3/12/2019
STRUKTUR KOMPOSIT DIPLOMA IV TEKNIK INFRASTRUKTUR SIPIL ITS
CHAPTER – 3 BEAM JACKETING
Dosen Pengajar : Afif Navir Refani, ST., MT.
[email protected] / +628113411985
IPITS 2015
10
IPITS 2015
10
1
LECTURE CONTENTS Introduction
Composites Material Application for structural strengthening
Composites Material (concrete – concrete)
Evaluation 2
Steel – Concrete Composites
Evaluasi 1
Concrete – carbon fiber composites
Designing Of Composites Member
Evaluation 3
2
1
3/12/2019
COMPOSITES STRUCTURE CONCRETE EXISTING & NEW CONCRETE
3
1
2
3
Slab Overlay
Beam Jacketing
Column Jacketing
CONCRETE COMPOSITES
4
2
3/12/2019
COMPOSITES STRUCTURE BEAM JACKETING (FLEXTURE COMPOSITES ELEMENT)
5
6
3
3/12/2019
CONCRETE JACKETING Jacketing a Reinforced concrete member is done to enhance it's strength. This may be necessary either in case of increase of load or to overcome deficiencies that may develop over time. This is mostly done for compression members like columns in a building, piers and abutments of bridges. The process is similar to wearing a jacket in extreme weather conditions and hence the name. The old concrete surface is thoroughly cleared of loose material or Cement plaster if any and cleaned properly. Reinforcement bars both vertical and horizontal are provided as per design and concrete is poured.
7
BEAM JACKETING
8
4
3/12/2019
BEAM JACKETING
9
10
5
3/12/2019
BEAM JACKETING
11
BEAM JACKETING
12
6
3/12/2019
Balanced Strain Condition
Condition where the yield of steel reinforcement and the crushing of outer concrete compressive fiber occur at the same time. Or condition when ultimate strain of concrete occur the same time as steel yield strain 13
13
Balanced Strain Condition Strain linear relationship : cb εu = d εu + ε y
εu 0.003 600 = = ε u + ε y 0.003 + fy / 200000 600 + fy
From force equilibrium : Cb = Tb 0.85 f c'bab = Asb f y 0.85 f c'b(β1cb ) = ρ b bdf y
ρb =
0.85β1 f c' cb fy d
ρb =
0.85β1 f c' 600 fy 600 + f y
14
14
7
3/12/2019
Balanced Strain Condition To ensure the structure is under reinforced condition : ρ max = 0.75 ρ b = 0.75
0.85β1 f c' 600 fy 600 + f y
Minimum reinforcement for flexural member : Asmin =
3 f c' 1.4 bw d ≥ bw d fy fy
15
15
Doubly Reinforced Concrete Section
A’s : Compression Steel Reinforcement. C’s : Compression Force in Steel Reinforcement. f’s : Compression Stress in Steel Reinforcement. 16
16
8
3/12/2019
Doubly Reinforced Concrete Section
A’s : Compression Steel Reinforcement. C’s : Compression Force in Steel Reinforcement. f’s : Compression Stress in Steel Reinforcement. 17
17
Doubly Reinforced Concrete Section
Cc = T1
0.85 f 'c ab = ( As − As ') f y a M n1 = ( As − As ') f y d − 2
Cs ' = T2
M n 2 = As ' f s (d − d ')
M n = M n1 + M n 2 a M n = ( As − As ') f y d − + As ' f s (d − d ') 2
18
18
9
3/12/2019
CONCRETE JACKETING MOMENT CAPACITY
19
19
Doubly Reinforced Concrete Section Force Equilibrium : C =T C = Cc + C s ' T = T1 + T2
Solving the force equilibrium we can achieve that : a=
As f y − As ' f s 0.85 f 'c b
;a =
( As − As ') f y 0.85 f 'c b
All the formula above can be used only if all the steel compression is yields, otherwise the fs value must be calculate accurately.
