Nukleus.docx

  • Uploaded by: Dicki Alzi Pratama
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Nukleus.docx as PDF for free.

More details

  • Words: 4,438
  • Pages: 19
NUKLEUS Penjelasan singkat, fungsi

Komponen2 Gambar, keterangan dan fungsi masing2 komponen Teknologi inti sel Contihnya dlm bidang biotehnology, spesifik ke GMOs (Genetic Modified Organisms)/organisme transgenic

Nukleus Sel Nukleus disebut juga inti sel. Nukleus adalah bagian sel yang fungsinya sebagai pengendali atau pusat perintah kegiatan sel karena di dalam nukleus terdapat benangbenang kromosom. Sel-sel pada umumnya mempunyai satu nukleus inti, akan tetapi sesuai fungsinya, terdapat juga sel yang mempunyai 2 bahkan lebih nukleus inti. Nukleus merupakan bagian sel yang mempunyai ukuran yang lebih besar jika dibandingkan dengan umumnya organel sel. Ukurannya berkisar antara 10 hingga 20 nm. Nukleus letaknya terkadang di tengah atau di tepi. Bentuk nukleus berbentuk bulat atau lonjong mirip dengan cakram. Nukleus dibatasi selaput inti (membran inti) yang tujuannya untuk mengontrol apa saja yang dapat masuk dan keluar nukleus. Tugas nukleus dibutuhkan untuk pertumbuhan dan pembelahan sel dan juga untuk mengontrol reaksi-reaksi kimia. Selain itu nukleus juga mempunyai tugas untuk membawa perintah sintetis pada inti DNA sebab pada bagian dalamnya mengandung DNA code (sandi DNA) untuk menetapkan urut-urutan asam amino protein. Coba perhatikan struktur nukleus pada gambar di bawah ini:

Bagian-Bagian Nukleus Bisa kita lihat pada gambar di atas bahwa di dalam nukleus ada bagia-bagian penyusun, penjelasannya adalah sebagai berikut.  Cairan Inti (Nukleoplasma) yaitu zat yang tersusun atas protein.  Anak Inti (Nukleolus) fungsinya yaiu untuk menyintesis bermacam-macam molekul asam ribonukleat (RNA) yang dipakai dalam penyusunan ribosom.  Butiran komatin terletak di nukleoplasma, dan terlihat jelas ketika sel membelah. Ketika membelah, butiran kromatin menjadi tebal membentuk struktur seperti benang disebut dengan kromosom. Kromosom mengandung asam deoksiribonukleat (DNA) yang fungsinya memberikan informasi genetik lewat sintesis protein.

Fungsi Nukleus Seperti uraian di atas kalau nukleus mempunyai fungsi yang penting dalam sel. Berikut ini adalah rangkuman fungsi nukleus sel:  Fungsi nucleus yaitu sebagai pusat perintah/ pengendalai semua kegiatan sel.  Fungsi nucleus yaitu untuk mengatur pembelahan sel.  Fungsi nucleus yaitu untuk memberikan informasi genetk (DNA) yang melalui pembelahan sel akan mewariskan sifat-sifanya. Demikian apa yang dapat kami uraikan tentang definisi nukleus dan fungsinya, semoga dapat memberikan manfaat.

Struktur nukleolus akan tampak jika dilihat dengan menggunakan mikroskop elektron , bagian-bagian nukleolus antara lain : 1.

Zona Granuler Merupakan bagian pinggir nukleolus dibentuk dari butiran-butiran padat berukuran sedikit lebih kecil dari ribosom dalam sitoplasma yaitu sekitar 150-200 A. Bagian ini mengandung protein ribonukleat.

2. Zona Fibrosa/Nukleolonema Daerah yang terdapat di tengah anak inti dan tampak sebagai benang-benang halus, berupa serat-serat yang berukuran 50-60A, fibril terdiri dari protein ribonukleat. 3. Zona Amorf Daerah amorf yang merupakan matriks anak inti yang tampak homogen dan terdiri dari protein sebagai pengikat kedua bagian diatas. Daerah ini hanya terdapat pada nukleolus tertentu. 4. Nukleolus Kromatin Terdiri dari serat-serat tebalnya 100 A , mengandung DNA pada bagian tertentu .



Teknologi kloning. Suatu cara reproduksi yang menggunakan teknik tingkat tinggi di bidang rekayasa genetika untuk menciptakan makhluk hidup tanpa melalui perkawinan.

Teknik reproduksi ini menjadi terkenal sejak tahun 1996 karena keberhasilan Dr. Ian Welmut, seorang ilmuwan Scotlandia yang sukses melakukan kloning pada domba yang kemudian dikenal dengan Dolly. Sekarang teknik dan tingkat keberhasilan kloning telah begitu pesat. Salah satu negara yang sukses menguasai teknologi ini sekaligus menjadikannya sebagai lahan bisnis modern adalah Korea Selatan.

