Nav Composites 03-beam Jacketing.pdf

  • Uploaded by: Hermawan
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Nav Composites 03-beam Jacketing.pdf as PDF for free.

More details

  • Words: 1,950
  • Pages: 25
3/12/2019

STRUKTUR KOMPOSIT DIPLOMA IV TEKNIK INFRASTRUKTUR SIPIL ITS

CHAPTER – 3 BEAM JACKETING

Dosen Pengajar : Afif Navir Refani, ST., MT. [email protected] / +628113411985

IPITS 2015

10

IPITS 2015

10

1

LECTURE CONTENTS Introduction

Composites Material Application for structural strengthening

Composites Material (concrete – concrete)

Evaluation 2

Steel – Concrete Composites

Evaluasi 1

Concrete – carbon fiber composites

Designing Of Composites Member

Evaluation 3

2

1

3/12/2019

COMPOSITES STRUCTURE CONCRETE EXISTING & NEW CONCRETE

3

1

2

3

Slab Overlay

Beam Jacketing

Column Jacketing

CONCRETE COMPOSITES

4

2

3/12/2019

COMPOSITES STRUCTURE BEAM JACKETING (FLEXTURE COMPOSITES ELEMENT)

5

6

3

3/12/2019

CONCRETE JACKETING Jacketing a Reinforced concrete member is done to enhance it's strength. This may be necessary either in case of increase of load or to overcome deficiencies that may develop over time. This is mostly done for compression members like columns in a building, piers and abutments of bridges. The process is similar to wearing a jacket in extreme weather conditions and hence the name. The old concrete surface is thoroughly cleared of loose material or Cement plaster if any and cleaned properly. Reinforcement bars both vertical and horizontal are provided as per design and concrete is poured.

7

BEAM JACKETING

8

4

3/12/2019

BEAM JACKETING

9

10

5

3/12/2019

BEAM JACKETING

11

BEAM JACKETING

12

6

3/12/2019

Balanced Strain Condition

Condition where the yield of steel reinforcement and the crushing of outer concrete compressive fiber occur at the same time. Or condition when ultimate strain of concrete occur the same time as steel yield strain 13

13

Balanced Strain Condition Strain linear relationship : cb εu = d εu + ε y

εu 0.003 600 = = ε u + ε y 0.003 + fy / 200000 600 + fy

From force equilibrium : Cb = Tb 0.85 f c'bab = Asb f y 0.85 f c'b(β1cb ) = ρ b bdf y

ρb =

0.85β1 f c' cb fy d

ρb =

0.85β1 f c' 600 fy 600 + f y

14

14

7

3/12/2019

Balanced Strain Condition To ensure the structure is under reinforced condition : ρ max = 0.75 ρ b = 0.75

0.85β1 f c' 600 fy 600 + f y

Minimum reinforcement for flexural member : Asmin =

3 f c' 1.4 bw d ≥ bw d fy fy

15

15

Doubly Reinforced Concrete Section

A’s : Compression Steel Reinforcement. C’s : Compression Force in Steel Reinforcement. f’s : Compression Stress in Steel Reinforcement. 16

16

8

3/12/2019

Doubly Reinforced Concrete Section

A’s : Compression Steel Reinforcement. C’s : Compression Force in Steel Reinforcement. f’s : Compression Stress in Steel Reinforcement. 17

17

Doubly Reinforced Concrete Section

Cc = T1

0.85 f 'c ab = ( As − As ') f y a  M n1 = ( As − As ') f y  d −  2 

Cs ' = T2

M n 2 = As ' f s (d − d ')

M n = M n1 + M n 2 a  M n = ( As − As ') f y  d −  + As ' f s (d − d ') 2 

18

18

9

3/12/2019

CONCRETE JACKETING MOMENT CAPACITY

19

19

Doubly Reinforced Concrete Section Force Equilibrium : C =T C = Cc + C s ' T = T1 + T2

Solving the force equilibrium we can achieve that : a=

As f y − As ' f s 0.85 f 'c b

;a =

( As − As ') f y 0.85 f 'c b

All the formula above can be used only if all the steel compression is yields, otherwise the fs value must be calculate accurately.

