3. MEASUREMENT CONVERTERS OF ELECTRICAL QUANTITIES measuring amplifiers: demands on measuring amplifiers, negative feedback, ideal operational amplifier, basic circuits of measuring amplifiers using operational amplifiers (OAs) measurement of low voltages and currents using OAs, estimating uncertainty of measurement (including influence of input voltage offset and input bias), rectifiers (converters of the rectified mean value): active – non-controlled, controlled rectifiers - principle, properties, measurement of voltage phasor
38EMB – P3
1
MEASUREMENT CONVERTERS OF ELECTRICAL QUANTITIES – Measuring amplifiers Demands: a) Defined gain, input and output impedance: 1.
A = U2/U1 voltage amplifier
Zin → ∞ or defined Zout → 0 (voltage source)
2.
A = I2/U1 voltage-controlled current source
Zin → ∞ or defined Zout → ∞ (current source)
3.
A = U2/I1 current-to-voltage converter
Zin → 0 or defined Zout → 0 (voltage source)
4.
A = I2/I1 current amplifier
Zin → 0 or defined Zout → ∞ (current source)
b) DC amplifier: Minimum input voltage offset and its drift (∆Ucc, ∆t, ∆T) c) AC coupled amplifier: Constant gain in defined frequency band, minimum phase shift. 38EMB – P3
2
Gain stabilization using negative feedback
U1-kU2
U1
A→∞
U2
kU2
U2 A = U 2 = A (U 1 − kU 2 ) ⇒ ACL = U 1 1 + kA A→∞ ⇒
Us
U out AU = , AU → ∞ ⇒ U D = 0 UD
k≤1
ACL =
1 k
for
Ideal operational amplifier (OA) I1+
+
UD
U1+
AUUD
I1U1-
38EMB – P3
-
Uout Us
I 1+ = I 1− = 0
3
Noninverting amplifier
U R1 R2
+ U1
U2
UR1
R1
U2 U1 I1 = = − I2 = − R2 R1
I2
R1
U2 R2 = − U1 R1
R2
-
38EMB – P3
U2 R2 = 1+ U1 R1
Rin → ∞ , Rout = 0
Inverting amplifier
U1
R1 = U1 = U 2 R1 + R2
I1
+
U2
U1 R in = = R1 , R out = 0 I1 4
Current-to-voltage converter (stems from inverting amplifier for R1=0) I2
I1 = − I 2
I1
U2 = − R2 I1
R
+
U2
Rin = 0 , Rout = 0
Voltage-controlled current source - VCCS (non-inverting – stems from noninverting amplifier) +
U 1 = I 2 R1
I2
-
RZ
U1 R1
U1 I2 = − R1 Rin → ∞ , R out → ∞
38EMB – P3
5
VCCS (inverting – stems from inverting amplifier) I2 I1
R -
RZ
+
U1
U1 I 2 = − I1 = − R1 Rin = R1 , Rout → ∞
Disadvantage of both current sources- necessity of “floating load“
Real (actual) operational amplifier
I 1+ ≠ I 1− ≠ 0
(non-zero input bias currents)
AU ≈ 10 4 ÷ 10 7
(finite voltage gain)
UD = 0 ⇔ / U 2 = 0 (non-zero input voltage offset)
38EMB – P3
6
MEASUREMENT OF LOW VOLTAGES AND CURRENTS USING OA Estimation of uncertainty of voltage measurement UX – inverting amplifier a) ideal OA
R2
I1N
R1
UX
+
U2
UD0
R1 UX = − U2 R2 2
uU X ( id )
Standard uncertainty:
2
−U2 − R1 − U 2 R1 = u R1 + uU 2 + u R2 2 R2 R2 R2
2
where uU2 id standard uncertainty of the measured voltage U2