Teknologi Cloning : Cara menciptakan makhluk hidup tanpa perkawinan Kloning berasal dari kata ‘clone’, artinya mencangkok. Secara sederhana bisa dipahami, teknik ini adalah cara reproduksi vegetatif buatan yang dilakukan pada hewan dan atau manusia. Seperti yang kita ketahui bahwa mayoritas hewan (termasuk manusia) hanya bisa melakukan reproduksi generatif (kawin) yang dicirikan adanya rekombinasi gen hasil proses fertilisasi ovum oleh sperma. Sedangkan pada reproduksi vegetatif tidak ada proses tersebut, karena individu baru (baca: anak) berasal dari bagian tubuh tertentu dari induknya. Dengan teknik kloning, hewan dan manusia bisa diperbanyak secara vegetatif (tanpa kawin). Teknik ini melibatkan dua pihak, yaitu donor sel somatis (sel tubuh) dan donor ovum (sel gamet). Meskipun pada proses ini kehadiran induk betina adalah hal yang mutlak dan tidak mungkin dihindari, tetapi pada proses tersebut tidak ada fertilisasi dan rekombinasi (perpaduan) gen dari induk jantan dan induk betina. Ini mengakibatkan anak yang dihasilkan memiliki sifat yang (boleh dikatakan) sama persis dengan ‘induk’ donor sel somatis. Untuk lebih jelas, berikut ini uraian dasar proses kloning pada domba Dolly beberapa tahun lalu. Perhatikan gambar berikut. Langkah kloning dimulai dengan pengambilan sel puting susu seekor domba. Sel ini disebut sel somatis (sel tubuh). Dari domba betina lain diambil sebuah ovum (sel telur) yang kemudian dihilangkan inti selnya. Proses berikutnya adalah fusi (penyatuan) dua sel tersebut dengan memberikan kejutan listrik yang mengakibatkan ‘terbukanya’ membran sel telur sehingga kedua sel bisa menyatu. Dari langkah ini telah diperoleh sebuah sel telur yang berisi inti sel somatis. Ternyata hasil fusi sel tersebut memperlihatkan sifat yang mirip dengan zigot, dan akan mulai melakukan proses pembelahan. Sebagai langkah terakhir, ‘zigot’ tersebut akan ditanamkan pada rahim induk domba betina, sehingga sang domba tersebut hamil. Anak domba yang lahir itulah yang dinamakan Dolly, dan memiliki sifat yang sangat sangat mirip dengan domba donor sel puting susu tersebut di atas. Dolly lahir dengan selamat dan sehat sentausa. Sayangnya selama perjalanan hidupnya dia gampang sakit dan akhirnya mati pada umur 6 tahun, hanya mencapai umur separoh dari ratarata masa hidup domba normal. Padahal kloning yang dilakukan pada hewan spesies lain tidak mengalami masalah. Dari hasil penyelidikan kromosomal, ternyata ditemui bahwa Dolly mengalami pemendekan telomere. Telomere adalah suatu pengulangan sekuen DNA yang biasa didapati diujung akhir sebuah kromosom. Uniknya, setiap kali sel membelah dan kromosom melakukan replikasi,

sebagian kecil dari ujung kromosom ini selalu hilang entah kemana. Penyebab dan mekanismenya juga belum diketahui sampai sekarang. Masalah pemendekan telomere ini diketahui menyebabkan munculnya sinyal agar sel berhenti membelah. Hal inilah yang diduga berhubungan erat dengan percepatan penuaan dan kematian. Pemendekan telomere ini ternyata disebabkan oleh aktivitas enzim yang dikenal dengan telomerase. Sejalan dengan perkembangan teknik kloning, para ilmuwan telah mampu membuka harapan besar untuk menghidupkan kembali satwa-satwa yang telah punah. Seorang profesor Biologi asal Jepang, Teruhiko Wakayama, berhasil membuat kloning dari seekor mencit yang telah beku selama dua dekade. Keberhasilan ini memicu kemungkinan terobosan yang lebih spektakuler lagi, yakni ‘membangkitkan kembali’ makhluk hidup yang telah punah! Misalnya burung Dodo (Raphus cucullatus), serigala Tasmania (Thylacinus cynocephalus), Quagga (Equus quagga), sampai beberapa subspesies dari harimau yang telah punah (Panthera tigris balica, Panthera tigris sondaicus). Ini bukan isapan jempol belaka! Para ilmuwan di San Diego telah mengambil sedikit jaringan dari spesimen awetan banteng Jawa yang telah mati selama beberapa tahun, kemudian mengisolasi DNA banteng Jawa tersebut dan memasukkan inti sel sintesis ke sel telur sapi biasa. Hasilnya, dua ekor banteng Jawa berhasil dilahirkan dari rahim sapi biasa. Jadi impian menghidupkan spesies yang telah punah, seperti Jurassic Park, tidak lagi dianggap science-fiction belaka. Bagaimana dengan kloning manusia? Inilah masalahnya. Banyak negara dan agamawan yang terang-terangan melarang dan menolak kloning pada manusia karena masalah itu bersinggungan dengan moral, etika, dan agama, belum lagi keruwetan silsilah. Bayangkan begini: saya bertindak sebagai donor sel somatis yang hendak diklon. Sel telur (ovum) diambil dari Tamara Blezinski, dan zigot ditanamkan dirahim Luna Maya. Pertanyaannya: bayi yang lahir anak siapa? Itu hanya masalah sederhana yang gampang dipahami oleh awam. Jika dikaitkan dengan berbagai peraturan keagamaan, soal itu bisa jadi lebih ruwet lagi. Jadi saya gak mau membahasnya. Namun demikian, beberapa pihak mengklaim telah melakukan kloning pada manusia, misalnya: 





