Null

  • Uploaded by: Adamito
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Null as PDF for free.

More details

  • Words: 405
  • Pages: 1
‫* ﺑﻌﺪ ﻣﺮاﺟﻌﺔ دروﺳﻚ اﺿﺒﻂ ﺳﺎﻋﺘﻚ و أﻧﺠﺰ هﺬا اﻟﻔﺮض ﻓﻲ ورﻗﺔ ﻧﻈﻴﻔﺔ ﻣﺤﺘﺮﻣﺎ اﻟﻮﻗﺖ اﻟﻤﺤﺪد‬ ‫ﻣﻊ اﺣﺘﺮام ﺿﻮاﺑﻂ و ﻃﻘﻮس إﻧﺠﺎز ﻓﺮض‪.‬‬ ‫* ﻋﻨﺪ اﻻﻧﺘﻬﺎء ﺿﻊ اﻟﻮرﻗﺔ ﻓﻲ ﻣﻠﻒ إﻟﻰ ﻳﻮم إدراج اﻟﺘﺼﺤﻴﺢ ﻓﻲ ﻧﻔﺲ اﻟﻤﻮﻗﻊ‪.‬‬ ‫* ﻳﻮم إدراج اﻟﺘﺼﺤﻴﺢ ﻓﻲ اﻟﻤﻮﻗﻊ هﻮ‪ 20:‬ﻣﺎرس ‪2006‬‬

‫ﻓﺮض ‪ 1‬اﻟﺪورة ‪2‬‬

‫‪ 2‬ﺳﻠﻚ ﺑﻜﺎﻟﻮرﻳﺎ ع ر‬

‫اﻟﻤﺪة‪ :‬ﺳﺎﻋﺘﺎن‬

‫ﺗﻤﺮﻳﻦ‪1‬‬ ‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ f‬ﻟﻤﺘﻐﻴﺮ ﺣﻘﻴﻘﻲ اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ‬ ‫‪x‬‬ ‫‪‬‬ ‫‪x +1‬‬ ‫}‪; x ∈ * − {−1‬‬ ‫= )‪ f ( x‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪ f 0 =1‬‬ ‫) (‬ ‫‪‬‬ ‫‪ -1‬ﺣﺪد ‪ D f‬ﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ ‪ f‬ﺛﻢ ﺣﺪد ﻧﻬﺎﻳﺎت ‪ f‬ﻋﻨﺪ ﻣﺤﺪات ‪D f‬‬

‫‪ -2‬أدرس اﺗﺼﺎل و ﻗﺎﺑﻠﻴﺔ اﺷﺘﻘﺎق ‪ f‬ﻋﻠﻰ }‪− {−1‬‬

‫*‬

‫‪ -3‬أدرس اﺗﺼﺎل و ﻗﺎﺑﻠﻴﺔ اﺷﺘﻘﺎق ‪ f‬ﻓﻲ ‪0‬‬

‫‪x +1‬‬ ‫‪1‬‬ ‫‪+ ln‬‬ ‫‪ -4‬ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ g‬ﻟﻠﻤﺘﻐﻴﺮ اﻟﺤﻘﻴﻘﻲ اﻟﻤﻌﺮف ﺑـ‪:‬‬ ‫‪x +1‬‬ ‫‪x‬‬ ‫أ‪ -‬ﺣﺪد ‪ Dg‬ﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ ‪ g‬ﺛﻢ ﺣﺪد ﻧﻬﺎﻳﺎت ‪ g‬ﻋﻨﺪ ﻣﺤﺪات ‪Dg‬‬ ‫ب‪ -‬أدرس ﺗﻐﻴﺮات ‪g‬‬ ‫ج‪ -‬اﺳﺘﻨﺘﺞ أن ‪0‬‬

