Noyaux Masse Et Energie

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Noyaux Masse Et Energie as PDF for free.

More details

  • Words: 1,452
  • Pages: 4
‫اى ‪،‬ا  وا‬ ‫‪ I‬ا  '' آ ‪''  -‬‬ ‫‪  (1‬أ ‪:‬‬ ‫ﺃﺛﺒﺘﺖ ﺍﳌﻴﻜﺎﻧﻴﻚ ﺍﻟﻨﺴﺒﻮﻳﺔ ﺍﳋﺎﺻﺔ ﺍﻟﱵ ﺃﻧﺸﺄﻫﺎ ﺃﻟﺒﲑﺕ ﺃﻳﻨﺸﺘﺎﻳﻦ ﺳﻨﺔ ‪1905‬ﻡ ﺃﻥ ﻫﻨﺎﻙ ﺗﻜﺎﻓﺆﺍ ﺑﲔ ﺍﻟﻜﺘﻠﺔ ﻭﺍﻟﻄﺎﻗﺔ)ﺃﻱ ﺃﻥ ﺍﻟﻜﺘﻠﺔ ﺗﻌﺘـﱪ‬ ‫ﺷﻜﻼ ﻣﻦ ﺃﺷﻜﺎﻝ ﺍﻟﻄﺎﻗﺔ(‪ ،‬ﲝﻴﺚ ﺃﻥ ﻛﻞ ﳎﻤﻮﻋﺔ ﻣﺎﺩﻳﺔ ﻛﺘﻠﺘﻬﺎ ‪ m‬ﲤﺘﻠﻚ ﻃﺎﻗﺔ ‪ E‬ﺗﺴﻤﻰ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﺘﻠﻴﺔ ﻭﻫﻲ ﺗﺴﺎﻭﻱ ﺣﺎﺻﻞ ﺿﺮﺏ‬ ‫ﺍﻟﻜﺘﻠﺔ ﻭﻣﺮﺑﻊ ﺳﺮﻋﺔ ﺍﻧﺘﺸﺎﺭ ﺍﻟﻀﻮﺀ ﰲ ﺍﻟﻔﺮﺍﻍ ‪.‬‬

‫ﻭﻭﺣﺪﺓ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﺘﻠﻴﺔ ﰲ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻟﻨﻮﻭﻳﺔ ﻫﻲ ﺍﻹﻟﻜﺘﺮﻭﻥ‪ -‬ﻓﻮﻟﻂ ) ‪ (eV‬ﺍﻟﺬﻱ ﺗﺮﺑﻄﻪ ﺑﺎﳉﻮﻝ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﺎﻟﻴﺔ‪. 1eV = 1,6 × 10 −19 J :‬‬ ‫ﻭﻣﻦ ﻣﻀﺎﻋﻔﺎﺗﻪ ﺍﳌﻴﻐﺎ ﺇﻟﻜﺘﺮﻭﻥ ﻓﻮﻟﻂ ‪1MeV = 10 6 eV = 1,6 × 10 −13 J‬‬

‫ﻭﺗﺒﲔ ﻫﺬﻩ ﺍﻟﻌﻼﻗﺔ ﺃﻥ ﻛﻞ ﺗﻐﲑ ﻟﻜﺘﻠﺔ ﳎﻤﻮﻋﺔ ﻣﺎ ﺑﺎﳌﻘﺪﺍﺭ ‪ ∆m‬ﻳﻮﺍﻓﻘﻪ ﺗﻐﲑ ﻟﻠﻄﺎﻗﺔ ﺍﻟﻜﺘﻠﻴﺔ ﳍﺬﻩ ﺍ‪‬ﻤﻮﻋﺔ ﺑﺎﳌﻘﺪﺍﺭ‬

‫‪∆E = ∆m.c 2‬‬

‫‪(2‬ﻭﺣﺪﺓ ﺍﻟﻜﺘﻠﺔ ﺍﻟﺬﺭﻳﺔ‪:‬‬ ‫ﻧﻈﺮﺍ ﻟﻜﻮﻥ ﻛﺘﻞ ﺍﻟﻨﻮﻯ ﻭﺍﻟﺪﻗﺎﺋﻖ ﺻﻐﲑﺓ ﺟﺪﺍ ‪ ،‬ﻳـﻌﱪ ﻋﻨﻬﺎ ﰲ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻟﻨﻮﻭﻳﺔ ﺑﻮﺣﺪﺓ ﻣﻼﺋﻤﺔ ﺗﺴـﻤـﻰ ﺏ‪ :‬ﻭﺣﺪﺓ ﺍﻟﻜﺘﻠﺔ ﺍﻟﺬﺭﻳﺔ‬ ‫‪ : Unité de masse atomique‬ﺃﻱ ‪u.m.a.‬‬