Severino Antinori, ginekolog terkenal asal Italia, mengaku berhasil mengkloning tiga bayi sekaligus. Dokter kontroversial ini pernah membantu wanita menopause berusia 63 tahun untuk melahirkan. Konon dr Antinori inilah yang berhasil melakukan klone pada manusia dan lahirlah bayi perempuan yang dinamai Eve, yang sekarang telah berusia 6 tahun. dr Panayiotis Zavos, seorang ilmuwan asal Amerika Serikat, mengaku telah mengkloning manusia. Kepada surat kabar Inggris, Independent,Zavos mengaku berhasil mengkloning 14 embrio manusia, 11 di antaranya sudah ditanam di rahim empat orang wanita. Stemagen Corp., mengklaim menjadi peneliti pertama yang berhasil mengkloning manusia. Mereka menggunakan teknik bernama somatic cell nuclear transfer, atau SCNT, yang melibatkan lubang dari sel telur yang disuntikkan sebuah sel nukleus dari seorang donor untuk kemudian dikloning dengan sel kulit yang berasal dari dua orang laki-laki.

Lepas dari kontroversi masalah kloning pada manusia, tampaknya ilmu pengetahuan bio molekuler dan rekayasa genetika akan tetap melaju tak terbendung dengan segala kelebihan dan kekurangannya. Seperti juga di dunia fisika teoritis, upaya memburu ‘Partikel Tuhan’

untuk menjawab asal mula pembentukan semesta ini mulai menampakkan hasil. Kedua bidang itulah yang tampaknya menyebabkan manusia secara tak sadar mulai menjejakkan kaki selangkah masuk ke wilayah Tuhan.



1. Rekayasa Genetika

Masih ingatkah Anda tentang materi gen pada pelajaran yang lalu? Setiap makhluk hidup mempunyai gen. Gen merupakan penentu sifat yang terdapat di dalam kromosom. Apabila gen ini berubah, maka sifat dari makhluk hidup juga berubah, sehingga banyak ahli yang memanfaatkan untuk mengubah gen dengan tujuan mendapatkan organisme baru yang memiliki sifat sesuai yang dikehendaki. Proses pengubahan gen-gen ini disebut dengan nama rekayasa genetika. Ada beberapa macam rekayasa genetika di antaranya adalah rekombinasi DNA, fusi sel, dan transfer inti.

a. Rekombinasi DNA Hal yang mendasar dan sangat penting dalam makhluk hidup adalah jika terjadi proses reproduksi secara seksual yang normal, maka akan terjadi pemisahan dan penggabungan kembali molekul-molekul DNA dari kromosom. Teknik pemisahan dan penggabungan ini dijadikan oleh ilmuwan untuk lebih dikembangkan. Setiap jenis makhluk hidup mempunyai struktur DNA yang sama, untuk itulah DNA dari satu spesies dapat disambungkan dengan DNA dari spesies yang lain, dengan tujuan agar mendapatkan sifat yang baru. Proses penyambungan ini dikenal dengan nama rekombinasi DNA. Misalnya, telah ditemukannya gen seekor sapi yang berhasil dipindahkan ke dalam bakteri sehingga bakteri tersebut telah menerima gen asing yang tepat seperti gen aslinya. Gen ini akan mempunyai sifat-sifat dari sapi tersebut dan akan mempunyai sifat gen baru disebut gen yang diklon.

Rekayasa genetik dapat mengubah genotipe suatu organisme dengan cara mengenalkan gengen baru yang belum dimiliki oleh suatu spesies. Teknik menyambung gen ini telah berhasil dan sukses dalam menghasilkan gen baru. Para ahli menggunakan teknik rekayasa genetika dengan menggunakan mikroba-mikroba seperti bakteri untuk membuat substansi yang tidak dapat dibuat oleh organisme yang direkayasa. Tetapi pengenalan gengen dalam bakteri jauh lebih sulit, karena para ahli harus mendapatkan gen yang diinginkan kemudian menggabungkan ke dalam DNA dari bakteri.

