NORD - Information Calculation Methods and Examples
Getriebebau NORD, Schlicht + Küchenmeister GmbH & Co. Rudolf-Diesel-Str. 1, D- 22941 Bargteheide Telefon: 04532 / 4010, Telefax: 04532 / 401 253
NORD - Information
Physical Formulae
Linear motion
Distance Velocity (speed) Accelleration
Rotating motion s = v ∗ t s t v a = t v =
Angular
ϕ = ω ∗ t
Angular velocity
ω =
Angular accelleration
ϕ = 2 ∗ π ∗ n τ W α = t
Force
F = m ∗ a
Torque
M = J ∗ r = F ∗ r
Power
P = F ∗ v
Power
P = M ∗ ω
Work
W = F ∗ s = P ∗ t
Work
W = M ∗ ϕ = P ∗ t
Kinetic energy
Wkin =
Rotating energy
Wrot =
1 2
∗ m ∗ v2
1 2
∗ J ∗ ω2
Formulae of drive engineering 2 d FR = m ∗ g ∗ ∗ (µL ∗ + f) + c : µL, f, c, s. ____ tables __1 __,_2 __,_3 __. D 2
Rolling resistance, -force or
FR = We ∗ m
We for wheel / rail steel s. diagramme 1, 2.
Sliding resitance, -force
FG = m ∗ g ∗ µ
µ
Static friction-force
FH = m ∗ g ∗ µO
µO s. table 4
Windload
F = A ∗ PW
Moment of inertia with refernce to the motor shaft
or
v Jred = 91,2 ∗ m ∗ 2 nM n 2 Jred = J ∗ nM
Speed
n =
Torque
M =
or
or
2
Rotation
P ∗ 9550 n
F ∗ v 1000 ∗ η M ∗ n PR = 9550 m ∗ a ∗ v 1000 ∗ η J ∗ n2 PB = 91,2 ∗ 1000 ∗ tB ∗ η PB =
Acceleration power
Translation
v ∗ 60 π ∗ D
PR =
Friction power
s. table 4
Translation Rotation
Translation Rotation
NORD - Information
m ∗ g ∗ v 1000 ∗ η
Hubleistung
PHub =
Beschleunigung
aB =
9,55 ∗ v ∗ (MH ± ML) (Jred + JM + JBre + JZ) ∗ n
Beschleunigungszeit
tB =
v aB
Beschleunigungsweg
sB =
v2 2 ∗ aB
Verzögerung
av =
9,55 ∗ v ∗ (MB ± ML) (Jred + JM + JBre + JZ) ∗ n
Verzögerungszeit
tV =
v aV
Verzögerungsweg
sV =
v2 2 ∗ aV
zulässige Schalthäufigkeit
zzul =
Positioniergenauigkeit
Positioniergenauigkeit = ± 0,25 * sv
Bremsarbeit
WB =
Lebensdauer der Bremsbeläge
LN =
Übersetzung
i =
Wirkungsgrad
η =
rücktreibender Wirkungsgrad
η G’ = 2 −
Querkraft
FQ =
Betriebsfaktor
fB =
Massenbeschleunigungsfaktor
maf =
1 − ML ⁄ MH ∗ zo 1 + (Jred + JBre + JZ) ⁄ JM
(Jred + JM + JBre + JZ) ∗ n2 MB ∗ 182,5 MB ± ML Wzul WB ∗ z
n1
n2
=
M2 d2 z2 = = M1 d1 z1
Pab Pzu
η s. Tabelle 5 1 ηG
2 ∗ M2 ∗ fZ ∗ ≤ FQzul D
fZ s. Tabelle 6
M2max M2 Jred JM + JZ + JBre
3
NORD - Information
Formulae symbols and unities a
Acceleration
m/s2
aB
Acceleration (start up)
m/s2
av
Deceleration (braking)
m/s2
A
Area (wind)
m2
c
Additional factor for secondary friction
-
d
Diameter (bearing spigot diameter)
m
dO
Pinion or sprocket diameter
m
d1
Pinion diameter
m
d2
Chain sprocket diameter
m
D
Diameter of the travelling wheel or cable drum or of the sprocket
m
f
Lever arm of rolling friction
m
fB
Service factor
-
fZ
Additional factor for overhung load
-
F
Force, rolling resistance
N
FG
Sliding friction
N
FH
Static friction
N
FQ
Overhung load
N
FQvorh
Existing overhung load
N
FQzul
Permissible overhung load
N
FR
Rolling resistance
N
FW
Wind load
N
g
Gravity (constant: 9,81)
m/s2
i
Reduction
-
iV
Additional reduction (gear, chain, belt ...)