20
20
10
3/12/2019
Analysis Procedure of Doubly RC Beam Step – by – Step : #1 Calculate the ρ, ρ’ and ρmin. #2 Check The Compression Steel Yields (If it yields then proceed to #4) : ρ − ρ' ≥
0.85β1 f c' d ' 600 f yd 600 − f y
#3 Calculate The Compression Steel Stress (fs) : 0.85β1 f c' d ' f s' = 6001 − ρ − ρ ' f y d
(
)
#4 Calculate stress block depth (a) : a=
As f y − As ' f s 0.85 f 'c b
;a =
( As − As ') f y 0.85 f 'c b
#5 Calculate φMn : a M n = ( As − As ') f y d − + As ' f s (d − d ') 2 21
21
Example Analysis [1] Calculate the nominal moment strength Mn of the doubly reinforced section with data specified below : f’c = 30 MPa fy = 400 Mpa d’ = 65 mm dt = 525 mm As = 3000 mm2 [6D25] As’ = 1000 mm2 [2D25] As-As’ = 2000 mm2 b = 350 mm #1 Calculate the ρ, ρ’ and ρmin. As = 0.0162 bd A' ρ ' = s = 0.0054 bd 1.4 ρ min = = 0.0035 fy
ρ=
22
22
11
3/12/2019
Example Analysis [1] #2 Check The Compression Steel Yields (If it yields then proceed to #4) : ρ − ρ' ≥
0.85β1 f c' d ' 600 f yd 600 − f y
0.85(0.85)(30)(65) 600 400(525) 600 − 400 0.0108 ≥ 0.0201 0.0108 ≥
#3 Calculate The Compression Steel Stress (fs) : 0.85β1 f c' d ' f s' = 6001 − ρ − ρ ' f y d 0.85(0.85)(30)(65) f s' = 6001 − (0.0108)(400 )(525) f s' = 227 MPa
(
)
23
23
Example Analysis [1] #4 Calculate stress block depth (a) : a=
As f y − As ' f s 0.85 f 'c b
=
(3000)(400) − (1000)(227 ) = 109.02mm 0.85(30 )(350 )
#5 Calculate φMn : a M n = (As f y − As ' f s ) d − + As ' f s (d − d ') 2 109.02 M n = ((3000)(400 ) − (1000 )(227 )) 525 − + (1000)(227 )(525 − 65) 2 M n = 480.812kNm
φMn = 0.8(480 ) = 384.649kNm
24
24
12
3/12/2019
25
25
26
26
13
3/12/2019
27
27
28
28
14
3/12/2019
29
29
30
30
15
3/12/2019
31
31
32
32
16
3/12/2019
33
33
Shear Strength of Concrete Section • Shear nominal strength (Vn) of concrete section is a combination of shear strength from concrete (Vc) and sehar strength from shear reinforcement (Vs) : Vn=Vc+Vs • Where Vc : Vc =
1 6
f 'c b w d
• If accurate calculation were used then : 1 V d Vc = f 'c + 120 ρ w u bw d ≤ 0.3 f 'c bw d M u b 7
• Where : ρw =
As Vu d ≤1 bd M u
Prepared By : Bambang Piscesa, ST, MT.
34
34
17
3/12/2019
Shear Strength of Concrete Section • If there is an axial compression load acting in the concrete section therefore Vn can be calculated as follows (Nu/Ag in MPa): N Vc = 1 + u 14 A g
1 6
f 'c b w d
• If accurate calculation were used (Axial Compression Load) : 1 V d 0.3N u Vc = f 'c + 120 ρ w u bw d ≤ 0.3 f 'c bw d 1 + 7 M Ag m
• Where :
4h − d M m = M u − Nu 8
Prepared By : Bambang Piscesa, ST, MT.
35
35
Shear Strength of Concrete Section • If there is an axial tension load acting in the concrete section therefore Vn can be calculated as follows: 0.3N u Vc = 1 + Ag
1 6
f 'c b w d ≤ 0
• Nu/Ag is in MPa. • For circular concrete section area for Vc can be calculated from diameter multiplied by effective width (d=0.8h).
Prepared By : Bambang Piscesa, ST, MT.
36
36
18
3/12/2019
Shear Strength of Concrete Section • Minimum shear reinforcement area Avmin : Av min =
bw s 3fy
• Minimum shear force acquired from shear reinforcement : 1 Vs min = bw d 3
Prepared By : Bambang Piscesa, ST, MT.
37
37
LIMITATION FOR FLEXTURE COMPOSITE COMPONENT
Ps 21.11.6 SNI 2847-2013
38
38
19
3/12/2019
LIMITATION FOR FLEXTURE COMPOSITE COMPONENT
The length of steel headed stud anchors shall not be less than four stud diameters from the base of the steel headed stud anchor to the top of the stud head after installation.