‫)‪g ( x‬‬

‫‪g ( x) = −‬‬

‫[∞‪ ∀x ∈ ]−∞; −1[ ∪ ]0; +‬و أﻧﻪ ‪g (α ) = 0‬‬

‫‪ -5‬أدرس ﺗﻐﻴﺮات ‪f‬‬

‫‪ -6‬أﻧﺸﺊ ) (‬

‫‪ C f‬ﻓﻲ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ‬

‫ﻧﻘﺒﻞ أن ‪ −0,3 ≺ α ≺ −0, 2‬و أن ‪0, 7‬‬

‫[‪∃!α ∈ ]−1;0‬‬

‫) ‪( O; i ; j‬‬ ‫) ‪f (α‬‬

‫ﺗﻤﺮﻳﻦ‪2‬‬

‫ﻧﻌﺘﺒﺮ ‪ C‬ﺻﻨﺪوﻗﺎ ﻳﺤﺘﻮي ﻋﻠﻰ ‪ 3‬آﺮات ﺑﻴﻀﺎء و ‪ 4‬آﺮات ﺳﻮداء‬ ‫‪ -1‬ﻧﺴﺤﺐ ﺧﻤﺲ آﺮات ﺑﺎﻟﺘﺘﺎﺑﻊ و ﺑﺈﺣﻼل ﻣﻦ اﻟﺼﻨﺪوق ‪C‬‬ ‫أﺣﺴﺐ اﺣﺘﻤﺎل اﻟﺤﺼﻮل ﻋﻠﻰ ‪ 3‬آﺮات ﺑﻴﻀﺎء ﺑﺎﻟﻀﺒﻂ‬ ‫‪ -2‬ﻧﻌﺘﺒﺮ ﻗﺮﺻﺎ ﻣﻐﺸﻮﺷﺎ أﺣﺪ وﺟﻬﻴﻪ ﻳﺤﻤﻞ اﻟﺮﻗﻢ ‪ 2‬و اﻷﺧﺮ ﻳﺤﻤﻞ اﻟﺮﻗﻢ ‪ 3‬ﺣﻴﺚ اﺣﺘﻤﺎل اﻟﺤﺼﻮل‬ ‫ﻋﻠﻰ اﻟﻮﺟﻪ اﻟﺬي ﻳﺤﻤﻞ اﻟﺮﻗﻢ ‪ 2‬هﻮ‬

‫‪1‬‬ ‫‪3‬‬

‫‪C‬‬

‫" ﻧﺮﻣﻲ اﻟﻘﺮص ﻋﻠﻰ ﻃﺎوﻟﺔ ﻣﺴﺘﻮﻳﺔ ﺛﻢ ﻧﺴﺤﺐ ﻣﻦ اﻟﺼﻨﺪوق‬ ‫ﻳﺴﺎوي اﻟﺮﻗﻢ اﻟﺬي ﻇﻬﺮ ﻋﻠﻰ اﻟﻮﺟﻪ اﻷﻋﻠﻰ ﻟﻠﻘﺮص"‬ ‫أﺣﺴﺐ اﺣﺘﻤﺎل اﻟﺤﺼﻮل ﻋﻠﻰ آﺮة ﺑﻴﻀﺎء واﺣﺪة ﻓﻘﻂ ﺿﻤﻦ اﻟﺴﺤﺒﺔ‬

‫ﺑﺎﻟﺘﺘﺎﺑﻊ و ﺑﺪون إﺣﻼل آﺮات ﻋﺪدهﺎ‬

‫ﺗﻤﺮﻳﻦ‪3‬‬

‫ﻟﻴﻜﻦ ‪ f‬ﺗﺸﺎآﻞ ﻣﻦ اﻟﺰﻣﺮة )×;‪ ( G‬ﻧﺤﻮ اﻟﺰﻣﺮة ) ‪( G ';T‬‬ ‫ﺑﻴﻦ أن )' ‪ f −1 ( H‬زﻣﺮة ﺟﺰﺋﻴﺔ ﻟﺰﻣﺮة )×;‪( G‬‬ ‫}' ‪( f −1 ( H ')) = {x ∈ G / f ( x ) = y ; y ∈ H‬‬

‫‪ .‬ﻟﺘﻜﻦ‬

‫'‪H‬‬

‫زﻣﺮة ﺟﺰﺋﻴﺔ ﻣﻦ‬

‫) ‪( G ';T‬‬

‫ﺗﻤﺮﻳﻦ‪4‬‬ ‫ﻟﺘﻜﻦ‬

‫)∗ ;‪ ( G‬زﻣﺮة ﻋﻨﺼﺮهﺎ اﻟﻤﺤﺎﻳﺪ ‪e‬‬ ‫ﺑﺮهﻦ أﻧﻪ إذا آﺎن ‪∀a ∈ G a ∗ a = e‬‬

‫‪1‬‬

‫ﻓﺎن اﻟﺰﻣﺮة )∗;‪( G‬‬

‫‪Moustaouli Mohamed‬‬

‫ﺗﺒﺎدﻟﻴﺔ‪.‬‬

‫‪http://arabmaths.ift.fr‬‬

‫‪.‬‬

Related Documents

Null
April 2020 0
Null
April 2020 0
Null
April 2020 0
Null
April 2020 0
Null
April 2020 0
Null
April 2020 0

More Documents from ""

Null
November 2019 16
Null
November 2019 9
November 2019 15
Null
November 2019 13
Null
November 2019 19
Null
November 2019 13