-
J
Moment of inertia
kgm2
JBre
Moment of inertia of the brake
kgm2
JM
Moment of inertia of the motor
kgm2
Jred
Moment of inertia with reference to the motorshaft
kgm2
JZ
Moment of inertia of the z-fan
kgm2
LN
Brake service life until readjustment
h
m
Weight (mass)
kg
maf
Inertia mass acceleration factor
-
mG
Mass of counter weight
kg
mL
Mass with full load
kg
mO
Mass without load
kg
4
NORD - Information
M
Torque
Nm
MB
Braking torque
Nm
MH
Run up torque
Nm
ML
Torque with full load (with reference to the motor shaft)
Nm
MN
Rated torque
Nm
M1
Input torque
Nm
M2
Output torque
Nm
M2max
Maximum permissible output torqe
Nm
n
Speed
1
nM
Motor speed
1
nN
Rated speed
1
n1
Input speed
1
n2
Output speed
1
PW
Wind pressure
N/m2
P
Power
kW
Pab
Required power
kW
Pzu
Supplied power
kW
PB
Acceleration power
kW
PHub
Lifting power
kW
PN
Rated power
kW
PR
Fricition power
kW
r
Radius
m
s
Distance
m
sB
Start up distance
m
sV
Braking distance
m
t
Time
s
tB
Start up time
s
tV
Braking time
s
v
Velocity (speed)
m/s
W
Work
J
We
Standard rolling friction
N/t
Wkin
Kinetic energy
J
Wrot
Rotating energy
J
Wzul
Braking work until readjustment
J
WB
Braking work
J
x
Number of drives
-
/min /min /min /min /min
5
NORD - Information
z
Starting frequency
s/h
zzul
Permissible starting frequency
s/h
zO
Starting frequency with no load
s/h
z1
Number of gear teeth pinion
-
z2
Number of gear teeth gear wheel
-
α
Angular acceleration
1/s2
η
Efficiency
-
Efficiency of gear unit
-
ηG ηG
’
Reverse operating efficiency
-
µ
Coefficient of friction
-
µL
Coefficient of friction for bearings
-
µO
Coefficient of friction (static)
-
ϕ
Angular
°
ω
Angular velocity
1/s
6
NORD - Information
Friction bearing
Sliding bearings
0,005
0,1
µL
table 1: coefficient of friction for bearings µL f steel / steel
0,0005 m
wood / steel
0,0012 m
polymer / steel
0,002 m
hardrubber / steel
0,0077 m
hardrubber / concrete
0,01 - 0,02 m
rubber / concrete
0,015 - 0,035 m
table 2: lever arm of rolling friction f
Friction of anti friction bearings
Friction of sleeve bearings
Friction of guide rollers
0,003
0,005
0,002
c
table 3: rim friction on the wheels c Static friction µO
Sliding friction µ
dry
greased
dry
greased
steel / steel
0,11 - 0,40
0,10
0,10 - 0,30
0,01 - 0,10
steel / last iron
0,18 - 0,25
0,10
0,16 - 0,25
0,05 - 0,10
steel / wood
0,50 - 0,70
0,10
0,20 - 0,50
0,02 - 0,10
steel / polymer
0,20 - 0,50
0,10 - 0,35
steel / rubber
0,40 - 0,50
wood / wood
0,40 - 0,80
0,16
0,20 - 0,50
0,04 - 0,16
table 4: static friction and sliding friction µ η chain
0,90 - 0,96
per complete wrap of the rope around the drum
wire ropes
0,90 - 0,95
per complete wrap
flat polymer belts
0,93 - 0,98
per complete wrap of the rope depending on the material