39
39
Force Transfer Mechanisms
40
40
20
3/12/2019
SHEAR FORCE CAPACITY For Non Seismic Beam :
▰ Vu ≤ Ø Vnh ▰ Vnh = 0,55 bv . d Dimana : Vu
= Gaya Geser Horizontal Ultimate
Vnh
= Gaya Geser Nominal
Ø
= 0,75 (geser)
bv
= lebar pelat komposit
D
= tebal pelat overlay 41
41
For Seismic Beam : a. Daerah Tumpuan Mpr−+Mpr+ 820,36+504,86 +Vu +159,753=343,81 kN ln 7,2 + − 820,36+504,86 Mpr +Mpr −Vu= −159,753=24,305 kN Vka = 7,2 ln Gaya geser maksimum yang ditimbulkan oleh beban gempa adalah: Mpr+ +Mpr− 820,36+504,86 = =184,058 kN ln 7,2
Vki =
Jika dipakai sengkang tertutup dengan diameter 13 mm (2 kaki), maka jarak antar sengkang, s, adalah: As×fy×d 2(132,73)×400×672,5 = =230,74 mm s= Vs 309,48×103 Jarak maksimum sengkang tertutup sepanjang 2h (2 x 750 = 1500 mm) tidak boleh melebihi nilai terkecil dari: d/4 = 672,5/4 = 168,13 mm 6db = 6(22) = 132 mm 150 mm Sehingga tulangan sengkang terpasang D13-130 mm hingga sepanjang 1500 mm dari muka tumpuan mencukupi untuk menahan gaya geser.
b. Daerah Lapangan Jika digunakan db = 13 mm, maka jarak ditentukan dari nilai yang terkecil antara: 672,5 d =545,63 mm s1 =Av fyt =2 132,73 400 Vs 130,874 × 103 𝑑 672,5 𝑠 336,25 𝑚𝑚 2 2 fyt 400 s3 =Av = 2 132,73 × =758,46 mm 0,35bw 0,35×400 s4 =600 mm Jadi tulangan sengkang terpasang D13-180 mampu menahan gaya geser. 42
42
21
3/12/2019
CASE STUDY 1 FLEXTURE ELEMENT (BEAM)
43
CEK : • Kapasitas Momen Balok Eksisting (300x400) terhadap Mu • Kapasitas Momen Balok Setelah jacketing (400x500) terhadap Mu
500
500
Case study 1
400
400
Tulangan Tambahan tumpuan 4D16 (atas) & 2D16 (bawah) Tulangan Tambahan lapangan 2D16 (atas) & 4D16 (bawah) Tulangan Sengkang Tambahan D10-150 (tumpuan) dan D10200 (lapangan) Mu Tump = 19.127 Kg.m Mu Lap = 14.345 Kg.m Vu Tump = 97.873 Kg fc’ = 30 Mpa Fy = 390 Mpa Fys = 240 MPa
44
22
3/12/2019
MOMENT CAPACITY EXISTING (30x40) ENDSPAN
Mn(tump) = 92.80 kNm = 9.280 Kg.m Mutump ≤ Ø Mn 19.127 Kgm ≤ 0.9 x 9.280 Kgm 19.127 Kgm ≤ 8.352 Kgm (NOT OK)
45
MOMENT CAPACITY EXISTING (30x40) MIDSPAN
Mn(lap) = 70.11 kNm = 7.011 Kg.m Mulap ≤ Ø Mn 14.345 Kgm ≤ 0.9 x 7.011 Kgm 14.345 Kgm ≤ 6.309 Kgm (NOT OK)
46
23
3/12/2019
MOMENT CAPACITY BEAM JACKETING (400x500mm) ENDSPAN
Mn(tump) = 221.49 kNm = 22.149 Kgm Mutump ≤ Ø Mn 19.127 Kgm ≤ 0.9 x 22.149 Kgm 19.127 Kgm ≤ 19.934 Kgm (OK)
47
MOMENT CAPACITY BEAM JACKETING (400x500mm) MIDSPAN
Mn(lap) = 196.72 kNm = 19.672Kg.m Mulap ≤ Ø Mn 14.345 Kgm ≤ 0.9 x 19.672 Kgm 14.345 Kgm ≤ 17.704 Kgm (OK)
48
24
3/12/2019
END OF LECTURES 3
IPITS 2015
10
49
25