Multiple Integrals Double Integral Let
D
C
IR2
liD II
be a bounded measurable set. Let
diameter of the set
D, i.e.,
sup
IIDII
be the
{J(XI
-
X2)2
+ (Yl
- Y2)2}.
(Xl,Yl)ED (X2,Y2)ED
=
Let ~
i,j
{Di
I
n
i = 1, ...
= 1, ... ,n,
, n}
be a division of
D
such that:
i #j. IDM 2009 - p. 1123
Let
II~II
:= 2=1, . max IIDill, f : D ... ,n
---+ JR,
the sum
and choose
Ni
Di,
i = 1, ...
, n. Consider
n
SD.
If the limit
DEFINITION
lim
=
L i=l
f(Ni)m(Di). ~ 1M. ie
SD. exists, and has the same value for any division
IID..II-+O
- {D1,
E
...
,
Dn} of D, and for any points N'i E
double integral of
f
Di,
i = 1, ...
, n, then it is called
on D, and is denoted by
Hence,
n
f
).
n
If
f = 1, we obtain
SD..
=
L i=l
m(Di)
= A(D),
therefore
the area
A(D)
of the set
D is
given by
IDM 2009 - p. 2123
Similarly, if P : D the domain
If
r
--t
JR
is the density of a mass distributed on
D,
= xI + y} ,
then the position vector
r
G of the centroid
(centre of mass) is given by:
IDM 2009 - p. 3/23
Double Integrals over a Rectangle
Let D
= [a,
THEOREM
function
b] x [c, d] C JR2 be a rectangle and f: D
Ifthe integral : [a,b] lR.,
fif(X,
( x)
--t
JR.
y) dxdy exists and the
= jdc f (x,
y) dy, is
integrable, then
IDM 2009 - p. 4/23
Proof: We prove the theorem in the particular case when the function
f
is continuous on
{[a
=
D.
Consider the divisions:
Xo, Xl], [Xl, X2], ...
and the points ~i E [Xi-I,
, [Xn-1, Xn
i = 1, ...
Xi],
=
b]},
, n. By using the
mean value theorem, we obtain:
n
L
f(~i,
rlj) (Yj - Yj-1),
j=l
where 1]j
E [Yj, Yj-1].
10M 2009 - p. 5/23
We deduce: n
Li=l
n I(~i)(Xi-Xi-1)
hence, for
=
n
Li=l L
f(~i,
1]j)(Xi-Xi-1)(Yj-Yj-1),
j=l
~~x
1<'l,J
{Xi -
Xi-I,
Yj - Yj-1}
lb I(x) dx = f!vf(x,
-+
0, we obtain
y) dxdy.
10M 2009 - p. 6/23
The integral
REMARK
IS
(x,y)
denoted also by
Therefore, if
f
is continuous, we have:
fLf(x,
= lbdx ldf(x,
y) dxdy
=
ld dy lbf(x,
y) dy
y) dx. IDM 2009 - p. 7/23
Double Integrals over Arbitrary Domains Let g, h : [a,
b]
-+
[c, d] be continuous. Consider the set
D
= {(x,
y)
I
a
<
x
<
b,
g(x)
<
y
<
h(x)}.
y
d
g
c
a
b IDM 2009 - p. 8/23
D
If f:
THEOREM
is continuous, then
---t JR.
f
D
Proof: The set function f*
: [a,
b]
f
is closed and bounded, hence it is measurable.
x
Define the auxiliary
[c, d] ---t JR.,
(x, y) y) E ([a, b] x [c, dJ) \ D. (x, E D, Since f* is discontinuous at most on the graph of g and h (set of of null measure), it is
f*(x,
integrable on
D.
={
y)
f(x, 0, y),
We have:
rr JJD
y) dxdy
f(x,
= JJ[a,b] rr
= Jarb dx Jcrdf*(x,y)dy=
x [c,d] f*(x,
Jarb
y) dxdy
dx Jg(x) rh(X)f(x,y)dy.
IDM 2009 - p. 9/23
Similarly, if g, h : [c, d]
D
=
{(x, y)
I
c
---t JR.
< d,
are continuous, and
g(y)
< x < h(y)},
y
d :£ -
hey)
c
x
a
b
we have
h~
f(x,
D
y) dxdy
=
ldc
dy
lh(Y) g(y)
f(x,
y) dx. IDM 2009 - p. 10/23
EXAMPLE
d:1xly, where
rr
Calculate lID (:1~2
parabolas y
x2,
is the domain bounded by the
y2.