V-belts
0,85 - 0,95
per complete wrap
rubber belts
0,80 - 0,85
per complete wrap
polymer belts
0,80 - 0,85
per complete wrap
helical inline gear
0,95 - 0,98
oil lubricated depending on the number of the stages
worm gear
0,30 - 0,93
oil lubricated depending on the number of starts of the worm
table 5: efficiency η
fZ helical gears
1,1
z = 17 teeth
chain sprockets
1,4
z = 13 teeth
chain sprockets
1,2
z = 20 teeth
pulleys
1,7
by tensioning influence
pulleys
2,5
by tensioning influence
table 6: additional factor inderming overhung loads fz
7
NORD - Information
Example I.1: Drive arrangement for crane Mass without load of the crane mO Mass without load of the
mk
Load mL
13800 kg 1800 kg 15000 kg
Velocity v
0,17 / 0,66 m/s = 10/40 m/min
Diameter of the travelling wheel D
0,4 m
Number of drives x Additional reduction
2 iv
4,24
Mounting position Switching frequencies Efficiency η
B3 z
60 s/h 0,85
9
NORD - Information
Motor arrangements
Standard rolling friction We We = WO + 30 N/t
W0 = 36 N/t s. diagram
We = 36 N/t + 30 N/t = 66 N/t
30 N/t additional for rim friction
Power P (at maximum velocity)
P =
We ∗ m ∗ v 1000 ∗ η
PO =
66 N ⁄ t ∗ (13,8 t + 1,8 t) ∗ 0,66 m⁄s = 0,80 kW (without load) 1000 ∗ 0,85
PL =
66 N ⁄ t ∗ (13,8 t + 1,8 t + 15,0 t) ∗ 0,66 m⁄s = 1,57 kW (with load) 1000 ∗ 0,85
Pmax =
PL
2
∗
mO + 2 ∗ (mK + mL ) 1,57 kW 13,8 t + 2 ∗ (1,8 t + 15 t) = ∗ 13,8 t + 1,8 t + 15 t mO + mK + mL 2
Pmax = 1,22 kW (one-sided trolley)
Motor data Type Rated output power PN Rated speed nN Rated torque MN Permissible no-load starting frequency zo
0,55 / 2,2 kW 670 / 2740 1/min 7,8 / 7,7 Nm 4000 / 1400 s/h
Motor moment of inertia JM
0,0060 kgm2
Additonal moment of inertia Jz
0,0113 kgm2
Brake moment of inertia JBre
0,0001 kgm2
Braking torque MB (brake 16 adjusted to 8 Nm )
10
100 L/80-20 WU Bre16 Z (2 pieces)
8 Nm
NORD - Information
Gear arrangment
Wheel speed nL nL =
v ∗ 60 π ∗ D
nL =
0,66 m⁄s ∗ 60 = 32 1⁄min π ∗ 0,4 m
Gear output speed n2 n2 = nL ∗ iv n2 = 32 1⁄min ∗ 4,24 = 136 1⁄min
Acceleration factor of mass maf Jred maf = JM + Jz + JBre 0,0810 kgm2 = 4,7 0,0060 kgm2 + 0,0113 kgm2 + 0,0001 kgm2
maf =
Starting freqeuency per hour: 180 (60 times acceleration, switching, deceleration) ⇒ Type of load C, fB = 1,6 Output torque Ma Ma =
PN ∗ 9550 ∗ fB n2
Ma =
2,2 kW ∗ 9550 ∗ 1,6 = 247 Nm 136 1⁄min
For service factor fB = 1,6 the output torque of the gear is 247 Nm. Reduction i i =
nN n2
i =
2740 1⁄min = 20 136 1⁄min
Complete type:
SK 22-100 L/80-20 WU Bre 16 Z PN = 0,55 / 2,2 kW i = 20,03 n2 = 33 / 137 1/min Mounting position B 3 Shaft ø 30 x 60 mm Brake 16 Nm adjusted to 8 Nm Special provision:
special rotor high inertia fan
11
