ ñFŠ¹ AJ¡ ñFŠð£è«õ Þ¼‚°‹ «îŸø‹ 11 : A+Ac = 1 AJ¡

ñFŠ¹ â¶õ£è Þ¼‰î£½‹, M¬ì 1 âù õ¼‹.

2.12.3. ÌLò¡ ªî£ì¬ó âO¬ñŠð´ˆî™ âO¬ñŠð´ˆ¶õ º¡ Cô èEî„ ªê£Ÿè¬÷ˆ ªîK‰¶ ªè£œ÷ «õ‡´‹. G¬ô ༠(Literal) å¼ ÌLò¡ ñ£P ܙô¶ Üî¡ GóŠH G¬ô༠âùŠð´‹. ªð¼‚è™ ÃÁ (Product term) å¡Á ܙô¶ Ü «ñŸð†ì G¬ô à¼‚èœ ÌLò¡ Þò‚Aò£ù AND ݙ «ê˜‚èŠð†ì£™ A¬ìŠð¶ ªð¼‚è™ ÃÁ. AND‚è£ù °Pfì£ù ¹œO¬ò ¬õ‚è£ñ½‹ â¿îô£‹. ⴈ¶‚裆´ - ABc, AC, Ac Cc, Eb CÁ ÃÁ (Min term) ðòQ™ àœ÷ 嚪õ£¼ ñ£P»‹, ܶõ£è ܙô¶ Üî¡ GóŠHò£è àœ÷ å¼ ªð¼‚è™ ÃÁ, CÁ ÃÁ âùŠð´‹. å¼ ÌLò¡ ªî£ìK™ X, Y, Z â¡Á Í¡Á ñ£Pèœ Þ¼‰î£™, XYZ, XaYZ, Xc Yc Zc «ð£¡ø¬õ CÁ ÃÁèœ. Þî¬ù ªê‰îó ªð¼‚è™ ÃÁ (standard product term) â¡Á‹ Ãøô£‹. Ã†ì™ ÃÁ (sum term) å¡Á ܙô¶ Ü «ñŸð†ì G¬ô à¼‚èœ OR ÌLò¡ Þò‚Aò£™ ñ†´‹ «ê˜‚èŠð†ì£™, A¬ìŠð¶ å¼ Ã†ì™ ÃÁ. ⴈ¶‚裆´:

A + Bc + D.

ªð¼ƒÃÁ (max term) å¼ ªî£ìK™ àœ÷ 嚪õ£¼ ñ£P»‹, ܶõ£è ܙô¶ Üî¡ GóŠHò£è àœ÷ å¼ Ã†ì™ ÃÁ, ªð¼ƒÃÁ âùŠð´‹. 50

â¡ø Í¡Á ñ£Pè¬÷ ⴈ¶‚ªè£‡ì£™, x + y + z, x + ya + za «ð£¡ø¬õ ªð¼ƒÃÁèœ. Þî¬ù ªê‰îó‚ Ã†ì™ ÃÁ (standard sum term) âù¾‹ Ãøô£‹. x, y, z

ªð¼‚è™èO¡ Ã†ì™ (SOP- sum of products) å¡Á ܙô¶ ðô ªð¼‚è™ ÃÁè¬÷ OR Þò‚A ñ†´‹ ªè£‡´ «ê˜‚èŠð†ì ªî£ì˜, ªð¼‚è™èO¡ Ã†ì™ âùŠð´‹. ⴈ¶‚裆´:

Ac+ AB + AcBcCc

ރ° 嚪õ£¼ ªð¼‚è™ ÃÁ‹ å¼ CÁ Ãø£è Þ¼‰î£™ ܶ CøŠ¹‚ Ã†ì™ âùŠð´‹. ⴈ¶‚裆´: ABC + ABCc + Ac BCc

Æì™èO¡ ªð¼‚è™ (POS - product of sums) å¡Á ܙô¶ ðô Ã†ì™ ÃÁè¬÷ AND Þò‚Aò£™ ñ†´‹ «ê˜ˆ¶Š ªðøŠð†ì ªî£ì˜, Æì™èO¡ ªð¼‚è™ âùŠð´‹. ⴈ¶‚裆´: (A) (A+B) (A+D)