::r _
1
D(x2 !J~
y)
dxdy
= 111ft o dx
o (X5/2 + :::. 2 _ x4 = 11
x2
2 _ x4)
(x2
dx
=
+ y)
dy
7 (~X7/2
=
11[ 0
+ x24
+ Y22]Y=ft y=x2
x2y x
10 _ ~X5)
0 11
dx
140 = ~. 10M 2009 - p. 11/23
RegionPlot [y > X2 && y2 < X, {X, 0,1}, {y, 0,1}, BoundaryStyle ---+ Dashed, Plot8tyle ---+ Yellow, AspectRatio
---+
Automatic]
1.0 -,
•
I
T
I~I 1
0.8
0.6
::1 f 00
l·,1 __
0.0
I
0.4
11 11 Boole 1 3
.~~
__,_,
0.6
[y
0.8
1.0
> x2 && y2 < xJ
dx dy 10M 2009 - p. 12/23
Green's Formula Suppose that the functions Consider the set
gl, g2 : [a,
M defined M
y
b]
-+
hI, h2
JR.,
: [c,
d]
-+
JR.
are continuous.
by:
a <x<
{(x,y)
I
{(x,y)
Ie
b, gl(X)
< y < d,
h1(y)
< Y < g2(X)} < X
D
d
A
C c
B a
We have:
-
= gl (t) { x=t
Denote the path
by fr
=
g2
(a
+b -
, t
E [a,b].
t)
M. IDM 2009 - p. 13/23
lVh, ... , lVln are bounded by piecewice smooth paths such that: n
U
JIv! -
1, ... , n,
y
y
ABCDA
If the sets
i,.i -
x=a+b-t
ABC:
i },
Afi n 1\1j
1\1,i,
·i=1 and
c fr( JlvIi) n fr( 1\Ij
w is a differential form over
fr
/ w=ti=l 1\!I
fr
f
.IvI.[
1.\1,
),
then
w
A
- -
B
0
----
~ ACDA ABC frM1UM2 frM2 JiG CA .•..
/
/
D
w+ / w.
IDM 2009 - p. 14/23
Suppose that THEOREM
M c ]R2
is a finite union of sets bounded by piecewise smooth paths.
(Green-Riemann)
P,
If the functions
possess continuous partial derivatives
q : 1\1 -+
are continuous and
~~ and ~~;, then
M
Proof: It is sufficient to prove the theorem when
is bounded by a piecewice smooth path.
We have:
dxdy !J~ fJP M (-8) y
= /
= - 1b dx 192(X) a 91 (x)
.f
P(x, g,(X»dx
Pdx -
/
Pdx
ADO
7fBC
8 fJP dy = 1b P(x, Y
a
-1b P(x,g,(x» =
/
Pdx
ABCJ5A
y)
Y=91(X) Y=92(X)
dx
dx
= / Pdx. fr
M
IDM 2009 - p. 15/23
Similarly, we obtain
/L~~
dxdy=
/
Qdy,
frM
hence
/L (~~- ~:) dxdy= x If in Green's Formula we take
q=
2 P
/
frM
Pdx+Qdy.
Y
= -"2'
we get
/L dxdy = ~frM/ xdy
- ydx,
IDM 2009 - p. 16/23
Calculate the area of the domain !vI bounded by the ellipse
r:
We have:
x2
y2
-2 a/ +
b')"-' ==
x
r:
y
arie(M)
== -
11277" 2 0
== ==
1.
a cos t, b sin
t
E [0,21rJ,
t,
= ~frMJ
+ xdy)
(-ydx
(a cos t(b sin t)'-b sin t( a cos t)') dt ==
== -
11277" 2 0
ab dt
1rab.
IDM 2009 - p. 17/23
Let
D
C
Change of Variables in Double Integrals JR.2a compact domain and T : ~ -+ D a differentiable bijection T: { Yx =y(u,v) = x(u, v)
,
(u, v) E ~.
T v
y
u
x THEOREM
If
f :D
-+
lR
0 is
continuous, then
) IDM 2009 - p. 18/23
where
D - {(x, e
integral, ,fa Fie ~
=
e
Calculate the integral
EXAMPLE
{(p,
B)
E ]R2 I x2
y)
y2
< R2}.
(method 3). E ]R2 I 0 < p < R, 0
T:~-tD,
B
<
211"}
~i fie
= peas B, = p sin e.
x
T:
<
Find the Gauss
y
D(x, y)
We get:
= p,
D(p, e)
I = fLe-P2pdpde
= 121rde
lR
e-p2pdp
= Jr(1_e-R2). IDM 2009 - p. 19/23
For
R
-t
00, we obtain
f~2e-X2_y2 dxdy
= Jr,
1.8.,
= 100 -00 100 -00 e
_x2_y2
dxdy
= Jr,
hence
e
IDM 2009 - p. 20/23
EXAM PLE
Find the area of the domain
D bounded by the
parabolas:
where
o
x2
ay
x2
by
b,
and
Y Y
0
2
px
2
qx
q.
IDM 2009 - p. 21/23
y' =qx
y'
= px
IDM 2009 - p. 22/23
We look for a change of variable of the form
{ Let D.
x2
y2
= {(u, v) Ip < u < q,
We have
(x, y) ED{::=:::}
= vy = ux a
u E [p, q],
,
v E [a,
b].
< v < b}.
(u, v) E D.. ,
(u, v) E D..
u2/3 v1/3 {
We deduce
~ ar';a(D)
-- ffD dxdy
Xy
u1/3
v2/3
D(x, y)
1
D(u,v)
3
--dudv -- 11.6. DD((xu" yv))
=
-dudv = .6.3 31 /11
arieD.
=
1
-(b-a)(q-p)
3
IDM 2009 - p. 23/23
.