‫ﻭﺍﻟﱵ ﻳﺮﻣﺰ ﺇﻟﻴﻬﺎ ﺏ‪ u‬ﻓﻘﻂ ﻣﻦ ﺃﺟﻞ ﺍﻟﺘﺒﺴﻴﻂ‪.‬‬

‫)ﺍﻟﻜﺘﻠﺔ ﺍﳌﻮﻟﻴﺔ ﻝ‪ 126 C :‬ﺗﺴﺎﻭﻱ ‪(12 g / mol‬‬ ‫و  ن آ ‪ ! $‬ل وا‪ ! "#‬ذرات ا ن وي ‪ ، 12 g‬و ي ‪1‬ا ل  ‪ NA=6,02.1023‬ذرة‪.‬‬ ‫) ‪m(126 C‬‬ ‫‪12 g‬‬ ‫‪12 × 10 −3 Kg‬‬ ‫= ‪1.u‬‬ ‫=‬ ‫=‬ ‫ﺃﻱ‪= 1,66 × 10 − 27 Kg :‬‬ ‫‪23‬‬ ‫‪12‬‬ ‫‪12.N A 12 × 6,02 × 10‬‬

‫ﻭﺑﺎﻟﺘﺎﱄ ‪1u =1,66×10−27 Kg :‬‬ ‫‪eV/ c2‬‬

‫ﻛﻤﺎ ﻧﺴﺘﻌﻤﻞ ﻛﻮﺣﺪﺓ ﻟﻠﻜﺘﻠﺔ ﰲ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻟﻨﻮﻭﻳﺔ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬

‫‪1,6 × 10 −13 J‬‬ ‫‪1,78 × 10 −30 u‬‬ ‫‪−30‬‬ ‫=‬ ‫‪1‬‬ ‫‪,‬‬ ‫‪78‬‬ ‫×‬ ‫‪10‬‬ ‫‪Kg‬‬ ‫=‬ ‫‪≈ 1,073 × 10 −3 u‬‬ ‫‪(3 × 10 8 ) 2 m 2 / s 2‬‬ ‫‪1,66 × 10 − 27‬‬

‫= ‪1MeV / c 2‬‬

‫ﻭﻣﻨﻪ ‪1u ≈ 931 ,5 MeV / c 2 :‬‬ ‫ﻟﻨﺘﺤﻘﻖ ﻣﻦ ﲡﺎﻧﺲ ﺍﻟﻮﺣﺪﺍﺕ ﰲ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺴﺎﺑﻘﺔ‬

‫‪J‬‬ ‫‪N ×m‬‬ ‫‪Kg × m.s −2 × m‬‬ ‫=‬ ‫=‬ ‫‪= Kg :‬‬ ‫‪2‬‬ ‫‪m 2 / s 2 m 2 × s −2‬‬ ‫‪m2 × s−‬‬

‫ﻭﻫﻜﺬﺍ ﰲ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺍﻟﻨﻮﻭﻳﺔ ﻧﺴﺘﻌﻤﻞ ﻛﻮﺣﺪﺓ ﻟﻠﻜﺘﻠﺔ ﺇﻣﺎ‪ :‬ﺍﻝ‪:‬‬