NORD - Information
Example I.2: Drive arrangement for a trolley
Mass without load
mk
Load mL
15000 kg
Velocity v Wheel diameter
1800 kg
0,08 / 0,33 m/s = 5/20 m/min D
0,3 m
Number of drives x Additional reduction
1 iv
Mounting position Switching frequency z Efficiency n
4 B5 60 s/h 0,85
Pairing of material
steel / steel
Guiding
rim friction
Type of bearings (4 wheels)
12
antifriction bearings
NORD - Information
Drive resistance: FR = m ∗ g
2 d ∗ ( µ L ∗ + f ) + c D 2
Fro = 1800 kg ∗ 9,81
m 2 0,06 ∗ (0,005 ∗ + 0,0005 m ) + 0,003m 2 s2 0,3 m
Fro = 129,5 N ( without load)
FRL = 16800 kg ∗ 9,81
m 2 0,06 ∗ (0,005 ∗ m + 0,0005 m ) + 0,003 m 2 s2 0,3 m
FRL = 1208,6 N (with load)
Power P (calculation for 2-poles gearmotors)
P =
F∗V 1000 ∗ η
Po =
129,5 N ∗ 0,33 m = 0,05 kW 1000 ∗ 0,85 s
PL =
1208,6 N ∗ 0,33 = 0,47 kW 1000 ∗ 0,85
13
NORD - Information
Motor arrangement Motor data Type
100 L/8-2 WU Bre10 Z
Rated output power PN
0,4 / 1,6 kW
Rated speed nN
670 / 2740 1/min
Rated torque MN
5,7 / 5,6 Nm
Hochlaufmoment MH
9,2 / 8,6 Nm
No-load switching frequency zo
4200 / 1500 s/h
Motor moment of inertia JM
0,0045 kgm2
Moment of high inertia fan Jz
0,0113 kgm2
Brake moment of inertia JBre
0,0001 kgm2
Braking torque MB (brake 10 adjusted on 6 Nm)
6 Nm
Load torque M M =
P ∗ 9550 x ∗ nN
MO =
0,05 KW ∗ 9550 = 0,2 Nm (without load) 2740 1⁄min
ML =
0,47 kW ∗ 9550 = 1,6 Nm (with load) 2740 1⁄min
Reduced moment of inertia Jred Jred =
1 v ∗ 91,2 ∗ m ∗ x nN
2
2
0,33 m⁄s JredO = 91,2 ∗ 1800 kg ∗ = 0,0024 kgm2 1⁄min 2740 2
0,33 m⁄s JredL = 91,2 ∗ 16800 kg ∗ = 0,0222 kgm2 1⁄min 2740 Acceleration aB aB =
14
9,55 ∗ v ∗ (MH − ML)
(Jred ⁄ η + JM + JBre + JZ) ∗ nN
aB =
9,55 ∗ 0,33 m⁄s ∗ (8,6 Nm − 0,2 Nm) = 0,52 m⁄s2 (without load) (0,0024 kgm ⁄ 0,85 + 0,0045 kgm2 + 0,0001 kgm2) ∗ 2740 1⁄min
aB =
9,55 ∗ 0,33 m⁄s ∗ (8,6 Nm − 1,6 Nm) = 0,19 m⁄s2 (with load) (0,0222 kgm ⁄ 0,85 + 0,0045 kgm2 + 0,0001 kgm2) ∗ 2740 1⁄min
2
2
NORD - Information
Decceleration aV av =
9,55 ∗ v ∗ (MB + ML ∗ η2) (Jred ∗ η + JM + JBre + JZ) ∗ nN
aVO =
9,55 ∗ 0,08 m⁄s ∗ (6 Nm + 0,2 Nm ∗ 0,852) = 0,39 m⁄s2 (without load) (0,0024 kgm ∗ 0,85 + 0,0045 kgm2 + 0,0001 kgm2 + 0,0113 kgm2) ∗ 670 1⁄min
aVL =
9,55 ∗ 0,08 m⁄s ∗ (6 Nm + 1,6 Nm ∗ 0,852) = 0,24 m⁄s2 (with load) (0,0222 kgm ∗ 0,85 + 0,0045 kgm2 + 0,0001 kgm2 + 0,0113 kgm2) ∗ 670 1⁄min
2
2
Permissible switching frequency zzul
zzul =
zzul =
1 − ML ⁄ MH ∗ z0 1 + (Jred + JZ + JBre) ⁄ JM
1 − 1,6 Nm ⁄ 8,6 Nm 1 +(0,0222 kgm + 0,0113 kgm2 + 0,0001 kgm2) ⁄ 0,0045 kgm2 2
∗ 1500 s⁄h = 142 s⁄h
The perm. switching frequency is calculated for the acceptance: starting 2-pole with load (every time) is not correct because of delay for switching and running on the 8-pole.
