Here is a rigorous proof of Fubini’s Theorem on the equality of double and iterated integrals. The present version is slightly more general than the one stated in the textbook. Fubini’s Theorem. Let f be an integrable function on the rectangle R D Œa; b Œc; d . Rb Suppose that for each y 2 Œc; d , the integral a f .x; y/ dx exists and moreover Rb a f .x; y/ dx as a function of y is integrable on Œc; d . Then “ Z dZ b f dA D f .x; y/ dx dy: c
R
a
Of course a similar statement holds with the role of x; y changed. When f is continuous on the rectangle R, all the integrability assumptions hold automatically and we have “ Z dZ b Z bZ d f dA D f .x; y/ dx dy D f .x; y/ dy dx: c
R
a
a
c
The proof begins as follows. Take arbitrary partitions x0 D a < x1 < < xm D b of Œa; b and y0 D c < y1 < < yn D d of Œc; d . Let P be the partition of R into the mn sub-rectangles Rij D Œxi 1 ; xi Œyj 1 ; yj . As usual, set xi D xi
xi
yj D yj
1
yj
1
mij D inf f
Mij D sup f:
Rij
Rij
Since mij f .x; y/ Mij
for .x; y/ 2 Rij ;
the comparison property of the integral in dimension 1 shows that Z xi mij xi f .x; y/ dx Mij xi if y 2 Œyj xi
Summing over all i from 1 to m, we obtain Z b m m X X f .x; y/ dx Mij xi mij xi iD1
a
if y 2 Œyj
1 ; yj :
i D1
Applying comparison once more gives ! Z yj Z m X mij xi yj i D1
1 ; yj :
1
yj
1
a
b
f .x; y/ dx dy
m X
! Mij xi yj :
i D1
Summing up over j from 1 to n, we obtain Z dZ b n X m n X m X X mij xi yj f .x; y/ dx dy Mij xi yj : j D1 i D1
c
a
j D1 i D1
Thus, for every partition P of the rectangle R, Z dZ b L.f; P/ f .x; y/ dx dy U.f; P/: c
a
On ’ the other hand, since by the assumption f is integrable on R, the double integral R f dA is the unique number which satisfies “ L.f; P/ f dA U.f; P/ R
for every partition P. Therefore, we must have “ Z dZ b f dA D f .x; y/ dx dy; R
as claimed.
c
a