Gen yang diinginkan ini akan dihubungkan menjadi suatu lingkaran DNA bakteri kecil yang disebut dengan plasmid. Kemudian plasmid ini siap untuk memasuki sel bakteri dan akan direplikasi bersama-sama DNA selnya sendiri. Dengan cara ini, maka semua gen plasmid dan sel-selnya seperti gen-gen aslinya. Selanjutnya, plasmid ini akan diteruskan dari satu sel ke sel lainnya dengan cara transformasi. Untuk menghubungkan gen-gen asing ke dalam plasmid memerlukan rekombinasi genetik. Berikut ini produkproduk yang telah berhasil dalam rekombinasi gen.

1) Pembuatan Insulin Saat ini banyak sekali orang yang menderita penyakit kencing manis (diabetes mellitus). Penderita diabetes akan mengalami kekurangan hormon insulin. Para ilmuwan telah berhasil mengatasi penyakit ini dengan cara gen penghasil insulin manusia diambil dari DNA sel manusia, yaitu dengan memotong DNA sel manusia dengan menggunakan enzim pemotong. Gen yang menghasilkan insulin ini akan disambungkan pada plasmid bakteri Escherichia coli. Hasil sambungan ini kemudian dimasukkan ke dalam sel bakteri Escherichia coli, sehingga bakteri tersebut sudah mengandung gen insulin manusia.

bakteri Escherichia coli

Spesies ini dipelihara dalam tempat yang khusus untuk dikembangbiakkan dengan tujuan agar dapat memproduksi insulin manusia. Selanjutnya, produk tersebut ditampung sebagai obat bagi penderita diabtes mellitus. Amatilah Gambar berikut agar lebih jelas!

Pembuatan insulin pada manusia

Rekombinasi gen dalam pembuatan insulin ini memiliki keunggulan, yaitu insulin yang dihasilkan lebih murni karena mengandung protein manusia sehingga insulin ini bisa diterima oleh tubuh manusia, biaya lebih murah dibandingkan dengan pembuatan insulin menggunakan gen pankreas hewan, prosesnya dapat dihentikan sampai kapan pun karena bakteri dapat disimpan sampai diperlukan lagi.

2) Pembuatan Vaksin Hepatitis Saat ini vaksin hepatitis sudah tersedia, sehingga anak-anak maupun orang dewasa dianjurkan untuk melakukan vaksinasi hepatitis. Hepatitis merupakan penyakit hati yang disebabkan oleh virus. Virus terdiri atas selubung protein dan DNA-nya. Jika bagian selubung protein ini dimasukkan dalam tubuh manusia, maka tubuh akan membentuk antibodi sehingga tubuh dapat menangkal virus yang masuk. Saat ini sudah berhasil diisolasi gen yang menghasilkan selubung protein tanpa menghasilkan DNA-nya. Caranya hampir sama dengan pembuatan insulin, yaitu gen tersebut dimasukkan ke dalam sel ragi Saccharomyces sehingga sel ragi ini akan menghasilkan protein virus yang tidak berbahaya bagi tubuh kita. Jika protein tersebut disuntikkan ke dalam tubuh, maka tubuh akan memproduksi antibodi, akibatnya orang yang disuntik akan kebal dari serangan virus hepatitis.

b. Teknologi Hibridoma

Teknologi hibridoma dikenal dengan fusi sel, yaitu peleburan/fusi dua sel yang berbeda menjadi kesatuan tunggal yang mengandung gen-gen dari kedua sel asli. Sel yang dihasilkan dari fusi ini dinamakan hibridoma (hibrid = sel asli yang dicampur, oma = kanker). Perhatikan Gambar berikut:

Fusi secara elektrik

Hibridoma ini sering digunakan untuk memperoleh antibodi dalam pemeriksaan kesehatan dan pengobatan. Apabila sel-sel sekali melebur menjadi satu, maka sel-sel ini akan menghasilkan protein yang sangat baik. Misalnya, antibodi monoklonal dapat digunakan untuk mendiagnosis penyakit, tes kehamilan, dan mengobati kanker. Berikut ini contoh dari keberhasilan dari fusi sel.

1) Fusi Sel Manusia dengan Sel Tikus Sel limfosit manusia mampu menghasilkan antibodi, tetapi jika dikultur dan dipelihara proses pembelahannya sangat lambat. Sel manusia tersebut difusikan dengan sel kanker tikus dengan tujuan dapat membelah dengan cepat karena sel tikus mengandung mieloma yang mempunyai kemampuan untuk membelah dengan cepat. Hibridoma yang terbentuk akan mendapatkan antibodi (sifat sel manusia) dan mampu untuk membelah dengan cepat (sifat sel kanker tikus).