‫‪ u‬ﺃﻭ ﺍﻝ‪:‬‬

‫‪MeV/ c2‬‬

‫‪  I‬ا"!  اة‪:‬‬ ‫‪ (1‬ا‪ $%‬ا ‪:#‬‬ ‫ﺑﻴﻨﺖ ﻗﻴﺎﺳﺎﺕ ﺩﻗﻴﻘﺔ ﺃﳒﺰﺕ ﺑﻮﺍﺳﻄﺔ ﻣﻄﻴﺎﻑ ﺍﻟﻜﺘﻠﺔ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻨﻮﺍﺓ ‪ ZA X‬ﺃﻥ ﻛﺘﻠﺔ ﺍﻟﻨﻮﺍﺓ ‪ ،‬ﻣﺮﺗﺒﻄﺔ ‪ ،‬ﺗﻜﻮﻥ ﺩﺍﺋﻤﺎ ﺃﺻﻐﺮ ﻣﻦ ﻛﺘﻞ ﺍﻟﺪﻗﺎﺋﻖ‬ ‫ﺍﳌﻜﻮﻧﺔ ﳍﺎ )ﻏﲑ ﻣﺮﺗﺒﻄﺔ( ﻭﻳﺴﻤﻰ ﻫﺬﺍ ﺍﻟﻔﺮﻕ ﺑﺎﻟﻨﻘﺺ ﺍﻟﻜﺘﻠﻲ ‪( Le.défaut.de.masse) .‬‬

‫‪1‬‬

‫ﻧﺴﻤﻲ ﺍﻟﻨﻘﺺ ﺍﻟﻜﺘﻠﻲ ‪ ∆m‬ﻟﻨﻮﺍﺓ ‪ ZA X‬ﺍﻟﻔﺮﻕ ﺑﲔ ﳎﻤﻮﻉ ﻛﺘﻞ ﺍﻟﻨﻮﻳﺎﺕ ﻭﻛﺘﻠﺔ ﺍﻟﻨﻮﺍﺓ ‪:‬‬ ‫) ‪∆m = Zm p + ( A − Z )mn − m( ZAX‬‬

‫ﻭﻫﻮ ﻣﻘﺪﺍﺭ ﻣﻮﺟﺐ‪.‬‬

‫‪  (2‬ا"! ‪:‬‬ ‫ﻃﺎﻗﺔ ﺍﻟﺮﺑﻂ ‪ E l‬ﻟﻨﻮﺍﺓ ‪ ZA X‬ﻫﻲ ﺍﻟﻄﺎﻗﺔ ﺍﻟﱵ ﳚﺐ ﺇﻋﻄﺎﺅﻫﺎ ﻟﻠﻨﻮﺍﺓ ﰲ ﺣﺎﻟﺔ ﺳﻜﻮﻥ ﻟﻔﺼﻞ ﻧﻮﻳﺎ‪‬ﺎ ﻭﺗﺒﻘﻰ ﰲ ﺣﺎﻟﺔ ﺳﻜﻮﻥ‪.‬‬

‫[‬

‫]‬

‫ﻭﺗﻌﻄﻴﻬﺎ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﺎﻟﻴﺔ‪E l = ∆m.c 2 = Z .m p + ( A − N )mn − m( ZAX ) .c 2 :‬‬

‫‪  (3‬ا"! !)( ‪:‬‬ ‫‪El‬‬ ‫ﻧﺴﺘﻌﻤﻞ ﺃﺣﻴﺎﻧﺎ ﻃﺎﻗﺔ ﺍﻟﺮﺑﻂ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻨﻮﻳﺔ ﻭﺗﻌﻄﻴﻬﺎ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫‪A‬‬ ‫ﻭﻭﺣﺪ‪‬ﺎ ‪. MeV / nucléon :‬‬

‫= ‪ ξ‬ﺣﻴﺚ ‪ E l :‬ﻫﻲ ﻃﺎﻗﺔ ﺍﻟﺮﺑﻂ ﻟﻠﻨﻮﺍﺓ ﻭ ‪ A‬ﻋﺪﺩ ﺍﻟﻨﻮﻳﺎﺕ‪.‬‬

‫ﻛﻠﻤﺎ ﻛﺎﻧﺖ ﻃﺎﻗﺔ ﺍﻟﺮﺑﻂ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻨﻮﻳﺔ ﻛﺒﲑﺓ ﻛﻠﻤﺎ ﻛﺎﻧﺖ ﺍﻟﻨﻮﺍﺓ ﺃﻛﺜﺮ ﺍﺳﺘﻘﺮﺍﺭﺍ‪.‬‬

‫‪:+,(- (4‬‬ ‫‪238‬‬ ‫‪، m( 238‬ﻛﺘﻠﺔ ﺍﻟﱪﻭﺗﻮﻥ ‪ m p = 1,0073u :‬ﻭ ﻛﺘﻠﺔ ﺍﻟﻨﻮﺗﺮﺭﻭﻥ ‪= 1,0087u‬‬ ‫ﻋﻠﻤﺎ ﺃﻥ ﻛﺘﻠﺔﻧﻮﺍﺓ ﺍﻷﻭﺭﺍﻨﻴﻭﻡ ‪ 92 U‬ﻫﻲ ‪92 U ) = 238,003u‬‬