ރ° â™ô£ Ã†ì™ ÃÁèÀ‹ ªê‰îó‚ ÃÁè÷£è Þ¼‰ , Ü‰îˆ ªî£ì˜ CøŠ¹Š ªð¼‚è™ âùŠð´‹. ⴈ¶‚裆´: (A+B) (A+Bc) (Ac+Bc)

«îŸø‹ 12:

Þìñ£Ÿø

MF (commutative law)

Þ¼ M¬ù ãŸHè¬÷ 㟰‹ Þò‚A, ܉î M¬ù ãŸHèœ õ¼‹ õK¬ê â¶õ£è Þ¼‰î£½‹, å«ó M¬ì¬ò‚ ªè£´ˆî£™, ܶ Þìñ£Ÿø MF‚° à†ð´Aø¶ âùŠð´‹. ⴈ¶‚裆ì£è, Þ¼ â‡è¬÷‚ Æ´‹«ð£¶, â‰î ⇠ºîL™ õ¼Aø¶ â¡ð¶ º‚AòI™¬ô. 5 + 3 = 3 + 5. Üîù£™ Æ콂° Þìñ£Ÿø MF ªð£¼‰¶‹. ܶ«ð£ô«õ, ªð¼‚轂°‹ Þìñ£Ÿø MF ªð£¼‰¶‹. Ýù£™ èNˆî½‚°‹, õ°ˆî½‚°‹ މî MF ªð£¼‰î£¶. Þò‚AèÀ‚° Þìñ£Ÿø MF ªð£¼‰¶‹.

AND, OR

A + B = B + A, AB = BA

«îŸø‹ 13. ªî£ì˜ MF (Associative Law) å¼ Þò‚A Ü´ˆî´ˆ¶ ðô º¬ø Þò‚èŠð´‹«ð£¶, ÜõŸ P™ â‰î Þò‚A ºîL™ Þò‚èŠð†ì£½‹ å«ó M¬ì A¬ì‚°‹ â¡ø£™, ܉î Þò‚A‚° ªî£ì˜¹ MF ªð£¼‰¶‹. 51

â‡è¬÷Š ªð£¼ˆîõ¬ó Æ콂°‹, ªð¼‚轂°‹ ªî£ì˜¹ MFèœ ªð£¼‰¶‹. èNˆî½‚°‹, õ°ˆî½‚°‹ ªð£¼‰ . 5 + ( 3 + 2 ) = 10 = ( 5 + 3 ) + 2 5 . ( 3 .

2 ) = 30 = ( 5 . 3 ) . 2

5 - ( 3 - 2 ) = 4; ( 5 - 3 ) - 2 = 0 8 / ( 4 / 2 ) = 4; ( 8 / 4 ) / 2 = 1 AND, OR

Þò‚AèÀ‚° ªî£ì˜¹ MF ªð£¼‰¶‹.

A+(B+C)=(A+B)+C A(BC)=(AB)C

«îŸø‹ 14: ðA˜¾ MF (Distribute Law) Þó‡´ ªõš«õÁ Þò‚Aèœ «ê¼‹«ð£¶, å¡P¡ 般î ñŸøî¡ «ñ™ ãŸP‚ ÃÁ‹ MF Þ¶. ÌLò¡ èEîˆF™ ðA˜¾ MFèœ Þó‡´ àœ÷ù. A(B+C) = AB+AC A+(BC) = (A+B) (A+C)

⇠èEîˆF™, ºî™ MF ªð£¼‰¶‹. MF ªð£¼‰î£¶ â¡ð¶ èõQ‚èˆ î‚è¶.