2) Fusi Sel Tomat dan Kentang

Fusi sel tumbuhan sering disebut dengan fusi protoplasma karena dalam fusi sel antartumbuhan ini dinding sel tumbuhan yang tersusun atas selulosa harus dihancurkan oleh enzim terlebih dahulu, maka tinggallah protoplasma untuk difusikan. Misalnya, tanaman tomato, yaitu tanaman baru yang berbuah tomat dan berumbi kentang.

c. Transfer Inti (Kloning) Transfer inti merupakan proses pemindahan inti sel tubuh ke dalam sel telur tanpa inti, sehingga sel telur tersebut akan membelah diri dan menjadi embrio. Transfer inti sebenarnya adalah kloning inti. Transfer inti pertama kali dilakukan oleh John Guardon yang dicobakan pada katak. Pada mulanya ovum pada katak dirusak intinya dengan radiasi, kemudian dimasukkan sel inti tubuh lainnya, yaitu sel somatik usus katak lainnya, maka akan tumbuh zigot baru dan akan tumbuh menjadi katak. Proses ini merupakan reproduksi paraseksual karena bukan merupakan reproduksi seksual dan aseksual.

Kloning seekor katak, Keterangan: 1. Sepotong jaringan kulit diambil dari seekor katak. 2. Sel-sel jaringan itu dibiakkan. 3. Inti salah satu itu ditransplantasikan ke sel telur penerima (inti sel telur ini sudah dikeluarkan). 4. Telur itu berkembang menjadi embrio. 5. Sel-sel embrio dipisah-pisahkan. 6. Inti sebuah sel embrio ditransplantasikan ke dalam sel telur penerima lainnya. Telur itu berkembang menjadi suatu klon katak semula.

Keberhasilan transfer inti adalah dilakukannya kloning domba ‘Dolly’. Inti sel tubuh yang diambil dari jaringan kelenjar susu domba bermuka putih, sedangkan ovumnya diambilkan dari domba betina yang bermuka hitam yang intinya telah dirusak sehingga menjadi ovum tak berinti. Selanjutnya, inti sel tubuh domba muka putih dimasukkan ke dalam ovum domba muka hitam dan dipelihara sampai mencapai tahap blastula, kemudian dimasukkan ke dalam uterus domba bermuka hitam, dan hasilnya akan lahirlah domba Dolly. Bagaimana dengan kloning pada tumbuhan? Secara tidak sengaja kita sebenarnya sudah melakukan kloning pada tumbuhan, yaitu saat mencangkok, menyetek, tetapi hasilnya tidak banyak menghasilkan individu baru.

Dolly domba hasil kloning

2. Bayi Tabung Teknik fertilisasi bayi tabung dilakukan secara invitro, yaitu suatu proses pembuahan yang secara sengaja dilakukan di luar tubuh manusia. Teknik ini prosesnya hampir sama dengan fertilisasi secara eksternal, masih ingatkah Anda dengan sistem ini? Pada mulanya sel-sel telur yang mutunya baik dari ibu diseleksi, demikian juga sperma dari ayah. Kemudian dipertemukan dalam cawan petri yang sudah diberi nutrien yang keadaan lingkungannya disesuaikan dalam rahim, kemudian sperma akan membuahi sel telur dan terbentuk zigot. Setelah berumur 2-5 hari embrio ditanam di dalam rahim kemudian tumbuh dan akan lahir. Teknik ini sudah dilakukan dan berhasil di Rumah Sakit Umum Pusat Dr. Sarjito Yogyakarta

dengan mengembangkan bayi tabung kembar tiga, yaitu satu laki-laki dan dua perempuan yang lahir dengan bedah caesar pada tanggal 10 Februari 1998.

3. Teknik Hibridasi atau Kawin Suntik/Inseminasi Buatan Teknik hibridisasi atau pembastaran merupakan perkawinan silang untuk memperoleh bibit yang unggul. Umumnya dilakukan pada hewan sapi. Bagaimana cara yang dilakukan dalam teknik kawin suntik ini? Pada prinsipnya, caranya dilakukan dengan mengambil sperma atau semen dari hewan yang memiliki bibit unggul untuk disuntikkan ke dalam alat kelamin hewan betina. Tujuannya untuk mendapatkan keturunan dengan perpaduan sifat-sifat dari induknya yang lebih baik. Teknik inseminasi ini harus mengetahui masa kawin hewan. Pada saat sapi jantan akan mengawini sapi betina, terlebih dahulu spermanya ditampung, kemudian dimasukkan ke dalam alat inseminasi buatan untuk disuntikkan ke dalam alat kelamin betina yang akan dikawinkan. Sebelum alat tersebut dimasukkan anus dan usus besar, sapi dibersihkan dari kotoran, dan orang yang akan melakukannya mencuci tangannya dan menggunakan sarung tangan, selanjutnya tangan dimasukkan ke dalam anus untuk meraba kedudukan rahim agar posisi alat tersebut dapat dimasukkan dengan tepat. Setelah itu alat inseminasi dimasukkan lewat vagina sapi betina sampai alat tersebut jika dilepas tidak jatuh, apabila jatuh berarti posisinya tidak benar dan harus diulang. Setelah posisinya tepat perlahan-lahan sperma disuntikkan.