15
NORD - Information
Gear arrangements Wheel speedl nL nL =
v ∗ 60 π ∗ D
nL =
0,33 m⁄s ∗ 60 = 21 1⁄min π ∗ 0,3 m
Gear unit output speed n2 n2 = nL ∗ iv n2 = 21 1⁄min ∗ 4 = 84 1⁄min
Mass acceleration factor maf maf =
Jred JM + Jz + JBre
maf =
0,022 kgm2 = 1,4 0,0045 kgm2 + 0,0113 kgm2 + 0,0001 kgm2
Circuit m per hour: 180 (each 60 accelerations, switching, decelerations) ⇒ type of load B ⇒ fB ≥ 1,3
Output torque Ma
Ma =
PN ∗ 9550 ∗ fB n2
Ma =
1,6 kW ∗ 9550 ∗ 1,3 = 236 Nm 84 1⁄min
For service factor fB = 1,3 the output torque of the gear is 236 Nm.
Reduction i
16
i =
nN n2
i =
2740 1⁄min = 33 84 1⁄min
NORD - Information
Complete type:
SK 22 F - 100 L/8-2 WU Bre 10 Z PN = 0,4 / 0,16 kW i = 34,69 n2 = 19/79 1/min Mounting position B 5 Shaft ø 30 x 60 mm Flange ø 160 mm oder 200 mm Brake 10 Nm adjusted on 6 Nm Special provision:
special rotor (WU-silumin rotor) high inertia fan
17
NORD - Information
Example II.1:
Mass without load m O Load m L
Max. lifting speed v Operation cycle Starting frequency z Efficiency η
18
50 kg 200 kg
midle drum diameter Dm
Positioning
Drive unit for vertical motion
0,208 m 0,24 m/s = 14,4 m/min 8 h/Tag, 40 % ED 360 Hubbewegungen/h 0,8
accuracy
± 1 mm
NORD - Information
Motor arrangement Power P P =
PL =
m ∗ g ∗ v 1000 ∗ η (50 kg + 200 kg) ∗ 9,81
m 2 ⁄s
∗ 0,24
1000 ∗ 0,8
m⁄
s
= 0,74 kW
To get the required accuracy of ± 1 mm we have to choose a polechanging motor.
Motor data Typ
80 L/4-2 Bre8
Rated output power PN
0,60 / 0,75 kW
Rated speed nN
1400 / 2830 1/min
Synchronous speed nsyn
1500 / 3000 1/min
Rated torque MN
4,1 / 2,5 Nm
Run-up torque MH
7,4 / 5,7 Nm 2500 / 1800 s/h
No-load switching frequency zo Motor moment of inertia JM
0,00165 kgm 2
Brake moment of inertia JBre
0,00007 kgm2 7 * 107 J
max. braking work until readjustment Wzul.
0,015 s
Brake reaktion time t2 (DC-connection)
8 Nm
Braking torque MB
Load torque M M =
ML =
P ∗ 9550 nN 0,74 kW ∗ 9550 2830 1 ⁄min
= 2,5 Nm
Switching torque MU MU = 2 * MH4 MU = 2 * 7,4 Nm = 14,8 Nm
reduced moment of inertia Jred v J red = 91,2 ∗ m ∗ n N
2
0,24 m ⁄s J red = 91,2 ∗ (50 kg ∗ 200 kg) ∗ 1 2830 ⁄min
2
= 0,00016 kgm 2
19
NORD - Information
z0 = 2320 / 1620 s/h = max. perm. switching frequency with no load For this application A 4-2 polemotor (Dahlander-connection) is used. Therefor the half of the zo is criteria.
Permissibleswitchingfrequencyzzul
up motion:
zzul =
zzul =
down motion: zzul =
zzul =
1 − ML ⁄ MH zO ∗ 1 + (Jred + JBre) ⁄ JM 2
1 − 2,5 Nm ⁄ 5,7 Nm 2
2
1 + (0,00016 kgm + 0,00007 kgm ) ⁄ 0,00165 kgm
2
∗
1620 s⁄h = 399 s⁄h (2 poles) 2
2
∗
2320 s⁄h = 846 s⁄h (4 poles) 2
1 − ML ⁄ MU zO ∗ 1 + (Jred + JBre) ⁄ JM 2
1 − 2,5 Nm ⁄ 14,8 Nm 2
2
1 + (0,00016 kgm + 0,00007 kgm ) ⁄ 0,00165 kgm
The mechanicalbraking depends on the positioning speed.The max.braking distance depends on down motion.