‫‪. mn‬‬

‫‪. 238‬‬ ‫ﺃ( ﺍﺣﺴﺐ ﻃﺎﻗﺔ ﺍﻟﺮﺑﻂ ﻟﻨﻮﺍﺓ ﺍﻷﻭﺭﺍﻧﻴﻮﻡ ‪92 U‬‬ ‫‪. 238‬‬ ‫ﺏ( ﺍﺣﺴﺐ ﻃﺎﻗﺔ ﺍﻟﺮﺑﻂ ﺑﺎﻟﻨﺴﺒﺔ ﻟﻨﻮﻳﺔ ﻟﻨﻮﺍﺓ ﺍﻻﻭﺭﺍﻧﻴﻮﻡ ‪92 U‬‬ ‫ﻧﻌﻄﻲ‪1u = 931,5MeV / c 2 :‬‬ ‫‪--------------------------------------------‬‬

‫ﺃ( ﻟﺪﻳﻨﺎ ‪:‬‬

‫]‬

‫[‬

‫= ‪E l = ∆m.c = Z .m p + ( A − N )mn − m( U ) .c = [92 × 1,0073 + (238 − 92) × 1,0087 − 238,0003]u × c 2‬‬ ‫‪2‬‬

‫‪238‬‬ ‫‪92‬‬

‫‪2‬‬

‫‪............................................................................ = 1,9415u × c 2 = (1,945 × 931,5MeV / c 2 ) × c 2 = 1808,5MeV‬‬ ‫‪E‬‬ ‫‪1808,5‬‬ ‫= ‪ξ= l‬‬ ‫ﺏ( ‪≈ 7,59MeV / nucléon‬‬ ‫‪A‬‬ ‫‪138‬‬

‫‪ 123 (5‬أ‪0‬ن ‪:‬‬ ‫‪El‬‬ ‫ﻝﻤﻘﺎﺭﻨﺔ ﺍﺴﺘﻘﺭﺍﺭ ﺍﻝﻨﻭﻯ ‪ ،‬ﻨﺨﻁ ﺍﻝﻤﻨﺤﻨﻰ ﺍﻝﻤﻤﺜل ﻝﺘﻐﻴﺭﺍﺕ‬ ‫‪A‬‬

‫‪ −‬ﺒﺩﻻﻝﺔ ﻋﺩﺩ ﺍﻝﻨﻭﻴﺎﺕ ‪ .‬ﻴﺴﻤﻰ ﻫﺫﺍ ﺍﻝﻤﻨﺤﻨﻰ ‪ :‬ﻤﻨﺤﻨﻰ ﺃﺴﻁﻭﻥ ‪.‬‬

‫ا‪$‬ى ا(آ' إ ارا ‪  "#$%‬أ  ا ‪  ،‬ا ة إذا آ   ‪ *+‬وإذا آ ‬ ‫‪ ."%  -‬و‪$% 01‬ل إ ‪$‬ى أآ' إ ارا‪.‬‬