4. Perkawinan Silang Ingat kembali pelajaran sebelumnya tentang pewarisan sifat! Perkawinan silang atau disebut pembastaran (hibridisasi) adalah perkawinan antara dua individu yang berbeda sifat tetapi masih dalam satu spesies. Bibit yang akan disilangkan adalah bibit yang mempunyai sifatsifat paling baik pada tanaman sejenis. Misalnya, antara padi A (sifat berumur pendek, berbulir sedikit) disilangkan dengan padi B (sifat berumur panjang, berbulir banyak), maka akan menghasilkan padi jenis C dengan salah satu sifat sebagai berikut.

1) berumur pendek dan berbulir banyak, 2) berumur panjang dan berbulir sedikit, 3) berumur pendek dan berbulir sedikit, 4) berumur panjang dan berbulir banyak. Di antara ke-4 sifat tersebut sifat yang paling unggul adalah berumur pendek dan berbulir banyak, maka tanaman inilah yang akan dijadikan sebagai bibit unggul.

A.

Pengertian GMO (Genetically Modified Organism) Rekayasa genetika atau modifikasi genetika adalah suatu perubahan yang terjadi pada DNA dengan cara transfer gen di antara dan di dalam benda hidup lainnya yang berbeda. Sebagai contoh kita dapat mengambil gen dari ikan yang hidup di perairan laut yang sangat dingin kemudian ditransfer ke DNA strawberri, untuk mendapatkan produk stawberry yang tahan cuaca dingin. Pangan transgenik atau GMO (genetically modified organism) adalah penganan yang bahan dasarnya berasal dari organisme hasil rekayasa genetika. Teknologi ini sebenarnya bertujuan meningkatkan dan menyempurnakan kualitas pangan. Dengan bioteknologi ini, gen dari berbagai sumber dapat dipindahkan ke tanaman yang akan diperbaiki sifatnya. Dilihat dari tujuan dikembangkannya, teknologi ini baik terutama dalam mengatasi masalah penyediaan pangan. Pangan dengan kualitas baik dan harga cukup terjangkau dapat menguntungkan masyarakat juga petani. Sebagai contoh, tomat yang awalnya tidak bisa ditanam di daerah bersuhu rendah direkayasa supaya dapat menjadi tanaman tahan beku dan memiliki musim tumbuh lebih lama. Contoh lainnya kedelai yang rawan akan hama lantas disisipi bakteri dari tanah yang mampu mengeluarkan pestisida alami, sehingga petani dapat meminimalkan penggunaan pestisida kimia

B.

Proses GMO (Genetically Modified Organism) Pada dasarnya ada tiga kemungkinan yang dapat terjadi setelah transformasi dilakukan, yaitu (1) sel inang tidak dimasuki DNA apa pun atau berarti transformasi gagal, (2) sel inang dimasuki vektor religasi atau berarti ligasi gagal, dan (3) sel inang dimasuki vektor rekombinan dengan/tanpa fragmen sisipan atau gen yang diinginkan. Untuk membedakan antara kemungkinan pertama dan kedua dilihat perubahan sifat yang terjadi pada sel inang. Jika sel inang memperlihatkan dua sifat marker vektor, maka dapat dipastikan bahwa kemungkinan kedualah yang terjadi. Selanjutnya, untuk membedakan antara kemungkinan kedua dan ketiga dilihat pula perubahan sifat yang terjadi pada sel inang. Jika sel inang hanya memperlihatkan salah satu sifat di antara kedua marker vektor, maka dapat dipastikan bahwa kemungkinan ketigalah yang terjadi. Seleksi sel rekombinan yang membawa fragmen yang diinginkan dilakukan dengan mencari fragmen tersebut menggunakan fragmen pelacak (probe), yang pembuatannya dilakukan secara in vitro menggunakan teknik reaksi polimerisasi berantai atau polymerase chain reaction (PCR).. Pelacakan fragmen yang diinginkan antara lain dapat dilakukan melalui cara yang dinamakan hibridisasi koloni. Koloni-koloni sel rekombinan ditransfer ke