Deceleration av av =
av =
9,55 ∗ v ∗ nN4 ⁄ nN2 ∗ (MB − ML ∗ η2) (Jred ∗ η + JM + JBre) ∗ nN4
9,55 ∗ 0,24 m⁄s ∗ 1400 1⁄min ⁄ 2830 1⁄min ∗ (8 Nm − 2,5 Nm ∗ 0,82) (0,00016 kgm2 ∗ 0,8 + 0,00165 kgm2 + 0,00007 kgm2) ∗ 1400 1⁄min
= 2,80 m⁄s2
In case of calculation the deceleration time we have to use the increased speed for the down motion. The cause is the delay for switching and the over-synchronous speed.
Load speed nL nL = nsyn ± ML ⁄ MN ∗ (nsyn − nN) down motion: nL = nsyn + ML ∗ η2 ⁄ MN ∗ (nsyn − nN) nL = 1500 1⁄min +
20
2,5 Nm ∗ 0,8 2 ∗ (1500 1⁄min − 1400 1⁄min) = 1539 1⁄min 4,1 Nm
+: down motion, -: up motion
NORD - Information
Increased speed during braking time ∆n
∆n = ±
9,55 ∗ ML ∗ t2 Jred + JM + JBre
down motion: ∆n =
+: down motion, -: up motion
9,55 ∗ ML ∗ η2 ∗ t2 Jred ∗ η + JM + JBre 9,55 ∗ 2,5 Nm ∗ 0,82 ∗ 0,015 s
∆n =
0,00016 kgm2 ∗ 0,8 + 0,00165 kgm2 + 0,00007 kgm2
= 124 1⁄min
Deceleration time tv (Braking time)
v ∗ (nL + ∆n) ⁄ nN2 a
tv =
0,24 m⁄s ∗ (1539 1⁄min + 124 1⁄min) ⁄ 2830 1⁄min
tv =
m
2,80 ⁄s2
= 0,05 s
Deceleration distance sv (Brakingdistance) 2
nL + ∆n v ∗ nN2 sv = 2 ∗ a
2
1539 1⁄min + 124 1⁄min 0,24 m⁄s ∗ 2830 1⁄min sv = 2 2 ∗ 2,80 m⁄s
Positioning
= 0,004 m
accuracy
The positioningaccuracyis about± 25 % from the deceleration distance sv. Positioning accuracy = ± 25 % * sv = ± 0,25 * 0,004 m = ± 0,001 m
Braking
work WB
WB =
WB =
(Jred ∗ η + JM + JBre) ∗ n2N4
182,5
∗
MB MB ± ML
(0,00016 kgm 2 ∗ 0,8 + 0,00165 kgm2 + 0,00007 kgm2) ∗ (1400 1⁄min)2 8 Nm ∗ = 20 J 182,5 8 Nm ± 0
Because of the same number of up- and down-motion the load torque = 0 Nm.