‫‪(6‬ا‪  ,52‬ا‪7 89  ,‬وي‪:‬‬ ‫ﺃ( ﺘﻌﻤﻴﻡ ‪:‬‬

‫‪7 9- "( <7‬و ‪<3‬د ‪: :‬‬

‫‪X 2 → Y1 + Y 2‬‬ ‫‪A2‬‬ ‫‪Z2‬‬

‫‪A1‬‬ ‫‪Z1‬‬

‫‪2‬‬

‫‪A2‬‬ ‫‪Z2‬‬

‫‪X1+‬‬

‫‪A1‬‬ ‫‪Z1‬‬

‫]) ‪∆E = [E l ( X 1 ) + E l ( X 2 ) − E l (Y1 ) − E l (Y2‬‬

‫ﺗﻜﺘﺐ ﺍﳊﺼﻴﻠﺔ ﺍﻟﻄﺎﻗﻴﺔ ﺍﳌﻘﺮﻭﻧﺔ ‪‬ﺬﺍ ﺍﻟﺘﻔﺎﻋﻞ ﻛﻤﺎ ﻳﻠﻲ‪:‬‬

‫‪ (2‬ﺍﳊﺼﻴﻠﺔ ﺍﻟﻄﺎﻗﻴﺔ ﻟﻠﺘﺤﻮﻻﺕ ﺍﻟﻨﻮﻭﻳﺔ ﺍﻟﺘﻠﻠﻘﺎﺋﻴﺔ‪:‬‬

‫* ا ا‪"2 C‬رة ‪A‬ل اط ا>=<‪: α #‬‬

‫‪X →AZ−−42Y +24He‬‬

‫‪<3‬د ا ‪: α D 9‬‬ ‫ا ا‪"2 C‬رة ‪A‬ل اط ا>=<‪ α #‬ه‪:#‬‬

‫‪A‬‬ ‫‪Z‬‬

‫* ا ا‪"2 C‬رة ‪A‬ل اط ا>=<‪: β − #‬‬ ‫‪<3‬د ا ‪: β − D 9‬‬ ‫ا ا‪"2 C‬رة ‪A‬ل اط ا>=<‪ β − #‬ه‪:#‬‬

‫‪X →Z +A1Y +−10e‬‬

‫‪A‬‬ ‫‪Z‬‬

‫* ا ا‪"2 C‬رة ‪A‬ل اط ا>=<‪: β + #‬‬ ‫‪<3‬د ا ‪: β + D 9‬‬ ‫ا ا‪"2 C‬رة ‪A‬ل اط ا>=<‪ β + #‬ه‪:#‬‬

‫‪X →Z −A1Y ++10e‬‬

‫‪A‬‬ ‫‪Z‬‬

‫‪ ( III‬ﺍﻟﺘﺄﺛﲑﺍﺕ ﺍﻟﺒﻴﻮﻟﻮﺟﻴﺔ ﻟﻠﻨﺸﺎﻁ ﺍﻹﺷﻌﺎﻋﻲ‪:‬‬ ‫‪  3%‬ا‪ 5 678‬ت ا‪$‬و; ‪ :# 5‬ا‪  8‬ن <  و‪.%‬‬

‫ا"? >= ا ‪$<% : α‬ن د? أ ‪$ B‬اة ا‪$‬م ‪He‬‬ ‫‪q = +2e = +2 × 1,6 × 10 −19 c E#$‬‬

‫و ‪HE%‬‬

‫‪4‬‬ ‫‪2‬‬

‫ا ‪$%‬ي ‪ 5‬و‪ B $%‬و و ‪ B‬و  ‪>  7‬‬

‫‪ 5‬د? >= أ ‪ BG‬ا *‪ B ?F‬ا دة ا‪6+‬ا‪6+‬‬

‫‪10‬‬

‫‪1‬‬

‫‪ 5‬ا‪$J‬ء و <‪ B‬آ‪ KG E‬ا‪ E‬و ‪ 7‬ا‪F6K; E#$‬ن ?"ر‪ 5 %‬ا‪-N‬اق ‪O*% F JL‬‬ ‫أن ‪L%‬ق ا‪ Q;RK‬ت ا(و  ‪ "#‬ا‪  N‬ن أو  ‪ P‬آ ب ‪.‬‬

‫ا‪ : β −  ,! +FG‬ه ا‪N‬آو ت ‪e‬‬

‫‪0‬‬ ‫‪−1‬‬

‫ ‪16000km / s 5 ";R%  5 5 %  5 ? U‬‬

‫و ‪ 5 K‬‬

‫ا‪  6‬و ‪ KG‬ا‪  V‬ن "? >=  ?‪$‬ة ا‪-‬اق أ‪$? B 5‬ة ا‪-‬اق ا"? >= أ ‪ O*%  .‬أن‬ ‫‪L%‬ق ‪ :#‬ا‪  N‬ن ا   ‪P‬ة و ‪ 1>"5 WE%‬اوق ‪ K 6  6% .‬ا‪ ;FL‬ا‪. U‬‬