membran nilon, dilisis agar isi selnya keluar, dibersihkan protein dan remukan sel lainnya hingga tinggal tersisa DNAnya saja. Selanjutnya, dilakukan fiksasi DNA dan perendaman di dalam larutan pelacak. Posisi-posisi DNA yang terhibridisasi oleh fragmen pelacak dicocokkan dengan posisi koloni pada kultur awal (master plate). Dengan demikian, kita bisa menentukan koloni-koloni sel rekombinan yang membawa fragmen yang diinginkan. Susunan materil genetic diubah dengan jalan menyisipkan gen baru yang unggul ke dalam kromosomnya.Tanaman transgenik memiliki kualitas lebih dibanding tanaman konvensional, kandungan nutrisi lebih tinggi, tahan hama, tahan cuaca, umur pendek, dll; sehingga penanaman komoditas tersebut dapat memenuhi kebutuhan pangan secara cepat dan menghemat devisa akibat penghematan pemakaian pestisida atau bahan kimia lain serta tanaman transgenik produksi lebih baik Teknik rekayasa genetika sama dengan pemuliaan tanaman; yaitu memperbaiki sifatsifat tanaman dengan menambah sifat-sifat ketahanan terhadap cekaman hama maupun lingkungan yang kurang menguntungkan; sehingga tanaman transgenik memiliki kualitas lebih baik dari tanaman konvensional, serta bukan hal baru karena sudah lama dilakukan tetapi tidak disadari oleh masyarakat;

C.

Tujuan GMO (Genetically Modified Organism) Tujuan memindahkan gen tersebut untuk mendapatkan organisme baru yang memiliki sifat lebih baik. Hasilnya saat ini sudah banyak jenis tanaman transgenik, misalnya jagung, kentang, kacang, kedelai, dan kapas. Keunggulan dari tanaman transgenic tersebut umumnya adalah tahan terhadap serangan hama. Pangan transgenik juga dapat menjadi solusi untuk masalah penyediaan pangan di Indonesia yaitu dengan memperbaiki mutu dan meningkatkan jumlah produksi melalui teknologi DNA rekombinan. Dengan upaya tersebut diharapkan diperoleh produk pangan yang unggul dan sesuai dengan kesehatan manusia. Beberapa manfaat yang bisa diperoleh dari konsumsi pangan transgenik diantaranya adalah jika dimodifikasi sedemikian rupa pangan transgenik memiliki kandungan nutrisi atau komponen gizi yang lebih baik daripada pangan sejenis yang non-transgenik. Selain itu juga memiliki ketahanan yang tinggi terhadap herbisida dan daya simpan yang lebih lama. Rekayasa genetika seperti dalam pembuatan pangan transgenik dilakukan untuk kesejahteraan manusia. Akan tetapi, terkadang muncul dampak yang tidak diinginkan, yaitu dampak negatif dan positifnya.

D.

Aplikasi GMO (Genetically Modified Organism). Teknologi DNA rekombinan atau rekayasa genetika telah melahirkan revolusi baru dalam berbagai bidang kehidupan manusia, yang dikenal sebagai revolusi gen. Produk teknologi tersebut berupa organisme transgenik atau organisme hasil modifikasi genetik (OHMG), yang dalam bahasa Inggris disebut dengan genetically modified organism (GMO). Namun, sering kali pula aplikasi teknologi DNA rekombinan bukan berupa pemanfaatan langsung organisme transgeniknya, melainkan produk yang dihasilkan oleh organisme transgenik. Dewasa ini cukup banyak organisme transgenik atau pun produknya yang dikenal oleh kalangan masyarakat luas. Beberapa di antaranya bahkan telah digunakan untuk memenuhi kebutuhan hidup sehari-hari. Berikut ini akan dikemukakan beberapa contoh pemanfaatan organisme transgenik dan produk yang dihasilkannya dalam berbagai bidang kehidupan manusia.

1.

Pertanian Aplikasi teknologi DNA rekombinan di bidang pertanian berkembang pesat dengan

dimungkinkannya transfer gen asing ke dalam tanaman dengan bantuan bakteri Agrobacterium tumefaciens. Melalui cara ini telah berhasil diperoleh sejumlah tanaman transgenik seperti tomat dan tembakau dengan sifat-sifat yang diinginkan, misalnya perlambatan kematangan buah dan resistensi terhadap hama dan penyakit tertentu. Pada tahun 1996 luas areal untuk tanaman transgenik di seluruh dunia telah mencapai 1,7 ha, dan tiga tahun kemudian meningkat menjadi hampir 40 juta ha. Negara- negara yang melakukan penanaman tersebut antara lain Amerika Serikat (28,7 juta ha), Argentina (6,7 juta ha), Kanada (4 juta ha), Cina (0,3 juta ha), Australia (0,1 juta ha), dan Afrika Selatan (0,1 juta ha). Indonesia sendiri pada tahun 1999 telah mengimpor produk pertanian tanaman pangan transgenik berupa kedelai sebanyak 1,09 juta ton, bungkil kedelai 780.000 ton, dan jagung 687.000 ton. Pengembangan tanaman transgenik di Indonesia meliputi jagung (Jawa Tengah), kapas (Jawa Tengah dan Sulawesi Selatan), kedelai, kentang, dan padi (Jawa Tengah). Sementara itu, tanaman transgenik lainnya yang masih dalam tahap penelitian di Indonesia adalah kacang tanah, kakao, tebu, tembakau, dan ubi jalar. Di bidang peternakan hampir seluruh faktor produksi telah tersentuh oleh teknologi DNA rekombinan, misalnya penurunan morbiditas penyakit ternak serta perbaikan kualitas pakan dan bibit. Vaksin-vaksin untuk penyakit mulut dan kuku pada sapi, rabies pada anjing, blue tongue pada domba, white-diarrhea pada babi, dan fish-fibrosis pada ikan telah