20

20

10

3/12/2019

Analysis Procedure of Doubly RC Beam Step – by – Step : #1 Calculate the ρ, ρ’ and ρmin. #2 Check The Compression Steel Yields (If it yields then proceed to #4) : ρ − ρ' ≥

0.85β1 f c' d ' 600 f yd 600 − f y

#3 Calculate The Compression Steel Stress (fs) :  0.85β1 f c' d '   f s' = 6001 −  ρ − ρ ' f y d  

(

)

#4 Calculate stress block depth (a) : a=

As f y − As ' f s 0.85 f 'c b

;a =

( As − As ') f y 0.85 f 'c b

#5 Calculate φMn : a  M n = ( As − As ') f y  d −  + As ' f s (d − d ') 2  21

21

Example Analysis [1] Calculate the nominal moment strength Mn of the doubly reinforced section with data specified below : f’c = 30 MPa fy = 400 Mpa d’ = 65 mm dt = 525 mm As = 3000 mm2 [6D25] As’ = 1000 mm2 [2D25] As-As’ = 2000 mm2 b = 350 mm #1 Calculate the ρ, ρ’ and ρmin. As = 0.0162 bd A' ρ ' = s = 0.0054 bd 1.4 ρ min = = 0.0035 fy

ρ=

22

22

11

3/12/2019

Example Analysis [1] #2 Check The Compression Steel Yields (If it yields then proceed to #4) : ρ − ρ' ≥

0.85β1 f c' d ' 600 f yd 600 − f y

0.85(0.85)(30)(65) 600 400(525) 600 − 400 0.0108 ≥ 0.0201 0.0108 ≥

#3 Calculate The Compression Steel Stress (fs) :  0.85β1 f c' d '   f s' = 6001 −  ρ − ρ ' f y d    0.85(0.85)(30)(65)   f s' = 6001 −  (0.0108)(400 )(525)  f s' = 227 MPa

(

)

23

23

Example Analysis [1] #4 Calculate stress block depth (a) : a=

As f y − As ' f s 0.85 f 'c b

=

(3000)(400) − (1000)(227 ) = 109.02mm 0.85(30 )(350 )

#5 Calculate φMn : a  M n = (As f y − As ' f s ) d −  + As ' f s (d − d ') 2  109.02   M n = ((3000)(400 ) − (1000 )(227 )) 525 −  + (1000)(227 )(525 − 65) 2   M n = 480.812kNm

φMn = 0.8(480 ) = 384.649kNm

24

24

12

3/12/2019

25

25

26

26

13

3/12/2019

27

27

28

28

14

3/12/2019

29

29

30

30

15

3/12/2019

31

31

32

32

16

3/12/2019

33

33

Shear Strength of Concrete Section • Shear nominal strength (Vn) of concrete section is a combination of shear strength from concrete (Vc) and sehar strength from shear reinforcement (Vs) : Vn=Vc+Vs • Where Vc : Vc =

1 6

f 'c b w d

• If accurate calculation were used then : 1  V d  Vc =   f 'c + 120 ρ w u bw d ≤ 0.3 f 'c bw d M u b  7 

• Where : ρw =

As Vu d ≤1 bd M u

Prepared By : Bambang Piscesa, ST, MT.

34

34

17

3/12/2019

Shear Strength of Concrete Section • If there is an axial compression load acting in the concrete section therefore Vn can be calculated as follows (Nu/Ag in MPa):  N Vc =  1 + u  14 A g 

1  6 

f 'c b w d

• If accurate calculation were used (Axial Compression Load) : 1  V d  0.3N u Vc =   f 'c + 120 ρ w u bw d ≤ 0.3 f 'c bw d 1 + 7 M Ag m   

• Where :

 4h − d  M m = M u − Nu    8 

Prepared By : Bambang Piscesa, ST, MT.

35

35

Shear Strength of Concrete Section • If there is an axial tension load acting in the concrete section therefore Vn can be calculated as follows:  0.3N u Vc =  1 +  Ag 

1  6 

f 'c b w d ≤ 0

• Nu/Ag is in MPa. • For circular concrete section area for Vc can be calculated from diameter multiplied by effective width (d=0.8h).

Prepared By : Bambang Piscesa, ST, MT.

36

36

18

3/12/2019

Shear Strength of Concrete Section • Minimum shear reinforcement area Avmin : Av min =

bw s 3fy

• Minimum shear force acquired from shear reinforcement : 1 Vs min = bw d 3

Prepared By : Bambang Piscesa, ST, MT.

37

37

LIMITATION FOR FLEXTURE COMPOSITE COMPONENT

Ps 21.11.6 SNI 2847-2013

38

38

19

3/12/2019

LIMITATION FOR FLEXTURE COMPOSITE COMPONENT

The length of steel headed stud anchors shall not be less than four stud diameters from the base of the steel headed stud anchor to the top of the stud head after installation.