Ýù£™ Þó‡ì£‹

Þó‡ì£õ¶ MF ÌLò¡ èEîˆF™ ªð£¼‰¶Aø¶ â¡ð ¬î‚ W›‚裵‹ ð†®òô£™ àÁFŠð´ˆîô£‹. A

B

C

BC

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 1 0 0 0 1

LHS 0 0 0 1 1 1 1 1 52

A+B

A+C

RHS

0 0 1 1 1 1 1 1

0 1 0 1 1 1 1 1

0 0 0 1 1 1 1 1

ªð¼‚è™èO¡ °¬ø‰î Ã†ì™ (minimum sum of products) å¼ ÌLò¡ ªî£ì¬ó ªð¼‚è™èO¡ Æìô£è ⿶‹ «ð£¶ ÜF™ àœ÷ ÃÁèœ °¬ø‰î ð†ê â‡E‚¬èJ™ Þ¼‰ , ܶ ªð¼‚è™èO¡ °¬ø‰î Ã†ì™ âùŠð´Aø¶. W›õ¼‹ ªî£ì¬ó ²¼‚°«õ£‹ Ac B Cc+ Ac B C + A Bc Cc + A Bc C + A B C ªî£ì˜ MF¬ò ðò¡ð´ˆFù£™ = (Ac B Cc + Ac B C) + (A Bc Cc + A Bc C) + A B C = Ac B(Cc+C) + A Bc(Cc+C)+ABC «îŸø‹ 11äŠ ðò¡ð´ˆFù£™ = Ac B (1) + A Bc (1) + ABC «îŸø‹ 4äŠ ðò¡ð´ˆFù£™ = Ac B + A Bc + ABC

Þ‰îˆ ªî£ì˜, ªð¼‚è™èO¡ °¬ø‰î Ã†ì™ õ®õˆF™ àœ÷¶. ⴈ¶‚ªè£‡ì ÌLò¡ ªî£ì¬ó «îŸø‹ 10ä‚ ªè£‡ ´‹ ²¼‚èô£‹. AcB Cc + Ac B C + A Bc Cc + A Bc C + A B C + A Bc C (A Bc C + A Bc C = A Bc C) = (Ac B Cc + Ac B C) + (A Bc Cc + A Bc C) + (A B C + A Bc C) = Ac B (Cc + C) + A Bc (Cc + C) + A C(B + Bc) = Ac B + A Bc + A C

Þ¶«ð£¡Á å¼ ÌLò¡ ªî£ì¬ó ðô MîƒèO½‹ ªð¼‚ è™èO¡ °¬ø‰î Æì™è÷£è ñ£Ÿøô£‹. ⴈ¶‚裆´èœ

W›‚裵‹ ÌLò¡ ªî£ì¬ó„ ²¼‚辋/âO¬ñò£‚辋 AcBCc + AcBC x = AcB, y = Cc

âù Þ¼‚膴‹

âù«õ, ªè£´ˆî ªî£ì˜,

53

x y + x yc = x(y + yc) = x = Ac B A + A?B = A + B

âù G¼H‚辋

ðA˜¾ MFJ¡ð®, A + Ac B = (A + Ac)(A + B) = 1 · (A + B) = A + B

W›‚裵‹ ÌLò¡ ªî£ì¬ó„ ²¼‚辋. Ac Bc Cc + Ac B Cc + Ac B C + A Bc Cc = Ac Cc(Bc + B) + Ac B C + A Bc Cc = Ac Cc + Ac B C + A Bc Cc = Ac(Cc + BC) + A Bc Cc = Ac(Cc + B)(C + C) + A Bc Cc = Ac(Cc + B) + A Bc Cc = Ac Cc + Ac B + A Bc Cc (å¼ ²¼ƒAò õ®õ‹.) ªè£´ˆî ªî£ìK™, Þó‡´, Í¡ø£‹ ÃÁè¬÷ Þ¬í‚èô£‹. ܊«ð£¶, Ac Bc Cc + (Ac B Cc + Ac B C) + A Bc Cc = Ac Bc Cc + Ac B(Cc + C) + A Bc Cc = Ac Bc Cc + Ac B + A Bc Cc = Bc Cc(Ac + A) + Ac B = Bc Cc + Ac B

(I辋 ²¼ƒAò õ®õ‹.)

2.12.4 ®ñ£˜è¡ «îŸøƒèœ «îŸø‹ 15: A + B = AcBc «îŸø‹ 16: AB = Ac + Bc Þ¬õ ÌLò¡ èEîˆF™ ÜFè‹ ðò¡ð´‹ «îŸøƒèœ. ªñŒŠ ð†®ò™ Íô‹ ÞõŸ¬ø GÏH‚èô£‹. 54

ⴈ¶‚裆´ f (A, B, C, D) = DAc B + ABc

GóŠH¬ò‚ 致H®‚辋

+ DAC

â¡Â‹ ÌLò¡ ꣘H¡

fc (A, B, C, D) = D Ac B + A Bc + D A C ®ñ£˜è¡ «îŸøˆî£™ («îŸø‹ 15) = (D Ac B) (A Bc) (D A C) ®ñ£˜è¡ «îŸøˆî£™ («îŸø‹ 16) = (Dc + A + Bc)(Ac + B)(Dc + Ac + Cc)