Brake service life until readjustment LN LN =
Wzul WB ∗ z
LN =
7 ∗ 107J = 9720 h 20 J ∗ 360 1⁄h
21
NORD - Information
Gear arrangements
Gear output speed n2 n2 =
v ∗ 60 π ∗ Dm
n2 =
0,24 m⁄s ∗ 60 = 22 1⁄min π ∗ 0,208 m
^
Mass acceleration factor maf Jred
maf =
JM + JBre 0,00016 kgm2
maf =
0,00165 kgm 2 + 0,00007 kgm2
= 0,09
Switching per hour: 1080 ( each 360 accelerations, change-over, decelerations)
⇒ kind of load A, fB = 1,2
Output
torque Ma
Ma =
PN ∗ 9550 ∗ fB n2
Ma =
0,75 kW ∗ 9550 ∗ 1,2 = 391 Nm 22 1⁄min
Reduction i i =
nN n2
i =
2830 1⁄min = 129 22 1⁄min
Complete
22
type:
SK 2382 A - 80 L/4-2 Bre8 PN = 0,60 / 0,75 kW i = 131,86 n2 = 11 / 21 1/min Mounting position H 1 Hollow shaft ø 35 mm Brake 8 Nm Insolating material class F
NORD - Information
Example III.1: Turntable drive for
processing table
Determine the size of a cd-geared motor for a tuntable with 3 work stations (α = 120°)
Tableweightwithoutload
mO
500 kg
Positioning accuracy
=
± 1 mm
Table diameter
D
2m
Sprocket reduction
iv
3,76
Positions of load
α
120°
Dutyfactor
ED 60 %
Spacedatradius
R
1m
Pulsenumber
360 Takte/h
Ball bearingringdiameter
d
2m
Time of run
16 h/Tag
Cycle time for 120° turn
tges
6s
Efficiency
LoadmL (3 x 750 kg)
mL
2250 kg
Mounting position
η
0,8 V6
23
NORD - Information
Distance s ( at a rotation of 120° ) s =
D∗π
3
=
2m∗π
3
= 2,094 m
Acceleration time tB or Deceleration time tV t B = t V = 1 s (acceptance data ) Tablespeed nT s ges ∗ 60 2,094 m ∗ 60 = = 4 1⁄ min π ∗ D ∗ ( t − ( tB + tV ) ⁄ 2 ) π∗2m ∗(6s −(1s +1s ) ⁄ 2)
nT =
Table circumferential velocity v (Ball bearing ring) v =
π ∗ d ∗ nT π ∗2 m ∗ 4 1⁄min = = 0,42 m⁄s 60 60
Momentofinertia J J =
1 1 1 1 ∗ m O ∗ D2 + ∗ m L ∗ d 2 = ∗ 500 kg ∗ (2 m)2 + ∗ 2250 kg ∗ (2 m)2 = 2500 kgm 2 8 8 4 4
Friction power PR (static) PR =
(m O + m L) ∗ g ∗ µ L ∗ v (500 kg + 2250 kg ) ∗ 9,81 m⁄s2 ∗ 0,005 ∗ 0,42 m⁄s = = 0,07 kW 1000 ∗ η 1000 ∗ 0,8
with µL = 0,005 for friction bearing
Acceleration power PB (dynamic) PB =
J ∗ nT2 2500 kgm 2 ∗ (4 1⁄min)2 = = 0,55 kW 91,2 ∗ 1000 ∗ t B ∗ η 91,2 ∗ 1000 ∗ 1 s ∗ 0,8
Power P P = PR + PB (friction + acceleration) P = 0,07 kW + 0,55 kW = 0,62 kW
24
NORD - Information
Motor data Type
90 S/8-2 Bre 10
Rated power PN
0,25 / 1,1 kW
Rated speed nN
700 / 2810 1/min
Rated torque MN
3,4 / 3,7 Nm
Hochlaufmoment MH
4,0 / 5,7 Nm
No-load switching frequency z o
9000 / 1500 s/h
Motor moment of inertia JM
0,00235 kgm2
Brake moment of inerta JBre
0,00007 kgm2
Braking torque MB (adjusted at 8 Nm)
8 Nm
LoadtorqueML
M =
PR ∗ 9550 0,07 kW ∗ 9550 = = 0,2 Nm nN 2810 1⁄ min
Reduced moment of inertia Jred nT 4 1⁄min 2 2 Jred = J ∗ 2 = 2500 kgm2 ∗ = 0,00507 kgm 1 n N 2810 ⁄min
Permissibleswitchingfrequence zzul zzul =
1 − ML ⁄ MH 1 − 0,2 Nm ⁄ 5,7 Nm ∗ zO = ∗ 1500 s⁄h = 453 s⁄h 1 + (Jred + JBre) ⁄ JM 1 + (0,00507 kgm2 + 0,00007 kgm2) ⁄ 0,00235 kgm2
Acceleration aB aB =
9,55 ∗ v ∗ (MH − ML) 9,55 ∗ 0,42 m⁄s ∗ (5,7 Nm − 0,2 Nm) = = 0,90 m⁄s2 2 Jred ⁄ η + JM + JBre) ∗ nN (0,00507 kgm ⁄ 0,8 + 0,00235 kgm 2 + 0,00007 kgm2) ∗ 2810 1⁄min
Acceleration time tB (start up time) tB =
v
aB
=
0,42 m⁄s 0,90 m⁄s2
= 0,47 s
Accelerationdistance sB (start up distance) sB =
v2 0,42 m⁄s2 = = 0,098 m 2 ∗ aB 2 ∗ 0,90 m⁄s2
Change-overtorque MU MU = 2 ∗ MH8 = 2 ∗ 4,0 Nm = 8,0 Nm
At the change over the speed increased and the motor is decelet ad generator-style.