39

39

Force Transfer Mechanisms

40

40

20

3/12/2019

SHEAR FORCE CAPACITY For Non Seismic Beam :

▰ Vu ≤ Ø Vnh ▰ Vnh = 0,55 bv . d Dimana : Vu

= Gaya Geser Horizontal Ultimate

Vnh

= Gaya Geser Nominal

Ø

= 0,75 (geser)

bv

= lebar pelat komposit

D

= tebal pelat overlay 41

41

For Seismic Beam : a. Daerah Tumpuan Mpr−+Mpr+ 820,36+504,86 +Vu +159,753=343,81 kN ln 7,2 + − 820,36+504,86 Mpr +Mpr −Vu= −159,753=24,305 kN Vka = 7,2 ln Gaya geser maksimum yang ditimbulkan oleh beban gempa adalah: Mpr+ +Mpr− 820,36+504,86 = =184,058 kN ln 7,2

Vki =

Jika dipakai sengkang tertutup dengan diameter 13 mm (2 kaki), maka jarak antar sengkang, s, adalah: As×fy×d 2(132,73)×400×672,5 = =230,74 mm s= Vs 309,48×103 Jarak maksimum sengkang tertutup sepanjang 2h (2 x 750 = 1500 mm) tidak boleh melebihi nilai terkecil dari: d/4 = 672,5/4 = 168,13 mm 6db = 6(22) = 132 mm 150 mm Sehingga tulangan sengkang terpasang D13-130 mm hingga sepanjang 1500 mm dari muka tumpuan mencukupi untuk menahan gaya geser.

b. Daerah Lapangan Jika digunakan db = 13 mm, maka jarak ditentukan dari nilai yang terkecil antara: 672,5 d =545,63 mm s1 =Av fyt =2 132,73 400 Vs 130,874 × 103 𝑑 672,5 𝑠 336,25 𝑚𝑚 2 2 fyt 400 s3 =Av = 2 132,73 × =758,46 mm 0,35bw 0,35×400 s4 =600 mm Jadi tulangan sengkang terpasang D13-180 mampu menahan gaya geser. 42

42

21

3/12/2019

CASE STUDY 1 FLEXTURE ELEMENT (BEAM)

43

CEK : • Kapasitas Momen Balok Eksisting (300x400) terhadap Mu • Kapasitas Momen Balok Setelah jacketing (400x500) terhadap Mu

500

500

Case study 1

400

400

Tulangan Tambahan tumpuan 4D16 (atas) & 2D16 (bawah) Tulangan Tambahan lapangan 2D16 (atas) & 4D16 (bawah) Tulangan Sengkang Tambahan D10-150 (tumpuan) dan D10200 (lapangan) Mu Tump = 19.127 Kg.m Mu Lap = 14.345 Kg.m Vu Tump = 97.873 Kg fc’ = 30 Mpa Fy = 390 Mpa Fys = 240 MPa

44

22

3/12/2019

MOMENT CAPACITY EXISTING (30x40) ENDSPAN

Mn(tump) = 92.80 kNm = 9.280 Kg.m Mutump ≤ Ø Mn 19.127 Kgm ≤ 0.9 x 9.280 Kgm 19.127 Kgm ≤ 8.352 Kgm (NOT OK)

45

MOMENT CAPACITY EXISTING (30x40) MIDSPAN

Mn(lap) = 70.11 kNm = 7.011 Kg.m Mulap ≤ Ø Mn 14.345 Kgm ≤ 0.9 x 7.011 Kgm 14.345 Kgm ≤ 6.309 Kgm (NOT OK)

46

23

3/12/2019

MOMENT CAPACITY BEAM JACKETING (400x500mm) ENDSPAN

Mn(tump) = 221.49 kNm = 22.149 Kgm Mutump ≤ Ø Mn 19.127 Kgm ≤ 0.9 x 22.149 Kgm 19.127 Kgm ≤ 19.934 Kgm (OK)

47

MOMENT CAPACITY BEAM JACKETING (400x500mm) MIDSPAN

Mn(lap) = 196.72 kNm = 19.672Kg.m Mulap ≤ Ø Mn 14.345 Kgm ≤ 0.9 x 19.672 Kgm 14.345 Kgm ≤ 17.704 Kgm (OK)

48

24

3/12/2019

END OF LECTURES 3

IPITS 2015

10

49

25

Related Documents

Nav
May 2020 19
Nav
May 2020 10
Nav
August 2019 23
Composites
May 2020 11
Nav
November 2019 16

More Documents from ""