Þ‰î‚ èí‚A™, ªè£´‚èŠð†ì ÌLò¡ ꣘¹, ªð¼‚è™è O¡ Æìô£è àœ÷¶. Üî¡ GóŠH Æì™èO¡ ªð¼‚èô£è ܬñ‰¶œ÷¶. ®ñ£˜è¡ «îŸøƒèOù£™, W›õ¼‹ ªî£ì˜ à‡¬ñò£Aø¶. â‰î å¼ ÌLò¡ ªî£ìK½‹, W›‚è‡ì ªêò™è¬÷„ ªêŒ¶ º®ˆî£™, ñFŠ¹ ñ£ø£ñ™ Þ¼‚°‹. 1. â™ô£ ñ£Pè¬÷»‹ ÜõŸP¡ GóŠHè÷£è ñ£Ÿø¾‹. Þò‚Aè¬÷»‹ OR Þò‚Aè÷£è ñ£Ÿø¾‹ 2. â™ô£ AND 3. ªñ£ˆîˆFŸ°‹ GóŠH¬ò ⴂ辋. ²¼‚è‹ ⇠èEî º¬øèO¡ Ü®Šð¬ì, ÜõŸÁ‚è£ù ⴈ¶‚ 裆´èœ, èEî º¬øèO¡ ªêò™ð£´èœ, å¡PL¼‰¶ ñŸªø£¡ Á‚° ñ£ŸÁî™, Ü®Šð¬ì„ ªêò™ð£´èœ ºîLòù Þ‰îŠ ð£ìˆ F™ è£íŠð†ìù. Ü´ˆ¶ ÌLò¡ èEî‹ ÜPºèŠð´ˆîŠð† ì¶. ÌLò¡ ªî£ì˜è¬÷„ ²¼‚°‹ õNº¬øèœ ÃøŠð†ìù. ÞõŸ¬øŠ ðò¡ð´ˆF I¡ùµ„ ²ŸÁè¬÷ à¼õ£‚°‹ º¬ø¬ò 裋 ð£ìˆF™ 𣘊«ð£‹.

ðJŸCèœ I

«è£®†ì Þ숬î GóŠ¹è

1.

H† â¡ð¶ ________ â¡Â‹ ªê£ŸèO™ Þ¼‰¶ õ‰î¶.

2.

â‡E¬ô â‡èÀ‚° Ü®Šð¬ìò£è ________ à‹, ðF ù£Á G¬ô â‡èÀ‚° Ü®Šð¬ìò£è ________ à‹ Þ¼‚ A¡øù. 55

3.

n

4.

LSB, MSB

5.

ÆìL™ ºî™ ⇬í ________ â¡Á‹, Þó‡ì£‹ ⇬í ________ â¡Á‹ °PŠH´õ˜.

6.

èNˆîL™ àœ÷ Þ¼ M¬ù ãŸHèœ ________, ________ âùŠð´‹.

7.

5864 â¡Â‹ ðF¡ñG¬ô â‡E¡ Þ¼G¬ô õ®õ‹ ________, ðFù£Á G¬ô õ®õ‹ ________.

8.

° H†´èO™ ²NJ¡ Þ󇮡 GóŠ¹ º¬ø õ®õ‹ ________.

9.

èEŠªð£PJ™ ⇠èEî„ ªêò™ð£´èœ ________, ________ Ü®Šð¬ì àœ÷ º¬øèO™ ªêò™ð´ˆîŠð´ A¡øù.

10.

å¼ ¬ð† â¡ð¶ ________ H†´èœ.

11.

å¼ I™Lò¡ ¬ð†´è¬÷ MB â¡ð¶ «ð£™, 1 H™Lò¡ H†´èœ ________ â¡Á °PŠHìŠð´Aø¶.

12 .

68ä MìŠ ªðKî£ù, Þ󇮡 CPò ñ®Š¹ ________. âù«õ 68Þ¡ Þ¼G¬ô õ®õˆF™ ________ Þô‚èƒèœ àœ÷ù.

II.

