Nasab Ika

  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Nasab Ika as PDF for free.

More details

  • Words: 607
  • Pages: 3
Soal xy’’ + 3y’ + 4x3y = 0 Tentukan basis solusi dari persamaan diferensial dengan metode frobenius. c( x) b( x ) = 4x3 =3 2 x x c( x) = 4 x 5 b( x ) = 3 x ∞

y ( x) = ∑ a m x m + r m =0 ∞

y ' ( x) = ∑ (m + r )a m x

m + r −1

m=0 ∞

y ' ' ( x) = ∑ (m + r )(m + r − 1)a m x m + r −2 m =0

xy’’ + 3y’ + 4x3y = 0 ∞

∑ (m + r )(m + r − 1)am x m+ r −2



∑ ( m + r ) am x

m + r −1



∑a

m

x m+r

x m =0 + 3 m =0 + 4x3 m =0 =0 r-2 r-1 r-1 r x [r(r-1)a0x + (1+r)ra0x +…] + 3[ra0x + (1+r)a1x + …] + 4x3 [a0xr + a1xr+1 + … ]=0 persamaan indikator dengan xr-1 , maka a0 r(r-1)a0 + 3r a0 = 0 (r(r-1) + 3r ) a0 = 0 a0 ≠ 0 maka haruslah r(r-1) + 3r = 0 r(r-1) + 3r = 0 r2 – r +3r = 0 r2 + 2r = 0 r(r+2) = 0 r1=0 r2=-2 selisih r1 dan r2 adalah bilangan bulat, maka gunakan teorema 2 kasus 3 ( selisih kedua akarnya bilangan bulat). *sehingga solusinya : y1(x) = xr1(a0 + a1x + a2x2 +…) = x0 (a0 + a1x + a2x2 +…) = a0 + a1x + a2x2 +… y2(x) = k y1(x).ln (x) + xr2 (A0 + A1x + A2x2 + … ) , dimana r – r > 0, k ∈ R = k (a0 + a1x + a2x2 +… ).ln(x) + x -2 (A0 + A1x + A2x2 +… ) *mencari koefisien a0,a1,a2,… A0,A1,A2,… Persamaan xy’’ + 3y’ + 4x3y = 0



∑ (m + r )(m + r − 1)am x m+ r −2

m =0



∑ ( m + r ) am x

m + r −1

+ 3 m =0 + 4x3 misal m + r + 3 = s + r m+3=s m=s–3

Misal m + r – 1 = s + r m – 1= s m= s + 1 samakan koefisien x s + r (s + 1 + r)(s + r)as+1xs+r + 3 (s + 1 + r) as+1xs+r + 4 as-3xs+r = 0 (s + 1 + r)(s + r)as+1 + 3 (s + 1 + r) as+1 + 4 as-3 − 4a s −3 a s +1 = ( s + 1 + r )( s + r ) + 3( s + 1 + r ) Untuk r1 = 0 − 4a s −3 a s +1 = ( s + 1) s + 3( s + 1) − 4a −3 a1 = 3 − 4a − 2 a2 = 8 − 4a −1 − 4a −1 a3 = = 6+9 15 − 4a 0 − 4a 0 a4 = = 12 + 12 24 s=0  Untuk r2 = -2 A s +1 =

=

− 4 As −3 ( s + 1 − 2)( s − 2) + 3( s + 1 − 2)

− 4 As −3 ( s − 1)( s − 2) + 3( s − 1)



∑a

m =0

m

x m+r =0

− 4 A−3 2 + (−3) − 4a − 2 A2 = 0 − 4a −1 A3 = = 3 − 4a 0 − 4 a 0 A4 = = 2+6 8  A1 =

Related Documents

Nasab Ika
April 2020 22
Ika Tugas Nasab
May 2020 5
Nasab
June 2020 18
Nasab
May 2020 17
Nasab
June 2020 17
Nasab
April 2020 19