25
NORD - Information
Change-over delay aU
aU =
aU =
9,55 ∗ v ∗ (1 − nN8 ⁄ nN2) ∗ (MU + ML ∗ η2) = (Jred ∗ η + JM + JBre) ∗ (nN2 − nN8) 9,55 ∗ 0,42 m⁄s ∗ (1 − 700 1⁄min ⁄ 2810 1⁄min) ∗ (8,0 Nm + 0,2 Nm ∗ 0,8 2)
(0,00507 kgm2 ∗ 0,8 + 0,00235 kgm2 + 0,00007 kgm2) ∗ (2810 1⁄min − 700 1⁄min)
= 1,79 m⁄s2
Change-over time tU v ∗ (1 − nN8 ⁄ nN2)
tU =
aU
=
0,42 m⁄s ∗ (1 − 700 1⁄min ⁄ 2810 1⁄min) 1,79 m⁄s2
= 0,18 s
Change-overdistance sU sU =
(v ∗ (1 − nN8 ⁄ nN2))2 0,42 m⁄s ∗ (1 − 700 1⁄min ⁄ 2810 1⁄min))2 = = 0,028 m 2 ∗ aU 2 ∗ 1,79 m⁄s2
Deceleration a V aV =
9,55 ∗ v ∗ nN8 ⁄ nN2 ∗ (MB + ML ∗ η2) 9,55 ∗ 0,42 m⁄s ∗ 700 1⁄min ⁄ 2810 1⁄min ∗ (8,0 Nm + 0,2 Nm ∗ 0,82) = = 1,80 m⁄s2 (Jred ∗ η + JM + JBre) ∗ nN8 (0,00507 kgm 2 ∗ 0,8 + 0,00235 kgm2 + 0,00007 kgm 2) ∗ 700 1⁄min
Decelerationtime tV v ∗ nN8 ⁄ nN2 0,42 m⁄s ∗ 700 1⁄min ⁄ 2810 1⁄min = = 0,06 s aV 1,80 m⁄s2
tv =
Deceleration distance sV sV =
(v ∗ nN8 ⁄ nN2 )2 (0,42 m⁄s ∗ 700 1⁄min ⁄ 2810 1⁄min)2 = = 0,003 m 2 ∗ aV 2 ∗ 1,80 m⁄s2
Distance s with velocity v s = sges - sB - sU - sV = 2,094 m - 0,098 m - 0,028 m - 0,003 m = 1,965 m
Timetwithvelocity v t =
s 1,965 m = = 4,68 s v 0,42 m⁄s
Pulse duration tges (total cycle time) tges = tB + t + tU + tV = 0,47 s + 4,68 s + 0,18 s + 0,06 s = 5,39 s The required cylce time of 6s is not reached. There is a possibility of driving for a longer period in creep speed.
26
NORD - Information
Positioning accuracy The positioningaccuracyisabout± 25% of the deceleration way sV. Positioning accuracy = ± 0,25 * sv = ± 0,25 * 0,003 m = ± 0,00075 m = ± 0,75 mm
Gear arrangements Gear output speed n2 n2 = nT * iV = 4 1/min * 3,76 = 15 1/min
Massacceleration factor maf maf =
Jred 0,00507 kgm2 = = 2,1 JM+JBre 0,00235 kgm2 + 0,00007 kgm2
Switching per hour: 1080 (each 360 accelerations, change-over and decelerations) → kind of load B, fB = 1,5
Outputtorque Ma Ma =
PN ∗ 9550 1,1 kW ∗ 9550 ∗ fB = ∗ 1,5 = 1050 Nm n2 15 1⁄min
Reduction i i =
nN 2810 1⁄min = = 187 n2 15 1⁄min
Complete type:
SK 43 - 90 S/8-2 Bre 8 PN = 0,25 / 1,1 kW i = 169,86 n2 = 4/16 1/min Mounting position V6 Shaft ø 45 x 90 mm Brake 8 Nm
27