H† ñ¬ø‚°Pf´ ªðø£î º¿ â‡èœ, ________ ⇠EL¼‰¶, õ¬ó àœ÷ â‡è¬÷‚ °P‚°‹. â¡Â‹ °Á‚èƒèœ ________ , ________ ðõŸPL¼‰¶ õ‰îù.

â¡

H¡õ¼‹ «èœMèÀ‚° M¬ìòO‚辋.

1.

W›‚裵‹ ðF¡ñG¬ô â‡è¬÷, Þ¼G¬ô, â‡E¬ô ñŸÁ‹ ðFù£Á G¬ô õ®õƒèÀ‚° ñ£ŸÁè. Ü. 512 Ý. 1729 Þ. 1001 ß. 777 à. 160

2.

-27 10 â¡ð¬î 8H† Þ󇮡 G󊹺¬øJ™ ⿶è.

3.

ñ¬ø‚°Pf´ àœ÷ މî Þ¼ â‡è¬÷‚ Æ쾋 : +15 10 ñŸÁ‹ + 3610 . â™ô£ â‡è¬÷»‹ 8 H† Þ¼G¬ô â‡è÷£è‚ ªè£‡´ ªêò™ð쾋.

4.

ñ¬ø‚°Pf´ ªðŸø 8 H† â‡èO™ ªðKò¬î»‹, CPò¬î»‹, ðF¡ñ ñŸÁ‹ Þ󇮡 GóŠ¹ º¬øèO™ Ãø¾‹. 56

5.

W›‚裵‹ ñ¬ø‚°Pf´œ÷ Þ¼G¬ô ªêò™ð£´è¬÷„ ªêŒò¾‹. Ü. 1010 + 1510

6.

Ý. –1210 + 510 Þ. 1410 - 1210 ß. ( –210) - (-610)

W›‚裵‹ Þ¼G¬ô â‡è¬÷ ðF¡ñG¬ô‚° ñ£Ÿø¾‹ Ü. 10112

7.

Ý. 110102

â‡è¬÷ Þ¼G¬ô‚° ñ£Ÿø¾‹.

Ý. 1A816

Þ.

Ý.

Þ.

5E916

Ý. 7710

Ý. (A + B)(A + C) = A + BC

W›õ¼‹ ÌLò¡ ªî£ì˜è¬÷„ ²¼‚辋. Ü. Ac Bc Cc + Ac B C + A Bc Cc

14.

Ý. Ac Bc Cc + Ac Bc C + A Bc Cc + A Bc C

®ñ£˜è¡ «îŸøƒè¬÷Š ðò¡ð´ˆF, W›õ¼‹ ÌLò¡ ªî£ì˜è¬÷„ ²¼‚辋 Ü.

15.

Þ. 9510

ÌLò¡ èEîˆ «îŸøƒè¬÷Š ðò¡ð´ˆF, W›õ¼‹ êñ¡ð£´è¬÷ GÏH‚辋. Ü. A + AB = A

13.

Ý. 101110 - 1011

Þ󇮡 ð®G¬ô õNJ™, W›‚裵‹ ðF¡ñG¬ô â‡è¬÷ Þ¼G¬ô‚° ñ£Ÿø¾‹. Ü. 4110

12.

CAFE16

W›õ¼‹ Þ¼G¬ô‚ èEî‚ è킰è¬÷„ ªêŒè. Ü. 11011001 + 1011101

11.

39EB16

W›‚裵‹ ðFù£Á G¬ô â‡è¬÷ ðF¡ñG¬ô‚° ñ£Ÿø¾‹. Ü. B616

10.

Þ. 1111010000102

W›‚裵‹ ðFù£Á G¬ô Ü. F216

9.

Þ. 10100112

W›‚裵‹ Þ¼G¬ô â‡è¬÷ ðFù£Á G¬ô‚° ñ£Ÿø¾‹. Ü. 1012

8.

Ý. 1011102

A C + B+C

(Ac + Bc + Cc)

ªè£´‚辋.

Ý.

((AC) + B) + C

â¡Â‹ ÌLò¡ ªî£ì¼‚è£ù ªñŒŠð†®ò¬ô‚

57

Related Documents

Numbering
November 2019 8
Mobile Numbering
June 2020 10
Numbering System
December 2019 6
Page Numbering
May 2020 4
Mobile Numbering
November 2019 6