Hull Group / RPI (UVa) hullr2@rpi edu
[email protected]
New Methods for Nanoscale Fabrication and Characterization of Materials Primarily Using Electron and Ion beams
Low Energy Electron Microscopy (SPECS P90)
Spatial resolution 5 (2) nm; Spectral resolution 200 meV; Time resolution 100 (1) ms (R. Tromp IBM, J. Thorp, UVa)
Ei ht flange Eight fl ring i with ith line li off sight i ht to t sample: l 1) Focused ion beam (future); 2)Secondary electron detector (future); 3) Effusion cell x2; 4) Multi-cell e-beam evaporator; 5) PEEM source (Hg); 6) P Pyrometer; t 7) V Variable i bl focus f ion i gun; 8) Gas G manifold if ld system t
Si (100) Dark Field 5 m FOV 5m Aug 21 DF
Left: Si(100) 2 x1 5m FOV;Right: Ge/Si(100) 10 m FOV
3rd
Flash R10.bmp
In-Situ Transmission Electron Microscopy Holder Description
Temperature Range
H eating, ST
30 - 1400 C
H eating, eating DT
30 - 1000 C
H eating + Electrical, ST
30 - 1400 C
H eating + Straining, ST
30 - 1000 C
H eating + Electrical + O ptical, ST
30 - 500 C
( ) H eating + Indentation (c)
(a)
(b)
30 – 600 C
Other Capabilities
Electrical Currents to > 1 A Straining Rates 0.04-0.4 0.04 0.4 m/s Electrical Currents to > 1A O ptical Fluxes to >10 2 W cm -2 Indentation, x,y, positioning ~ 10 nm, z ~ 1nm
Piezo motor
Furnace for temperaturesElectrical Optical fiber contacts feed through up to ~300ºC
Nature Materials, 2,, 532 53
5 m FOV, ½ real time
Cu / Cu
Cu / Pt
Nanoscale Tomography with the Focused Ion Beam
5 m
Cu-15In Alloys y Highest In Conc. Green, Matrix Conc. Blue
w/ Alan Kubis, UVa D. Dunn IBM
3D Assembly of Epitaxial Quantum Dots
PHI 700 Auger Nanoprobe
In-situ growth, reaction, surface modification, FIB-Auger
PHI VersaProbe XPS Microprobe Acquisition of Instrumentation for Nanoscale In-Situ Studies in Auger Electron and X-Ray Photoelectron Spectroscopy ; NSF-MRI; Oct 09
Future Directions: Orion He Ion Microscope
• Virtual source size; one atom • Beam diameter < 1nm • Modify for Ar / Ne /O…..
Nanoscale Surface Templating Modify Local Surface Diffusion
FIB Nucleated Ge/Si QDs
Modify M dif Local L l Topography
Modify Surface Chemistry
M dif Surface Modify S f St Strain i
10 pA, pA 100s 6000 ions / spot With F. Ross, IBM, J. Floro, UVa, J. Gray, U. Pittsburgh
Single Object Basis on Each “Lattice” Point
Complex Basis on Each “Lattice” Point
2.0µm
R ~ 30 nm (R) ( ) < 10 nm D ~ 50 nm L ~ 30 nm (0) < i < 108 m-1 (0) < n < 107 m-1
R ~ 30 nm (R) < 10 nm D ~ 10 nm L ~ 10 nm (0) < i < 108 m-1 106 < n < 109 m-1
FIB Patterning of CuO2/SrTiO3
FIB Nucleated Ge QDs * 10 pA, 100s * 6000 ions / spot * 1014 ions cm-2 * 104 features/s * c. 20 pJ / feature * 1 mm3 of Ga 1019 features * A: 1 ion assembles 103 atoms in cluster
Atom-by-Atom Modification of Chemistry / Functionality Goal: Delivery of pulses of 1-10n of required ion species with spatial resolution/alignment to few tens of nm
500 nm
Orsay Physics Mass Selecting FIB Column
1pA beam, 11B+ ions. (from PdAsB) w/ J. Graham, UVa
Towards Single Atom Delivery / Registration: Combinatorial Synthesis at the Nanoscale Total Ion Dose per Pulse vs. Beam Current
Ion Dose per Pu ulse
100000
Doping Ion Beam ()Rx,y
10000 100 ns 1 µs 10 µs 100 µs
1000 100 10
Nanostructure Templating Ion Beam Sx,y
1 1
11
21
31
41
51
61
71
81
91
Ion Current (pA)
Detect secondary electron burst from ion arrival: Matsukawa et al, JVST B16 2479 B16,
Change in I-V Characteristics of MOSFET Shinada et al, Nanotechnology 19, 345202
STM Tip
Tx,y
Summary: Main Themes • Three dimensional nanoscale analysis of materials • Real time imaging of surface structure / reactions • In-situ TEM imaging of liquid/solid interfaces and of liquid phase reactions • Nanoscale surface templating using focused ion beams • Atomic At i scale l modification difi ti off materials t i l using i focused ion beams