‫ا(‪γ  X 67‬‬

‫ه ' أ‪ #$ X 67‬ت آو ‪(=> ?" ) U‬‬

‫‪ 5‬ه‬

‫‪ 5‬ا ‪ +‬را‪$J‬ء‬

‫ ذات ?‪$‬ة ا‪-‬اق ‪  5‬و "ة ‪ <+‬آ‪R;  ;( ، E‬م ‪"5‬ة ات ‪ B‬ا‪ P‬ص ‪ ،‬و‪ 6%‬‬ ‫‪ ^L+%‬ا(اض  ‪$V‬ر‪.‬و _ا (ن أ‪ 7 0% N  X 67‬و ‪ N‬آ  ن ا *‪ ; N ?F‬ا‪"6‬د ا< أو‬ ‫ا‪"6‬د ا‪1‬ري ‪1‬رة‪.‬‬

‫‪3‬‬

:+,(- (7 (1 )

( 2) ( 3)

226 88

Ra →

60 27 13 7

222 86

:‫ﻨﻌﺘﺒﺭ ﺍﻝﺘﺤﻭﻻﺕ ﺍﻝﺘﺎﻝﻴﺔ‬ Rn + He 4 2

60 Co→ 28 Ni + −10 e

N →136 C + 10 e

m( 24 He) = 4,0015u ، m( 222 ، m( 226 86 Rn) = 221,9702u 88 Ra ) = 225,9770u : ‫ﻧﻌﻄﻲ‬ m(e) = 5,49 × 10 −4 u

60 ، m( 28 Ni ) = 59,915u

60 ، m( 28 Co) = 59,9190u

. m(136C ) = 13,000062u

، m(137N ) = 13,001898u

. ‫ﺃ( ﺍﺣﺴﺐ ﺗﻐﲑ ﺍﻟﻜﺘﻠﺔ ﺍﳌﺼﺎﺣﺐ ﻟﻜﻞ ﲢﻮﻝ ﻧﻮﻭﻱ‬ .‫ﺏ( ﺍﺣﺴﺐ ﻃﺎﻗﺔ ﻛﻞ ﲢﻮﻝ ﻣﻦ ﺍﻟﺘﺤﻮﻻﺕ ﺍﻟﺴﺎﺑﻘﺔ‬ 1u = 931,5MeV / c :‫ﻧﻌﻄﻲ‬ 2

--------------------------------------------

∆m1 = m( Rn) + m( He) − m( Ra ) = −5,3 × 10 −3 u ≈ −4,94 Mev / c 2 :

226 88

∆m2 = m( Ni ) + m(e) − m(Co) = −3,45 × 10 −3 u ≈ −3,21Mev / c 2 ∆m3 = m(C ) + m(e) − m( N ) = −1,287 × 10 −3 u ≈ −1,2 Mev / c 2

4 Ra → 222 86 Rn + 2 He ‫ﺃ( ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺘﺤﻮﻝ ﺍﻻﻭﻝ‬

:

60 27

60 Co→ 28 Ni + −10 e ‫ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺘﺤﻮﻝ ﺍﻟﺜﺎﱐ‬

:

13 7

N →136 C + 10 e ‫ﺑﺎﻟﻨﺴﺒﺔ ﻟﻠﺘﺤﻮﻝ ﺍﻟﺜﺎﻟﺚ‬

E1 = ∆m1 × c 2 = (−4,94 MeV / c 2 ) × c 2 = −4,94 MeV -:‫ﺏ( ﺍﻟﻄﺎﻗﺔ ﺍﳌﺘﺤﺮﺭﺓ ﺧﻼﻝ ﺍﻟﺘﺤﻮﻝ ﺍﻷﻭﻝ‬ E 2 = ∆m2 × c 2 = (−3,21MeV / c 2 ) × c 2 = −3,21MeV -:‫ﺍﻟﻄﺎﻗﺔ ﺍﳌﺘﺤﺮﺭﺓ ﺧﻼﻝ ﺍﻟﺘﺤﻮﻝ ﺍﻟﺜﺎﱐ‬ E 3 = ∆m3 × c 2 = (−1,2 MeV / c 2 ) × c 2 = −1,2 MeV -:‫ﺍﻟﻄﺎﻗﺔ ﺍﳌﺘﺤﺮﺭﺓ ﺧﻼﻝ ﺍﻟﺘﺤﻮﻝ ﺍﻟﺜﺎﻟﺚ‬

SBIRO Abdelkrim Lycée Agricole et Lycée Abdellah Cheffchouni Oulad –Taima région d’Agadir Maroc Mai : [email protected] Pour toutes vos observations contacter mon émail

4

Related Documents