Nasab2 Bagus

  • Uploaded by: ikhfi
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Nasab2 Bagus as PDF for free.

More details

  • Words: 668
  • Pages: 6
Sabtu 11 april 2009 Ikfi Mubarokah Mulia Rahmayani “METODE FROBENIUS” 9. (x+2)2 y " + (x+2) y ' – y = 0

y"+

y' -

y=0

Misalkan : X m+r

y:

m

X m+r-1

y ':

m

X m+r-2

y ":

m

(x+2)2 y " + (x+2) y ' – y = 0 •

(x2 + 4 x + 4) m+r

X m+r-2 + (x+2)

m

m

X m+r-1 -

X

m

=0



m+r

m

X

+

m

X

m+r-2

m

X

m+r

m

X

m

X m+r-2 = 0

4

m

+

m

m+r

X

m+r-1

X

+ 2

m

X

+

4

m+r-1

-

X m+r = 0

m





+

m+r-1

X

m

+

2

m

m

0 •

Mencari r ( pangkat terkecil)

m+r

+

m

m

X

X

m+r

m+r-1

+ 4 +

4

Xm+r

X

m+r-1

+ +

m

X

m+r-2

=

4r (r-1) = 0



4r = 0

r–1=0

r=0

r=1

Sehingga : Y1 (x) = xr1 ( a0 + a1 + a2x2 + … ) Y2(x) = k y1(x) ln (x) + xr2 (A0 + A1 x+ A 2x + …) Mencari koefisien a0, a1, a2, … , A0, A1, A2, …

Koefisien untuk :



xs+r = xm+r-2

xs+r = xm+r-1

m+ r = s + r

s + r = m+ r -2

s + r = m+ r -1

m=s

s+2=m

s+1=m

[ (s + r) (s + r – 1) + (s + r) – 1 ] a s + [ 4 (s + 1+ r) (s + 1+ r - 1) + 2 (s + 1+ r) ] a s+1 + [ 4 (s + 2+ r) (s + 2 + r - 1) ] as+2 = 0



[ (s + r) (s + r – 1 + 1) – 1 ] as + [ (s + 1+ r) (4s + 4 + 4r – 4 + 2)] as+1 + [ 4 (s + r + 2) (s + r + 1) ] as+2 = 0



[ (s + r)2 – 1] as + [ (s + 1+ r) (4s + 4r + 2)] as+1 + [ 4 (s + r + 2) (s + r + 1) ] as+2 = 0



as+2 =

 Untuk r = 0



as+2 =

S=0

a2 =

=

S=1

=

a3 =

=

=

=

S=2

-

+

a4 =

=

S=3

=

[

=

+

]=

a5 =

=

=

[

=

-

]=

 Untuk r = 1

As+2 =

S=0

A2 =

=

=

=

S=1

A3 =

=

=

=

S=2

A4 =

=

=

=

=

S=3

A5 =

=

=

=

[

= Jadi : y1 (x) = x0 (a₀ + a1x + (

-

) x² + (

+

) x³ + (

-

) x4 + (

+

)

x5 +(

=

=

a₀

(

) x6 + …

-

1

+

-

-

…)

+

(2 + ( )² + ( )³ + ( )4 + ( )⁵ + ( )⁶ + ….) +

( )+ ( )² + ( )³ + ( )4 + ( )⁵ + …)

=

(

)–

=

(

)+

( )+ +

( (

) )

a1

+

(

x

-

(2 +

=

+

=

+

+

y 2 (x) = K ( x4 +

+

) ln (x) + x'(A₀ + A1x +(

) x² +

x³ +(

+

+ …)

)

x⁵ +…)

=K(

+

) ln (x) + A₀x +A1 (x²-

+

=K(

+

) ln (x) + A₀x + A1x² [ 1 –(

=K(

+

) ln (x) + A₀x + A1x² [



- ( )² – (

)⁵ - …] ]

Jadi solusinya : y = y1 (x) + y2 (x) = =

+ +

+K(

+

) ln (x) + A₀x + A1x² [

(1+ K ln (x)) + A₀x + A1x² [

]

-

]

-(

-(

Related Documents

Nasab2 Bagus
April 2020 14
Transllite Bagus
May 2020 10
Buku Bagus
November 2019 15
Bagus Ni
October 2019 21
Bagus Khan,..dokter
December 2019 5

More Documents from "Evi Nur Lailah"

Rifqia Apriyanti
May 2020 7
Tug As
April 2020 5
Ikfi Mubarokah
May 2020 6
Nasab2 Bagus
April 2020 14
Mulia Rahmayani
May 2020 3