Name: ________________________ Class: ___________________ Date: __________
ID: A
M1B T1 Sp 09 1. [5 points each] Decide if the statement is true or false (not always true). For the true statements provide a proof or state an appropriate theorem and for the false statements explain clearly or give a counter example (an example for which the statement is not true). Your counter examples can be graphs or algebraic examples.
È ˘ a) The area bounded by the graph of a function f and the x-axis on a closed interval ÍÍÎ a,b ˙˙˚ is
È ˘ b) If F is a continuous function over the interval ÍÍÎ a,b ˙˙˚ and is defined by F(x) = ÍÈÍ a , b ˙˘˙ , then F ′(x) = f(x). Î ˚
∫
∫
b
a
d)
∫
π
b
f(c)dx = ∫ f(x)dx a
sec 2 x dx = tan(π ) − tan(0)
0
1
f(x)dx .
a
x
f(t)dt for every x in
a
È È ˘ ˘ c) For a continuous function f on a closed interval ÍÍÎ a , b ˙˙˚ , there exists a c in ÍÍÎ a , b ˙˙˚ such that:
∫
b
Name: ________________________
ID: A
È ˘ e) For every continuous functions f and g over the interval ÍÍÎ a , b ˙˙˚ , if È ˘ for all x in ÍÍÎ a , b ˙˙˚ .
∫
b
a
f(x)dx =
∫
b
g(x)dx then f(x) = g(x)
a
. 2. [8 points] For the function F(x) =
∫
x
2
ln(t 3 + 4)dt find an equation of the tangent line at x = 2.
4
. 3. [7 points] Use the velocity function v(t) = 30e −t / 4 and the initial position s(0) = −1 to calculate the final position at t = 4.
.
2
Name: ________________________
ID: A
4. [7 points each] Evaluate the indicated integral.
∫
2 − x dx =
a) x
b)
∫
3x + 20
c)
∫
x
d)
∫
x+7
dx =
1 − x4
π/2
π/4
dx =
cot(x)dx =
.
3
Name: ________________________
ID: A
5. [7 points] Find a value of c that satisfies the conclusion of the Integral Mean Value Theorem for the function f(x) = x 2 − 1 over the interval [1, 3].
. 6. a) [7 points] Set up the Riemann sum that approximates the area under the graph of y = tan−1 (x) over the interval [1, 3] using left-endpoint evaluation with a regular partition of size 16. (set up and simplify but do not calculate completely)
b) [2 points] Does this sum overestimate or underestimate the actual area under the curve?
c) [3 points] True/False: f ave <
π 4
4
Name: ________________________
ID: A
7. a) [8 points] Use Simpson’s rule to approximate the value of
∫
π/2
−π / 2
cos(x) dx with n = 4.
b) [5 points] Set up and simplify, but do not calculate, the Trapezoidal Rule to approximate the above integral with the same n value.
.
5