Nasab Dt2

  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Nasab Dt2 as PDF for free.

More details

  • Words: 1,248
  • Pages: 3
Selesaikanlah dengan metode Frobenius y"+ xy'+ (1 − 2 x − 2 ) y = 0 Penyelesaian : ∞

∑ (m + r )(m + r − 1) a

m=0

m

x

m+ r − 2

+ x ∑ (m + r )am x

∑ (m + r )(m + r − 1) am x m+ r − 2 +

m=0 ∞

m=0

m + r −1

m= 0



∑ [ (m + r )(m + r − 1) − 2] a





∑ (m + r )am x m + r + m= 0



+ (1 − 2 x ) ∑ a m x m+ r = 0 −2

m=0





m= 0

m= 0

∑ a m x m + r − 2∑ a m x m + r − 2 = 0



m

x m+ r − 2 + ∑ [ (m + r ) + 1] a m x m+ r = 0....................(*) m=0

* Mencari r yaitu dengan memilih koefisien terkecil dari (*), pilih ( x r − 2 ) Substitusi m = 0 ke [ (m + r )(m + r − 1) − 2] a m

[ r (r − 1) − 2] a0 = 0

a 0 ≠ 0 sehingga r (r − 1) − 2 = 0 r2 − r − 2 = 0 (r − 2)(r + 1) = 0 r1 = 2 r2 = −1 Kasus 1 karena selisih kedua akarnya bilangan bulat Solusi : y1 ( x) = x r1 (a0 + a1 x + a 2 x 2 + ...) = x 2 (a 0 + a1 x + a 2 x 2 + ...) y 2 ( x) = k y1 ( x) ln( x) + x r2 ( A0 + A1 x + A2 x 2 + ...)

[

]

= k x 2 (a 0 + a1 x + a 2 x 2 + ...) ln x + x −1 ( A0 + A1 x + A2 x 2 + ...)

* Mencari koefisien a0 , a1 , a2 ,..., A0 , A1 , A2 ,... * Mencari koefisien x s +r x s +r = x m +r −2 x s +r = x m +r s +r = m+r −2 s+r =m+r m = s+2 m=s * Substitusi ke (*) [ ( s + r + 2)(s + r + 2 −1) − 2] as +2 + [ s + r +1] as = 0 s + r +1 as ( s + r + 2)( s + r + 1) − 2 untuk r1 = 2 a s +2 = −

0 + 2 +1 3 a0 = − a 0 (0 + 2 + 2)(0 + 2 + 1) − 2 10 2 Jika s = 1 , a3 = − a1 9 5 5 3  3 Jika s = 2 , a4 = − a2 = − × − a0  = a0 28 28  10  56 3 Jika s = 3 , a5 = − a3 20 7 7  3 1  Jika s = 4 , a6 = − a 4 = − ×  a0  = − a0 54 54  56  144 * Cari a1 dengan m = 1 disubstitusikan ke [ (m + r )(m + r −1) − 2] am Jika s = 0 ,

a2 = −

[ r (r +1) − 2] a1 = 0 (r 2 + r − 2)a1 = 0

(r − 1)(r + 2)a1 = 0 r1 = 2

r2 = −1

sehingga a1 = 0 → Diperoleh : y1 ( x) = x 2 (a0 + a1 x + a2 x 2 + a3 x 3 + a4 x 4 + a5 x 5 + a6 x 6 + ...) 3 3 1   = x 2  a0 + 0 x − a 0 x 2 + 0 x 3 + a0 x 4 + 0 x 5 − a0 x 6 + ...  10 56 144   3 3 4 1 6   = x 2 a0 1 − x 2 + x − x + ...  56 144  10  3 3 6 1 8   = a0  x 2 − x 4 + x − x + ...  10 56 144  

* Untuk r = − 1 s+ r +1 As ( s + r + 2)( s + r + 1) − 2 s + (− 1) + 1 As + 2 = − As ( s + (− 1) + 2)( s + (− 1) + 1) − 2 s As + 2 = − As ( s − 1)( s + 2) Jika s = 0 , A2 = 0 × A0 = 0 As + 2 = −

1 1 Jika s = 2 , A4 = − A2 = − × 0 = 0 2 2 3 Jika s = 3 , A5 = − A3 10 2 2 Jika s = 4 , A6 = − A4 = − × 0 = 0 9 9 5 5 3 3 Jika s = 5 , A7 = − A5 = − × − A3 = A3 28 28 10 56 * Cari A1 dengan m = 1 disubstitusikan ke [ (m + r )(m + r − 1) − 2] Am

[ r (r + 1) − 2] A1 = 0 (r 2 + r − 2) A1 = 0

(r − 1)(r + 2) A1 = 0 r1 = 2 r2 = − 1 sehingga A1 = 0 → Diperoleh : y 2 ( x) = k y1 ( x) ln( x) + x r2 ( A0 + A1 x + A2 x 2 + ...)   3 3 1 8  = k a0  x 2 − x 4 + x 6 − x + ...  ln x + x −1 ( A0 + A1 x + A2 x 2 + ...) 10 56 144      = k a0  x 2     = k a0  x 2  

3 4 3 6 1 8 3 3    x + x − x + ...  ln x + x −1  A0 + A3 x 3 − A3 x 5 + A3 x 7 + ... 10 56 144 10 56     3 3 1 8 3 3    − x4 + x6 − x + ...  ln x + x −1  A0 + A3  x 3 − x 5 + x 7 + ...  10 56 144 10 56     −

∴ Solusi : 3 3 1 8   y1 ( x) = a 0  x 2 − x 4 + x 6 − x + ...  10 56 144      3 3 1 8 3 3    y 2 ( x) = k  a 0  x 2 − x 4 + x 6 − x + ...  ln x + x −1  A0 + A3  x 3 − x 5 + x 7 + ...   10 56 144 10 56      

Related Documents

Nasab Dt2
April 2020 2
Nasab
June 2020 18
Nasab
May 2020 17
Nasab
June 2020 17
Nasab
April 2020 19
Nasab
April 2020 11