u R = ∆Rmax
3=
b) actual OA
Standard uncertainty:
38EMB – P3
δ Rmax
R , δR max tolerance of R1 or R2 in % 100 3
R1 R1 U X = − U 2 m I1N R1 ± U D 0 1 + R2 R2 I R U (1 + R1 R2 ) + 1N 1 + D 0 3 3 2
uU X ( OZ ) = uU2 X ( id )
2
7
Estimating uncertainty of measurement of voltage UX – non-inverting amplifier a) ideal OA
UD0 UX
+
R2
R1 UX = U2 R1 + R2
R1
I1N
U2
2
2
U 2 R2 R1 U 2 R1 + + uU X ( id ) = u u u U2 2 R2 2 R1 ( R1 + R2 ) R1 + R2 ( R1 + R2 )
Standard uncertainty
2
here uU2 is standard uncertainty of measurement of voltage U2
u R = ∆Rmax
3=
b) actual OA
Standard uncertainty: 38EMB – P3
δ Rmax
100 3
UX =
R,
δRmax - tolerance of R1 or R2 in %
R1 R1 ± U D 0 U 2 m I1N R2 R1 + R2 R1 + R2
I R R / (R1 + R2 ) U D 0 + 1N 1 2 + 3 3 2
uU X ( OZ ) = uU2 X ( id )
2
8
Estimating uncertainty of measurement of current IX – I → U converter a) ideal OA
IX
I1N
R
Standard uncertainty:
+
IX = −U 2 R −1 U 2 = uU 2 + uR 2 R R 2
u I X ( id )
U2
2
here uU2 is standard uncertainty of voltage U2
u R = ∆Rmax
3=
δ Rmax 100 3
R,
δRmax - tolerance of R in % b) actual OA
I X = − U 2 R m I1 N Standard uncertainty:
I uU X ( OZ ) = u I2X ( id ) + 1 N 3
38EMB – P3
2
9
RECTIFIERS (CONVERTERS OF THE RECTIFIED MEAN VALUE) Non-controlled rectifiers (active) +
i2 i2
u1
i2
R1
R1
+
u1
non-inverting
u1 inverting
transfer characteristic
u1RM u1RMS = i2 RM ⇒ R1 = R1 1,11 ⋅ i2 RM note: Both circuits require „floating load“. If grounded load has to be used, differential amplifier or rectifier using two OAs should be used. 38EMB – P3 10
Controlled rectifiers
RL
u1
R
u2
R
u1
UC
UC
CC
Uc – rectangular pulse train with magnitude 1 ∞
1 sin (k ω t ) ∑ π k ´1 k u1 (t ) = U m sin (ω t − ϕ )
uř (t ) =
4
pro k liché
u2 (t ) = u1 (t ) ⋅ uř (t ) 38EMB – P3
11
+
u2
CC
4 1 u2 (t ) = U m cos ω t − ϕ − ω t − cos ω t − ϕ + ω t + 14243 43 π 2 142 2ω t −ϕ −ϕ
uC ϕ
u1
u2
u20
4 1 ∞ +Um cos ω t − ϕ − kω t − cos ω t − ϕ + kω t ∑ 142 4 43 4 4 43 4 π 2 k =3 142 (1+k )ω t −ϕ (1−k )ω t −ϕ 2 u2 (t ) = U m cos ϕ + AC components = u 20 + AC comp.
π
Notes to derivation
2
π
U m = U RM
1 sin α sin β = [cos (α − β ) − cos (α + β )] 2
38EMB – P3 12
Measuring voltage phasor using controlled rectifier-VECTORVOLTMETER After filtering out the AC components using a LP filter the DC component u2,0 at the c.r. output is proportional to the real part of the phasor. After shifting the control voltage by 900 (π/2), this DC component u2,90 corresponds to imaginary part of the measured phasor. u0 UX
ur
(u 90 )
CR
U2
FILTER
ux
uR,0 (uR,90 )
SC
=
0
o
90
o
SC
u2,0
uR,90
U m cos ϕ =
2 2
π
ReUx
u90 u2,90
Ux
38EMB – P3 13
u 2 , 90 = =
ur
ImUx
π
U ef cos ϕ
o
u0
ϕ
2
uR,0
Ur 90
u2,0 =
ϕ
2
π
U m sin ϕ =
2 2
π
U ef sin ϕ