diproduksi menggunakan teknologi DNA rekombinan. Di samping itu, juga telah dihasilkan hormon pertumbuhan untuk sapi (recombinant bovine somatotropine atau rBST), babi (recombinant porcine somatotropine atau rPST), dan ayam (chicken growth hormone). Penemuan ternak transgenik yang paling menggegerkan dunia adalah ketika keberhasilan kloning domba Dolly diumumkan pada tanggal 23 Februari 1997. Pada dasarnya rekayasa genetika di bidang pertanian bertujuan untuk menciptakan ketahanan pangan suatu negara dengan cara meningkatkan produksi, kualitas, dan upaya penanganan pascapanen serta prosesing hasil pertanian. Peningkatkan produksi pangan melalui revolusi gen ini ternyata memperlihatkan hasil yang jauh melampaui produksi pangan yang dicapai dalam era revolusi hijau. Di samping itu, kualitas gizi serta daya simpan produk pertanian juga dapat ditingkatkan sehingga secara ekonomi memberikan keuntungan yang cukup nyata. Adapun dampak positif yang sebenarnya diharapkan akan menyertai penemuan produk pangan hasil rekayasa genetika adalah terciptanya keanekaragaman hayati yang lebih tinggi.

2.

Perkebunan, kehutanan, dan florikultur Perkebunan kelapa sawit transgenik dengan minyak sawit yang kadar karotennya

lebih tinggi saat ini mulai dirintis pengembangannya. Begitu pula, telah dikembangkan perkebunan karet transgenik dengan kadar protein lateks yang lebih tinggi dan perkebunan kapas transgenik yang mampu menghasilkan serat kapas berwarna yang lebih kuat. Di bidang kehutanan telah dikembangkan tanaman jati transgenik, yang memiliki struktur kayu lebih baik. Sementara itu, di bidang florikultur antara lain telah diperoleh tanaman anggrek transgenik dengan masa kesegaran bunga yang lama. Demikian pula, telah dapat dihasilkan beberapa jenis tanaman bunga transgenik lainnya dengan warna bunga yang diinginkan dan masa kesegaran bunga yang lebih panjang. 3.

Kesehatan Di bidang kesehatan, rekayasa genetika terbukti mampu menghasilkan berbagai jenis

obat dengan kualitas yang lebih baik sehingga memberikan harapan dalam upaya penyembuhan sejumlah penyakit di masa mendatang. Bahan-bahan untuk mendiagnosis berbagai macam penyakit dengan lebih akurat juga telah dapat dihasilkan. Teknik rekayasa genetika memungkinkan diperolehnya berbagai produk industri farmasi penting seperti insulin, interferon, dan beberapa hormon pertumbuhan dengan cara yang lebih efisien. Hal ini karena gen yang bertanggung jawab atas sintesis produk-produk

tersebut diklon ke dalam sel inang bakteri tertentu yang sangat cepat pertumbuhannya dan hanya memerlukan cara kultivasi biasa.

4.

Lingkungan Rekayasa genetika ternyata sangat berpotensi untuk diaplikasikan dalam upaya

penyelamatan keanekaragaman hayati, bahkan dalam bioremidiasi lingkungan yang sudah terlanjur rusak. Dewasa ini berbagai strain bakteri yang dapat digunakan untuk membersihkan lingkungan dari bermacam-macam faktor pencemaran telah ditemukan dan diproduksi dalam skala industri. Sebagai contoh, sejumlah pantai di salah satu negara industri dilaporkan telah tercemari oleh metilmerkuri yang bersifat racun keras baik bagi hewan maupun manusia meskipun dalam konsentrasi yang kecil sekali. Detoksifikasi logam air raksa (merkuri) organik ini dilakukan menggunakan tanaman Arabidopsis thaliana transgenik yang membawa gen bakteri tertentu yang dapat menghasilkan produk untuk mendetoksifikasi air raksa organik. 5.

Industri Pada industri pengolahan pangan, misalnya pada pembuatan keju, enzim renet yang

digunakan juga merupakan produk organisme transgenik. Hampir 40% keju keras (hard cheese) yang diproduksi di Amerika Serikat menggunakan enzim yang berasal dari organisme transgenik. Demikian pula, bahan-bahan food additive seperti penambah cita rasa makanan, pengawet makanan, pewarna pangan, pengental pangan, dan sebagainya saat ini banyak menggunakan produk organisme transgenik

More Documents from "Dicki Alzi Pratama"